摘 要:【目的】蘆筍是百合科天門冬屬植物石刁柏(Asparagus officinalis)的食用嫩莖,分析2個(gè)蘆筍品種轉(zhuǎn)錄途徑和代謝組成分,為深度評(píng)估蘆筍營(yíng)養(yǎng)價(jià)值和蘆筍種質(zhì)資源開(kāi)發(fā)利用和品種選育提供理論依據(jù)?!痉椒ā坷肬PLC-MS對(duì)哥蘭德和翡翠明珠2個(gè)蘆筍品種的嫩莖并進(jìn)行代謝組學(xué)研究,比較代謝組成分的種類和含量,分析蘆筍轉(zhuǎn)錄途徑和代謝組成分?!窘Y(jié)果】共篩選出差異代謝物235種,占全部代謝物的13.03%,其中包括黃酮53種,氨基酸及其衍生物39種,酚酸類34種,木脂素21種,生物堿20種,脂質(zhì)12種,有機(jī)酸8種,核苷酸及其衍生物7種,萜類7種,維生素6種,甾體5種,糖類4種,香豆素3種,酮類2種,醌類1種,醛類1種,以及其它12種。翡翠明珠與哥蘭德相比,翡翠明珠的矢車菊素-3-O-半乳糖苷、沒(méi)食子兒茶素-(4α→8)-沒(méi)食子兒茶素、丁香苷、芥子堿、2-乙?;?5-甲基呋喃與槲皮素-3-O-桑布雙糖苷含量較高;哥蘭德的葡萄糖基 5,8-二羥基-2,6-二甲基八碳-2,6-二烯酸,N-阿魏酰尸胺、毛蕊花糖苷、1-O-(6′-O-阿魏酰)葡萄糖苷-3-O-咖啡??崴岷椭冈碥?A3-葡萄糖苷含量較高?!窘Y(jié)論】通過(guò)富集235種代謝物,得到次生代謝物的生物合成途徑主要有氨基酸、輔助因子與黃酮類化合物的生物合成途徑。
關(guān)鍵詞:蘆筍;LC-MS;代謝;轉(zhuǎn)錄途徑
中圖分類號(hào):S63 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-4330(2024)10-2408-09
收稿日期(Received):2024-02-18
基金項(xiàng)目:天山英才-科技創(chuàng)新領(lǐng)軍人才;新疆維吾爾自治區(qū)重大科技專項(xiàng)(2022A02005-2);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(KYYJ2022001);新疆蔬菜產(chǎn)業(yè)技術(shù)體系(XJARS-07)
作者簡(jiǎn)介:莊紅梅(1987-),女,副研究員,研究方向?yàn)樾陆厣卟嗽耘嗯c生理,(E-mail)zhuanghongmei86@163.com
通訊作者:王浩(1970-),男,山東濟(jì)寧人,研究員,研究方向?yàn)槭卟嗽耘嗯c生理,(E-mail)wanghao183@163.com
王強(qiáng)(1983-),男,甘肅會(huì)寧人,研究員,研究方向?yàn)樵O(shè)施蔬菜栽培與生理,(E-mail)350615359@qq.com
0 引 言
【研究意義】蘆筍是百合科天門冬屬植物石刁柏(Asparagus officinalis)的食用嫩莖,營(yíng)養(yǎng)均衡全面,維生素、蛋白質(zhì)和人體必需氨基酸含量豐富,且富含多種黃酮類物質(zhì),具有抗氧化、抗菌、抗衰老和提高免疫力等生理活性以及藥理作用,經(jīng)常食用可消除疲勞、改善心血管功能、提高機(jī)體代謝能力,是一種食藥兼用的蔬菜[1,2]。蘆筍是多年生作物,栽培一次可連續(xù)采收十余年,因此品種的優(yōu)劣對(duì)提高種植蘆筍的效益有重要意義?!厩叭搜芯窟M(jìn)展】超高效液相色譜串聯(lián)質(zhì)譜(Liquid chromatography-mass spectrometry,UPLC-MS)技術(shù)是近年來(lái)常用于檢測(cè)代謝物的方法,以其靈敏、高效、快速、檢測(cè)范圍廣泛等特點(diǎn)而在植物活性成分的分析檢測(cè)、產(chǎn)品品質(zhì)差異分析等方面得到廣泛應(yīng)用[3]。【本研究切入點(diǎn)】不同蘆筍品種均具有較高的營(yíng)養(yǎng)價(jià)值,目前蘆筍種質(zhì)資源開(kāi)發(fā)利用和品種選育文獻(xiàn)尚較少。需利用UPLC-MS對(duì)哥蘭德和翡翠明珠2個(gè)蘆筍品種的食用嫩莖部分研究比較代謝組學(xué)。【擬解決的關(guān)鍵問(wèn)題】研究蘆筍轉(zhuǎn)錄途徑和代謝組成分,深度評(píng)估蘆筍營(yíng)養(yǎng)價(jià)值,為蘆筍種質(zhì)資源開(kāi)發(fā)利用和品種選育提供理論依據(jù)。
