摘" 要: 為加快我國(guó)家驢的分子選育進(jìn)展,本研究收集國(guó)內(nèi)外27個(gè)驢品種,共251頭成年驢的全基因組重測(cè)序數(shù)據(jù),結(jié)合國(guó)內(nèi)外家驢重要性狀遺傳變異研究結(jié)果,設(shè)計(jì)了一款基于靶向測(cè)序基因型檢測(cè)技術(shù)的家驢40K液相芯片。結(jié)果表明,家驢40K液相芯片中的變異位點(diǎn)(45 893個(gè)SNPs和1個(gè)InDel)在家驢基因組范圍內(nèi)的平均間距為61.8 kb。利用該芯片對(duì)210頭成年德州驢母驢進(jìn)行基因分型測(cè)試,所有測(cè)試樣本的位點(diǎn)檢出率為98.4%~99.2%,位點(diǎn)平均測(cè)序深度為133×,共有42 575個(gè)位點(diǎn)的次等位基因頻率大于0.35。使用芯片對(duì)20張?bào)H皮樣本進(jìn)行了品種鑒定,初步驗(yàn)證了芯片的可用性。綜上,本研究開(kāi)發(fā)的家驢40K液相芯片作為首款大規(guī)模家驢基因型檢測(cè)工具,具有位點(diǎn)密度高、多態(tài)性好、檢出率高、應(yīng)用性強(qiáng)等優(yōu)勢(shì),可用于家驢早期的分子標(biāo)記輔助選擇、品種鑒定等方面,進(jìn)一步提高家驢的育種效率。
關(guān)鍵詞: 家驢;靶向測(cè)序基因型檢測(cè);液相芯片;育種
中圖分類(lèi)號(hào): S822.2
"""文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2024)12-5538-11
doi: 10.11843/j.issn.0366-6964.2024.12.019
開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
收稿日期:2024-06-17
基金項(xiàng)目:山東省農(nóng)業(yè)重大應(yīng)用技術(shù)創(chuàng)新項(xiàng)目(SD2019XM008);山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系驢創(chuàng)新團(tuán)隊(duì)建設(shè)專(zhuān)項(xiàng)基金(SDAIT-27);中央引導(dǎo)地方項(xiàng)目(K3030922098);陜西省創(chuàng)新能力支持計(jì)劃項(xiàng)目(2018XY-021);陜西省科技廳“科學(xué)家+工程師”項(xiàng)目(2020)
作者簡(jiǎn)介:李" 聰(1996-),女,河南鶴壁人,博士,主要從事動(dòng)物遺傳資源與育種研究,E-mail:lc863749946@163.com
*通信作者:孫玉江,主要從事馬屬動(dòng)物遺傳育種與繁殖研究,E-mail:s36s@163.com;黨瑞華,主要從事家畜遺傳育種與繁殖研究,E-mail: dangruihua@nwsuaf.edu.cn
Development and Preliminary Application of Domestic Donkey 40K Liquid Chip
LI" Cong1, LIU" Shuqin2, GAO" Feng1, SU" Jiangtian1, WANG" Zhaofei1, TUO" Shaohua3, SUN" Yujiang2*, DANG" Ruihua1*
(1.College of Animal Science and Technology, Northwest Aamp;F University, Yangling 712100," China;
2.College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109," China;
3.Science and Technology Bureau of Ansai District, Yan’an 717400," China)
Abstract:" To accelerate the progress of molecular breeding of Chinese donkeys, this study collected whole genome resequencing data from 251 adult donkeys across 27 donkey breeds and combined it with the results of genetic variation research on important traits of domestic donkeys at home and abroad, designed a 40K liquid chip based on targeted sequencing genotype detection technology for domestic donkeys. The results showed that the variation sites (45 893 SNPs and 1 InDel) in the 40K liquid chip of the domestic donkey were distributed within the domestic donkey genome, with an average spacing of 61.8 kb. Genotyping test was performed on 210 adult Dezhou female donkeys, achieving a detection rate of 98.4%-99.2% across all samples. The average sequencing depth of the loci was 133×, and 42 575 loci had minor allele frequency greater than 0.35. The chip was used for breed identification in 20 donkey-hide samples and preliminarily verified its usability. In summary, the 40K liquid chip developed in this study, the first large-scale genotype detection tool for domestic donkeys, has the advantages of high loci density, good polymorphism, high detection rate, and strong application. It can be used for early molecular marker-assisted selection and breed identification of domestic donkeys, further improving the breeding efficiency.