新疆農(nóng)業(yè)科學(xué)第61卷 第10期莊紅梅等:環(huán)塔里木盆地2個(gè)蘆筍品種的代謝組學(xué)分析
1 材料與方法
翡翠明珠是山東華農(nóng)蘆筍科技有限公司新育成的雜交一代品種,綜合性狀優(yōu)良,適合我國(guó)南北方種植,該品種豐產(chǎn)性強(qiáng);哥蘭德是美國(guó)加利福尼亞大學(xué)選育而成的雜交一代品種,屬中熟品種,單產(chǎn)可達(dá) 1 500 kg/667m2,抗銹病能力強(qiáng)。翡翠明珠和哥蘭德蘆筍于 2019 年播種栽培于新疆和田洛浦縣蘆筍生產(chǎn)基地設(shè)施大棚中。成年后于采筍期(2022 年 10月)選取長(zhǎng)度、粗度、筍形較為一致,無(wú)病蟲(chóng)害的蘆筍帶回實(shí)驗(yàn)室,通過(guò)超高效液相色譜串聯(lián)質(zhì)譜對(duì)蘆筍中的代謝物進(jìn)行定性定量檢測(cè),篩選出具有重要生物學(xué)意義和統(tǒng)計(jì)學(xué)顯著差異的代謝物。
2 結(jié)果與分析
2.1 UPLC-MS/MS檢測(cè)哥蘭德和翡翠明珠蘆筍代謝物成分對(duì)比
研究表明,用UPLC-MS/MS檢測(cè)到哥蘭德和翡翠明珠品種蘆筍嫩莖中共有1 803種代謝物,包括黃酮260種(14.42%),酚酸類232種(12.87%),氨基酸及其衍生物214種(11.87%),生物堿188種(10.43%),脂質(zhì)161種(8.93%),有機(jī)酸103種(5.71%),萜類97種(5.38%),甾體87種(4.83%),糖類79種(4.38%),核苷酸及其衍生物76種(4.22%),木脂素68種(3.77%),香豆素41種(2.27%),醌類28種(1.55%),維生素23種(1.28%),醛類14種(0.78%),酮類13種(0.72%),色酮類11種(0.61%),內(nèi)酯類9種(0.50%),醇類9種(0.50%),茋類7種(0.39%),以及其它83種(4.60%)。圖1
2.2 比較翡翠明珠與哥蘭德蘆筍代謝組成分的種類和含量
研究表明,共篩選出差異代謝物235種,占全部代謝物的13.03%,其中包括黃酮53種,氨基酸及其衍生物39種,酚酸類34種,木脂素21種,生物堿20種,脂質(zhì)12種,有機(jī)酸8種,核苷酸及其衍生物7種,萜類7種,維生素6種,甾體5種,糖類4種,香豆素3種,酮類2種,醌類1種,醛類1種,以及其它12種。與哥蘭德蘆筍相比,翡翠明珠蘆筍代謝組中有132種代謝物含量提高,103種代謝物含量下降,其中黃酮類物質(zhì)中有28種含量上調(diào),25種含量下降;氨基酸及其衍生物中有34種含量上調(diào),5種含量下降;酚酸類物質(zhì)中有14種含量上調(diào),20種含量下降;木脂素和香豆素中有4種含量上調(diào),20種含量下降;生物堿中有15種含量上調(diào),5種含量下降;脂類物質(zhì)中有10種含量上調(diào),2種含量下降;有機(jī)酸中有6種含量上調(diào),2種含量下降;7種核苷酸及其衍生物含量上調(diào);萜類物質(zhì)中有3種含量上調(diào),4種含量下降;6種維生素含量下降;甾體物質(zhì)中1種含量上調(diào),4種含量下降;糖類物質(zhì)中3中含量上調(diào),1種含量下降;酮類物質(zhì)中1種含量上調(diào),1種含量下降,1種醌類物質(zhì)和1種醛類物質(zhì)含量下降。表1,圖2