Key words: domestic donkey; genotyping detection by target sequencing; liquid chip; breeding
*Corresponding authors: SUN Yujiang, E-mail:s36s@163.com; DANG Ruihua, E-mail: dangruihua@nwsuaf.edu.cn
德州驢是我國(guó)最具代表性的地方家驢品種之一,近年來(lái)因其皮用、肉用和奶用的優(yōu)良特性,愈發(fā)受到農(nóng)牧企業(yè)和養(yǎng)殖戶(hù)的重視。目前,家驢行業(yè)采用的傳統(tǒng)育種手段難以在短期內(nèi)取得較大遺傳進(jìn)展。基因芯片的開(kāi)發(fā)和應(yīng)用,能快速提高畜禽遺傳特性解析、品種鑒定、資源保護(hù)和選育工作的進(jìn)展?;赟NP芯片,開(kāi)展了一系列針對(duì)群體遺傳結(jié)構(gòu)分析、經(jīng)濟(jì)性狀候選基因挖掘、基因組選擇等遺傳育種工作[1-3]。因此,篩選德州驢重要經(jīng)濟(jì)性狀相關(guān)的分子標(biāo)記,通過(guò)前沿分子育種技術(shù)加速德州驢品種的選育勢(shì)在必行。全基因組關(guān)聯(lián)研究和全基因組選擇育種是新時(shí)代育種工作的重要基礎(chǔ),但限制于重測(cè)序手段的高昂成本與傳統(tǒng)固相芯片相對(duì)較低的位點(diǎn)密度和靈活性,難以在家驢生產(chǎn)實(shí)踐中進(jìn)行推廣應(yīng)用。因此,基于靶向測(cè)序基因型檢測(cè)(genotyping by target sequencing, GBTS)技術(shù)開(kāi)發(fā)一款高效、快速、低成本的大規(guī)?;蛐蜋z測(cè)工具,有利于我國(guó)家驢分子育種的發(fā)展。
位點(diǎn)信息是基因芯片探針設(shè)計(jì)的數(shù)據(jù)基礎(chǔ),位點(diǎn)挑選更是芯片設(shè)計(jì)過(guò)程中的核心內(nèi)容與關(guān)鍵環(huán)節(jié),其效果直接決定了芯片的實(shí)用價(jià)值。長(zhǎng)期以來(lái),位點(diǎn)的挑選主要根據(jù)等位基因頻率、缺失率和雜合率等基本標(biāo)準(zhǔn)進(jìn)行[4],而隨著近年來(lái)驢基因組學(xué)和轉(zhuǎn)錄組學(xué)研究成果的逐漸豐富,為新型芯片的位點(diǎn)選擇和評(píng)估過(guò)程提供了更多的參考信息。本研究中,新型液相芯片的位點(diǎn)設(shè)計(jì)在基礎(chǔ)挑選的標(biāo)準(zhǔn)上進(jìn)行,并加入了經(jīng)過(guò)驗(yàn)證的可靠功能位點(diǎn)。同時(shí),本研究基于公共的驢多組學(xué)研究成果,評(píng)估了家驢40K液相芯片位點(diǎn)集的應(yīng)用潛力。最后,為檢測(cè)該芯片的生產(chǎn)實(shí)踐價(jià)值,針對(duì)210頭德州驢進(jìn)行基因分型測(cè)試,并基于實(shí)際應(yīng)用需求,對(duì)20個(gè)國(guó)內(nèi)外驢皮樣品進(jìn)行了品種來(lái)源鑒定。
1" 材料與方法
1.1" 試驗(yàn)材料