與哥蘭德相比,上調(diào)差異倍數(shù)最高的代謝物是矢車菊素-3-O-半乳糖苷,其下依次為沒(méi)食子兒茶素-(4α→8)-沒(méi)食子兒茶素、薯蕷皂苷元-半乳糖-葡萄糖苷、丁香苷、飛燕草素-3-O-(2″-O-葡萄糖基)蕓香糖苷、芥子堿、2-乙?;?5-甲基呋喃、順-β-D-葡萄糖基-2-羥基肉桂酸酯、葫蘆巴堿、3-氨基甲酰-1-甲基氧化吡啶、粗葉懸鉤子苷、矢車菊素-3-O-(2″-O-葡萄糖基)蕓香糖苷、矢車菊素-3-O-葡萄糖基蕓香糖苷、槲皮素-3-O-桑布雙糖苷和L-酪胺;下調(diào)差異倍數(shù)最高的代謝物是葡萄糖基 5,8-二羥基-2,6-二甲基八碳-2,6-二烯酸,其下依次為N-阿魏酰尸胺、毛蕊花糖苷、1-O-(6′-O-阿魏酰)葡萄糖苷-3-O-咖啡??崴岷椭冈碥?A3-葡萄糖苷。表2,圖2
翡翠明珠、哥蘭德的差異代謝物在44個(gè)KEGG通路中均有富集。代謝途徑(Metabolic pathways)富集到的33個(gè)差異代謝物,數(shù)量最多,次生代謝物的生物合成途徑(Biosynthesis of secondary metabolites)富集到23個(gè)差異代謝物,氨基酸的生物合成途徑(Biosynthesis of amino acids)富集到8個(gè)差異代謝物,輔助因子的生物合成途徑(Biosynthesis of cofactors)富集到7個(gè)差異代謝物,黃酮類化合物的生物合成途徑(Flavonoid biosynthesis)富集到6個(gè)差異代謝物。圖3
翡翠明珠蘆筍中上調(diào)較高的差異代謝物丁香苷富集到苯丙烷類化合物的生物合成途徑(Phenylpropanoid biosynthesis),芥子堿富集到苯丙烷類化合物和次生代謝物的合成途徑,葫蘆巴堿富集到煙酸和煙酰胺代謝途徑(Nicotinate and nicotinamide metabolism),槲皮素-3-O-桑布雙糖苷富集到黃酮和黃酮醇的生物合成途徑(Flavone and flavonol biosynthesis,KEGG數(shù)據(jù)庫(kù)網(wǎng)址:https://www.kegg.jp/)。圖4
3 討 論
3.1 在翡翠明珠蘆筍中上調(diào)倍數(shù)最高的代謝物中,矢車菊素-3-O-半乳糖苷是一種廣泛存在于多種蔬果中的花青素類物質(zhì)[4];沒(méi)食子兒茶素-(4α→8)-沒(méi)食子兒茶素具有抗菌、抗氧化的功效[5];丁香苷具有抗炎免疫、保護(hù)肝功能的作用[6];芥子堿具有抗輻射、抗氧化、抗腹瀉、抗癌、抗腫瘤、保護(hù)肝功能和降壓平喘的藥理作用[7];2-乙?;?5-甲基呋喃是重要的食用香料[8];葫蘆巴堿具有抗脫粒、抗糖尿病、抗氧化、抗炎和保護(hù)神經(jīng)和心腎等功效[9,10];粗葉懸鉤子苷具有抗氧化活性[11];槲皮素-3-O-桑布雙糖苷能夠促進(jìn)對(duì)神經(jīng)中樞的刺激,并具有抗氧化和抗癌活性[12]。在翡翠明珠蘆筍中下調(diào)倍數(shù)最高的代謝物中,毛蕊花糖苷具有抗氧化、免疫調(diào)節(jié)、抗炎、保肝等生物活性和保護(hù)皮膚免受紫外線損傷的功效[13,14]。
3.2 此外,與哥蘭德蘆筍相比,翡翠明珠蘆筍中還有許多其它具有藥用價(jià)值的代謝物含量發(fā)生上調(diào)或下降。黃酮類物質(zhì)中,黃芩苷、野黃芩素、柚皮素、圣草酚等含量上升,蘆丁、葒草素、水仙苷等含量下降。黃芩苷能夠具有顯著的抗氧化、抗炎癥、抗病毒活性,可顯著抑制HIV逆轉(zhuǎn)錄酶的活性,并抑制HIV-1的復(fù)制[15];野黃芩素具有抑制結(jié)腸癌發(fā)生、抑制視網(wǎng)膜神經(jīng)節(jié)RGC-5細(xì)胞凋亡等藥理活性[16-18];柚皮素具有抗炎、抗凋亡、抗氧化應(yīng)激等生物學(xué)活性,是潛在的治療慢性腸道炎癥性疾病有效藥物[19,20];圣草酚具有抗氧化、降血脂、降血糖等功效,在抑制糖尿病腎纖維化、改善潰瘍性結(jié)腸炎等亦有潛在的藥用價(jià)值[21-24];蘆丁具有抗炎、抗氧化、保護(hù)血管和鎮(zhèn)痛等多種藥理作用,且廣泛應(yīng)用在畜牧業(yè)中[25];葒草素具有抗癌細(xì)胞遷移,以及改善肺損傷、肝損傷以及細(xì)胞損傷等藥理作用[26]。酚酸類物質(zhì)中,松果菊苷等含量下降,松果菊苷具有抗炎、抗氧化、減輕膿毒癥導(dǎo)致的心肌和腎功能損傷、治療神經(jīng)系統(tǒng)疾病的功效[27]。
4 結(jié) 論
通過(guò)富集235種代謝物,得到次生代謝物的生物合成途徑主要有氨基酸、輔助因子與黃酮類化合物的生物合成途徑。翡翠明珠與哥蘭德蘆筍上調(diào)和下調(diào)倍數(shù)最高的代謝物中的黃酮類物質(zhì)具有顯著的抗氧化、抗炎癥、抗病毒活性,酚酸類物質(zhì)具有抗氧化、治療神經(jīng)系統(tǒng)疾病的功效。
參考文獻(xiàn)(References)
[1]楊曉春, 黎重陽(yáng), 張玲玲, 等. 響應(yīng)面法優(yōu)化綠蘆筍罐頭的生產(chǎn)工藝[J]. 食品研究與開(kāi)發(fā), 2023, 44(8): 82-88.
YANG Xiaochun, LI Chongyang, ZHANG Lingling, et al. Processing technology optimization of canned green Asparagus by response surface method[J]. Food Research and Development, 2023, 44(8): 82-88.
[2] 毛麗萍, 郭偉民. 蘆筍營(yíng)養(yǎng)價(jià)值與保健功能[J]. 食品工程, 2012,(3): 63-64.
MAO Liping, GUO Weimin. Nutrition value and health function of asparagus[J]. Food Engineering, 2012,(3): 63-64.
[3] Wu Y Q, Zhang C H, Huang Z J, et al. The color difference of rubus fruits is closely related to the composition of flavonoids including anthocyanins[J]. LWT, 2021, 149: 111825.
[4] Liang Z X, Liang H R, Guo Y Z, et al. Cyanidin 3- O-galactoside: a natural compound with multiple health benefits[J]. International Journal of Molecular Sciences, 2021, 22(5): 2261.
[5] Plumb G W, de Pascual-Teresa S, Santos-Buelga C, et al. Antioxidant properties of gallocatechin and prodelphinidins from pomegranate peel[J]. Redox Report: Communications in Free Radical Research, 2002, 7(1): 41-46.
[6] 胡閃閃, 胡紅杰, 徐艷萍, 等. 紫丁香苷對(duì)LPS/D-GalN誘導(dǎo)的急性肝損傷的保護(hù)作用研究[J]. 畜牧與獸醫(yī), 2023, 55(4): 120-126.
HU Shanshan, HU Hongjie, XU Yanping, et al. Protective effect of syringin on LPS/D-GalN induced acute liver injury[J]. Animal Husbandry amp; Veterinary Medicine, 2023, 55(4): 120-126.