本研究收集了251頭成年驢(25個(gè)家驢品種和2個(gè)野驢品種)的全基因組重測(cè)序數(shù)據(jù),下載的基因組數(shù)據(jù)均來(lái)源于國(guó)家生物信息中心和NCBI數(shù)據(jù)庫(kù)(PRJCA001131、PRJNA675210、PRJNA259601),品種信息見(jiàn)表1。
1.2" 提取基因組變異集合
對(duì)重測(cè)序原始數(shù)據(jù)進(jìn)行過(guò)濾并比對(duì)至驢的參考基因組(EquAsi1.0)[5],使用Picard2.18.17 (http://broadinstitute.github.io/picard/)去除重復(fù)序列,最后通過(guò)GATK3.8[6]進(jìn)行變異檢測(cè)。為得到高質(zhì)量SNP集合進(jìn)行芯片位點(diǎn)的篩選,使用GATK對(duì)變異集合進(jìn)行質(zhì)量控制,條件為:1)去除測(cè)序深度低于三分之一平均深度與高于3倍平均深度的變異位點(diǎn);2)去除變異位點(diǎn)可信度/未過(guò)濾的非參考read數(shù)量小于2.0的變異;3)去除費(fèi)舍爾精確檢驗(yàn)評(píng)估值大于60.0的變異;4)去除比對(duì)質(zhì)量平方根小于40.0的變異;5)去除參考和突變r(jià)ead的比對(duì)質(zhì)量可信度小于-12.5的變異;6)去除read位置可信度小于-8.0的變異;7)去除鏈偏倚可能性大于3.0的突變。最終共得到31 845 452個(gè)SNPs用于液相芯片位點(diǎn)篩選。
1.3" 液相芯片位點(diǎn)的篩選與定制
本研究中,液相芯片的背景位點(diǎn)篩選根據(jù)基本標(biāo)準(zhǔn)[4]進(jìn)行。具體為:1)在基因組中每條染色體上分布的間距合理;2)在群體分型試驗(yàn)中,SNP的次等位基因頻率不小于0.35;SNP的缺失率不高于0.1;SNP的雜合率不高于0.5。在完成背景位點(diǎn)的篩選后,依據(jù)現(xiàn)有驢基因組研究結(jié)果定制功能位點(diǎn)。本研究選擇了兩個(gè)已被驗(yàn)證的遺傳變異作為功能位點(diǎn)(表2),背景位點(diǎn)與功能位點(diǎn)共同組成家驢40K液相芯片初始位點(diǎn)集。
1.4" 液相芯片位點(diǎn)的評(píng)估
為評(píng)估液相芯片初始位點(diǎn)集的應(yīng)用潛力,對(duì)重測(cè)序數(shù)據(jù)集進(jìn)行選擇信號(hào)分析。使用VCFtools0.1.16[8]基于50 kb的滑動(dòng)窗口和20 kb的步長(zhǎng)進(jìn)行FST和π ratio分析,檢測(cè)家驢與馴化性狀(世界家驢與野驢、國(guó)內(nèi)家驢與野驢、國(guó)外家驢與野驢)和海拔適應(yīng)(青藏高原驢群與平原驢群)相關(guān)的潛在受選擇區(qū)域,顯著閾值定義為前0.5%的窗口為受選擇區(qū)域。隨后,使用PLINK1.9[9]從受選擇區(qū)域提取SNP位點(diǎn),其中與液相芯片初始位點(diǎn)集重疊的變異位點(diǎn)注釋為家驢的潛在功能位點(diǎn)。最后,定制功能位點(diǎn)、潛在功能位點(diǎn)和背景位點(diǎn)共同組成家驢40K液相芯片的位點(diǎn)集。通過(guò)EIGENSOFT7.2.1 (https://github.com/argriffing/eigensoft)中的SmartPCA程序在重測(cè)序數(shù)據(jù)中提取40K位點(diǎn)集進(jìn)行主成分分析并利用R3.6.0進(jìn)行結(jié)果的可視化。