[7] 楊占婷, 張得鈞. 芥子堿的研究進(jìn)展[J]. 華西藥學(xué)雜志, 2017, 32(6): 658-661.
YANG Zhanting, ZHANG Dejun. Research progress of sinapine[J]. West China Journal of Pharmaceutical Sciences, 2017, 32(6): 658-661.
[8] 孫寶國(guó), 李勇. 2-乙?;?5-甲基呋喃的合成研究[J]. 精細(xì)化工, 1993, 10(6): 13-15.
SUN Baoguo, LI Yong. A new method for the synthesis of 2-acetyl-5-methylfuran[J]. Fine Chemicals, 1993, 10(6): 13-15.
[9] Ilavenil S, Kim D H, Jeong Y I, et al. Trigonelline protects the cardiocyte from hydrogen peroxide induced apoptosis in H9c2 cells[J]. Asian Pacific Journal of Tropical Medicine, 2015, 8(4): 263-268.
[10] Folwarczna J, Janas A, Pytlik M, et al. Effects of trigonelline, an alkaloid present in coffee, on diabetes-induced disorders in the rat skeletal system[J]. Nutrients, 2016, 8(3): 133.
[11] Song Q B, Xia X, Ji C M, et al. Optimized flash extraction and UPLC-MS analysis on antioxidant compositions ofNitraria sibirica fruit[J]. Journal of Pharmaceutical and Biomedical Analysis, 2019, 172: 379-387.
[12] Li X, Yang L P, Liu S Y, et al. Effect of quercetin-3-O-sambubioside isolated fromEucommia ulmoidesmale flowers on spontaneous activity and convulsion rate in mice[J]. Planta Medica, 2014, 80(12): 974-977.
[13] 王豐青, 王麗娜, 智驚宇, 等. 不同品種地黃中毛蕊花糖苷的動(dòng)態(tài)積累規(guī)律變化[J]. 中國(guó)實(shí)驗(yàn)方劑學(xué)雜志, 2017, 23(24): 78-83.
WANG Fengqing, WANG Lina, ZHI Jingyu, et al. Changes in dynamic accumulation of acteoside from differentRehmannia glutinosa cultivars[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23(24): 78-83.
[14] 張迪, 張娟利, 馬忠英. 毛蕊花糖苷對(duì)中波紫外線所致小鼠皮膚損傷的保護(hù)作用研究[J]. 中藥新藥與臨床藥理, 2023, 34(1): 57-63.
ZHANG Di, ZHANG Juanli, MA Zhongying. Study on the protective effect of verbascoside on the skin damage induced by UVB in mice[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2023, 34(1): 57-63.
[15] 趙晶, 張致平, 陳鴻珊, 等. 黃芩甙衍生物的合成及抗人免疫缺陷病毒活性研究[J]. 藥學(xué)學(xué)報(bào), 1998, 33(1): 22-27.
ZHAO Jing, ZHANG Zhiping, CHEN Hongshan, et al. Synthesis of baicalin derivatives and evaluation of their anti-human immunodeficiency virus(hiv-1) activity[J]. Acta Pharmaceutica Sinica, 1998, 33(1): 22-27.
[16] 李遠(yuǎn)志, 王鈞冬, 岳朝馳, 等. 野黃芩素在結(jié)腸癌發(fā)生發(fā)展中的作用機(jī)制研究[J]. 中國(guó)當(dāng)代醫(yī)藥, 2021, 28(20): 12-16, 20.
LI Yuanzhi, WANG Jundong, YUE Chaochi, et al. Study on the effect mechanism of scutellarin in the occurrence and development of colon cancer[J]. China Modern Medicine, 2021, 28(20): 12-16, 20.
[17] 林惠軍, 楊倩, 龔瀟. 野黃芩素經(jīng)Akt/FoxO1信號(hào)通路抑制視網(wǎng)膜神經(jīng)節(jié)細(xì)胞凋亡[J]. 中南醫(yī)學(xué)科學(xué)雜志, 2022, 50(4): 482-485, 490.
LIN Huijun, YANG Qian, GONG Xiao. The mechanism of scutellariae inhibiting apoptosis of retinal ganglion cells via Akt/FoxO1 signaling pathway[J]. Medical Science Journal of Central South China, 2022, 50(4): 482-485, 490.
[18] 王夢(mèng)娜, 梅茜鈺, 陸賓, 等. 野黃芩素改善高糖誘導(dǎo)小膠質(zhì)細(xì)胞活化引起的血腦屏障功能障礙[J]. 中國(guó)藥理學(xué)通報(bào), 2020, 36(11): 1542-1547.
WANG Mengna, MEI Xiyu, LU Bin, et al. Scutellarein alleviates dysfunction of blood-brain-barrier initiated by hyperglycemia-stimulated microglia cells[J]. Chinese Pharmacological Bulletin, 2020, 36(11): 1542-1547.
[19] 劉思佳, 吳堃, 任凱強(qiáng), 等. 柚皮素通過(guò)抑制NF-κB-iNOS/COX-2通路減輕小鼠糖尿病肝損傷[J]. 中國(guó)病理生理雜志, 2023, 39(3): 445-450.
LIU Sijia, WU Kun, REN Kaiqiang, et al. Naringin attenuates diabetic hepatopathy in mice by inhibition of NF-κBiNOS/COX-2 pathway[J]. Chinese Journal of Pathophysiology, 2023, 39(3): 445-450.
[20] 牛金明, 程莉雅, 吳美美. 柚皮素對(duì)過(guò)敏性鼻炎模型大鼠鼻黏膜組織TLR4/NF-κB/TNF-α信號(hào)通路的影響[J]. 中國(guó)實(shí)驗(yàn)診斷學(xué), 2023, 27(4): 483-488.
NIU Jinming, CHENG Liya, WU Meimei. Effect of naringenin on TLR4/NF-κB/TNF-α signal pathway in nasal mucosa of rats with allergic rhinitis[J]. Chinese Journal of Laboratory Diagnosis, 2023, 27(4): 483-488.
[21] 劉斌, 王叨, 孫霞, 等. 圣草酚對(duì)DG-75細(xì)胞生長(zhǎng)的抑制作用及相關(guān)作用機(jī)制研究[J]. 中國(guó)實(shí)驗(yàn)血液學(xué)雜志, 2021, 29(6): 1790-1796.
LIU Bin, WANG Dao, SUN Xia, et al. Inhibition effect of eriodictyol to growth of DG-75 cells and the related action mechanism[J]. Journal of Experimental Hematology, 2021, 29(6): 1790-1796.
[22] 楊敏, 張鋒, 付姣, 等. 圣草酚對(duì)高脂飲食誘導(dǎo)的糖尿病大鼠肝損傷的保護(hù)作用及機(jī)制探討[J]. 天津中醫(yī)藥大學(xué)學(xué)報(bào), 2022, 41(3): 355-360.
YANG Min, ZHANG Feng, FU Jiao, et al. The protective effect and mechanism of eriodictyol on the liver injury in diabetic rats induced by high-fat diet[J]. Journal of Tianjin University of Traditional Chinese Medicine, 2022, 41(3): 355-360.
[23] 應(yīng)勤麗, 黃月碧, 楊秀翠, 等. 圣草酚通過(guò)抑制TGF-β1/Smad3信號(hào)通路改善糖尿病腎病大鼠腎纖維化[J]. 中國(guó)免疫學(xué)雜志, 2023, 39(4): 693-697.
YING Qinli, HUANG Yuebi, YANG Xiucui, et al. Eriodictyol ameliorates kidney fibrosis in diabetic nephropathy rat by inhibiting TGF-β1/Smad3 signaling pathway[J]. Chinese Journal of Immunology, 2023, 39(4): 693-697.
[24] 楊舒鈞, 梁紅亮, 滕俊, 等. 圣草酚對(duì)DSS誘導(dǎo)的大鼠潰瘍性結(jié)腸炎的改善作用及機(jī)制探討[J]. 中國(guó)免疫學(xué)雜志, 2022, 38(18): 2188-2192, 2199.
YANG Shujun, LIANG Hongliang, TENG Jun, et al. Ameliorating effect and mechanism of eriodictyol on DSS-induced ulcerative colitis in rats[J]. Chinese Journal of Immunology, 2022, 38(18): 2188-2192, 2199.
[25] 任亞爽, 夏小雯, 王香君, 等. 蘆丁鎮(zhèn)痛作用機(jī)制研究進(jìn)展及臨床應(yīng)用展望[J]. 中國(guó)藥理學(xué)通報(bào), 2023, 39(5): 807-811.