1.5" 探針合成
根據(jù)GBTS技術(shù)體系,對(duì)40K位點(diǎn)集進(jìn)行探針設(shè)計(jì),具體設(shè)計(jì)要求如下:1)可覆蓋區(qū)域的探針長(zhǎng)度為100~120 bp;2)探針區(qū)域GC含量在30%~80%;3)所選探針區(qū)域不存在簡(jiǎn)單重復(fù)序列或基因組組裝間隙;4)探針的同源性區(qū)域個(gè)數(shù)小于5。基于以上標(biāo)準(zhǔn),對(duì)40K位點(diǎn)集中的每個(gè)位點(diǎn)設(shè)計(jì)兩條核苷酸序列,用于捕獲目標(biāo)位點(diǎn)所在的基因組片段。最后,家驢40K液相芯片由石家莊博瑞迪生物技術(shù)有限公司合成。
1.6" 家驢40K液相芯片基因分型測(cè)試
基因分型測(cè)試是液相芯片開(kāi)發(fā)流程中的必要環(huán)節(jié),采集210頭成年德州驢母驢血液樣本,樣本來(lái)源:東阿阿膠股份有限公司國(guó)家黑毛驢繁殖中心,試驗(yàn)樣本均處在同一生長(zhǎng)批次,并遵循統(tǒng)一流程的飼養(yǎng)管理。利用TIANamp Genomic DNA Kit血液/細(xì)胞/組織基因組DNA提取試劑盒(天根生化科技有限公司,北京)提取樣本的基因組DNA。使用GenoBaits DNA seq Library Prep試劑盒(石家莊博瑞迪生物技術(shù)有限公司,石家莊)構(gòu)建家驢DNA高通量測(cè)序文庫(kù),將探針與文庫(kù)混合,進(jìn)行DNA片段的捕獲。經(jīng)測(cè)序后獲得原始數(shù)據(jù),使用SPSS25.0對(duì)試驗(yàn)群體的基因分型結(jié)果進(jìn)行統(tǒng)計(jì)分析。
1.7" 家驢40K液相芯片的應(yīng)用
本研究針對(duì)國(guó)內(nèi)外驢皮鑒別這一產(chǎn)業(yè)需求,使用家驢40K液相芯片進(jìn)行初步應(yīng)用,試驗(yàn)材料為20個(gè)國(guó)內(nèi)外驢皮樣本(表3),所有驢皮樣本經(jīng)過(guò)芯片測(cè)序,獲得的基因分型數(shù)據(jù)通過(guò)PLINK過(guò)濾掉基因型缺失率高于20%或次等位基因頻率低于0.05的SNPs位點(diǎn),之后使用EIGENSOFT進(jìn)行主成分分析。
2" 結(jié)" 果
2.1" 液相芯片位點(diǎn)的篩選
家驢40K液相芯片位點(diǎn)集主要由定制功能位點(diǎn)、潛在功能位點(diǎn)以及在滿(mǎn)足基本標(biāo)準(zhǔn)的條件下為達(dá)到位點(diǎn)容量要求而添加的背景位點(diǎn)組成。潛在功能位點(diǎn)主要包括與家驢馴化、高海拔適應(yīng)性狀的受選擇區(qū)域、驢主要經(jīng)濟(jì)性狀關(guān)聯(lián)基因與Y染色體區(qū)域。其中家驢與野驢受選擇分析中的前0.5%窗口被定義為馴化性狀受選擇區(qū)域,青藏高原驢群與平原驢群的前0.5%窗口被定義為高海拔適應(yīng)受選擇區(qū)域。通過(guò)對(duì)家驢馴化和高海拔適應(yīng)性狀的選擇信號(hào)分析,從世界家驢馴化、國(guó)內(nèi)、外家驢馴化和高海拔適應(yīng)性受選擇區(qū)域分別注釋了855、780、667和540個(gè)潛在功能位點(diǎn)(圖1)。