REN Yashuang, XIA Xiaowen, WANG Xiangjun, et al. Research on analgesic effect and prospect of clinical application of rutin[J]. Chinese Pharmacological Bulletin, 2023, 39(5): 807-811.
[26] Li F H, Liao X, Jiang L, et al. Orientin attenuated d-GalN/LPS-induced liver injury through the inhibition of oxidative stress via Nrf2/Keap1 pathway[J]. Journal of Agricultural and Food Chemistry, 2022, 70(26): 7953-7967.
[27] 馮茜, 董波, 楊旭紅. 松果菊苷治療神經(jīng)系統(tǒng)疾病作用機(jī)制的研究進(jìn)展[J]. 中草藥, 2023, 54(5): 1654-1662.
FENG Qian, DONG Bo, YANG Xuhong. Research progress on mechanisms of echinacoside in treatment of neurological diseases[J]. Chinese Traditional and Herbal Drugs, 2023, 54(5): 1654-1662.
Metabolomics study of two different varieties of Asparagus based on LC-MS technique
ZHUANG Hongmei1,ZHAO Jiafen2,WANG Yan3,CHEN Xianzhi4,LIU Huifang1,
HAN Hongwei1, Kelibinuer Kaisaier1, WANG Qiang1, WANG Hao1
(1. Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Xinjiang Vegetable Engineering Research Center/Provincial and Ministerial Co-Construction State Key Laboratory of Crop Stress Resistance Genetic Improvement and Germplasm Innovation in Arid Desert Region/Xinjiang Key Laboratory of Genomic Research and Genetic Improvement of Specialty Fruits and Vegetables, Urumqi 830091, China; 2. Hotan Agricultural Technology Extension Center, Hotan Xinjiang 848000, China; 3.College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; 4. Wenzhou Vocational College of Science and Technology, Wenzhou Zhejiang 325006, China)
Abstract:【Objective】 Asparagus known as the 'king of vegetables' is the edible tender stem of the asparagus officinalis in the lily family, so this project aims to clarify the two varieties of asparagus transcriptional pathway and metabolism components.The results of this study has provided theoretical basis for in-depth evaluation of nutritional value, development and utilization of germplasm resources and variety breeding of asparagus.【Methods】 A comparative metabolomic study was carried out on the young stems of two varieties of Galande and Jade Pearl asparagus by UPLC-MS and the transcriptional pathway and metabolic components of asparagus were comprehensively understood by comparing the types and contents of metabolic components.【Results】 A total of two hundred and thirty-five different metabolites were screened out accounting for 13.03% of the total metabolites, including fifty-three flavonoids, thirty-nine amino acids and their derivatives, thirty-four phenolic acids, twenty-one lignans, twenty alkaloids, twelve lipids, eight organic acids, seven nucleotides and their derivatives, seven terpenoids, six vitamins, five steroids, four sugars, three coumarins, two ketones, one quinone, one aldehyde, and twelve others. The cyanidin-3-O-galactoside, gallocatechin-(4α→8)-gallocatechin, syringin, sinapine, 2-acetyl-5-methylfuran and quercetin-3-O-sambubioside were higher than those of galactoside. Golande had a high content of glucosyl 5, 8-dihydroxy-2, 6-dimethylocta-2, 6-dienoic acid, N-feruloyl cadaverine, acteoside, 1-O-(6' -o-feruloyl acid) glucoside, 3-O-caffeoyl quinic acid and timosaponin A3-glucoside. 【Conclusion】 Through enrichment of two hundred and thirty-five kinds of metabolites, the main biosynthesis pathways of secondary metabolites include amino acids, cofactors and flavonoids.
Key words:asparagus; LC-MS; metabolism; transcription pathway
Fund projects:“Tianshan Talerts”—Science and technology Innovation Leading Talent project; Major Science and Technology Projects in Xinjiang Uygur Autonomous Region(2022A02005-2);Earmarked Fund for the Basic Scientific Research of Central Government Universities (KYYJ2022001); Xinjiang Vegetable Agriculture Research System(XJARS-07)
Correspondence author: WANG Hao (1970-), male, from Jining, Shandong, researcher, research direction: vegetable cultivation and physiology, (E-mail) wanghao183@163.com
WANG Qiang (1983-), male, from Huining, Gansu, researcher, research direction: Protected vegetable cultivation and physiology, (E-mail) 350615359@qq.com