通過(guò)文獻(xiàn)檢索獲得驢多組學(xué)研究中與主要經(jīng)濟(jì)性狀關(guān)聯(lián)的候選基因?yàn)轶H潛在功能基因區(qū)域,主要包括通過(guò)基因組和轉(zhuǎn)錄組進(jìn)行的選擇信號(hào)分析、全基因組關(guān)聯(lián)分析、群體分型試驗(yàn)以及相關(guān)的分子驗(yàn)證試驗(yàn)。潛在功能基因的詳細(xì)信息見(jiàn)表4。
2.2" 液相芯片位點(diǎn)設(shè)計(jì)概況及評(píng)估
經(jīng)過(guò)基本標(biāo)準(zhǔn)的篩選與潛在功能位點(diǎn)的補(bǔ)充,共計(jì)45 893個(gè)SNPs位點(diǎn)和1個(gè)InDel位點(diǎn)在家驢40K液相芯片的面板上被確定,并用于后續(xù)的探針設(shè)計(jì)與合成。其中功能位點(diǎn)(定制功能位點(diǎn)與潛在功能位點(diǎn))3 216個(gè),背景位點(diǎn)42 678個(gè),不同類(lèi)別的位點(diǎn)統(tǒng)計(jì)見(jiàn)表5。在位點(diǎn)集中,相鄰SNPs位點(diǎn)的間距大多在10~60 kb之間,平均間距為61.8 kb,SNPs位點(diǎn)在基因組中的分布如圖2所示。
本研究對(duì)試驗(yàn)群體的芯片SNP數(shù)據(jù)進(jìn)行主成分分析,以評(píng)估位點(diǎn)集在群體遺傳結(jié)構(gòu)研究中的潛力,結(jié)果見(jiàn)圖3。主成分分析結(jié)果表明,第一主成分解釋了總遺傳變異的2.08%,并將國(guó)內(nèi)、外家驢群體區(qū)分開(kāi),說(shuō)明液相芯片40K位點(diǎn)集能夠有效區(qū)分國(guó)內(nèi)家驢與國(guó)外家驢群體。
2.3" 液相芯片基因分型測(cè)試結(jié)果
為評(píng)估家驢40K液相芯片的基因分型能力,收集了210頭成年德州驢母驢的血液樣本用于基因分型測(cè)試,經(jīng)質(zhì)量控制共保留了205個(gè)樣本與49 825個(gè)SNPs。對(duì)芯片測(cè)序數(shù)據(jù)進(jìn)行主成分分析,其中3頭野驢作為外群(圖4)。結(jié)果表明,第一主成分解釋了測(cè)試驢群6.72%的遺傳變異,并將野驢和德州驢完全區(qū)分開(kāi)來(lái),并且家驢40K液相芯片在分型中可以檢出比自身位點(diǎn)集數(shù)量更多的SNPs。對(duì)于芯片面板的45 894個(gè)位點(diǎn),所有樣本的位點(diǎn)檢出率(位點(diǎn)的覆蓋率在5×以上即視為被檢出)在98.4%~99.2%之間,平均位點(diǎn)檢出率達(dá)到98.8%,顯示出了良好的捕獲效果。同時(shí),芯片位點(diǎn)集的次等位基因頻率較高,其中42 575個(gè)SNPs的次等位基因頻率大于0.35。在測(cè)序深度方面,多數(shù)樣本中所有位點(diǎn)的測(cè)序深度為125~140×,平均可達(dá)133×。
在驢皮樣本的鑒別測(cè)試中,兩個(gè)秘魯樣本因檢出率過(guò)低被剔除,剩余18個(gè)樣本進(jìn)行主成分分析(圖5)。結(jié)果顯示,第一主成分和第三主成分分別解釋了總遺傳變異的7.58%和7.06%,并將國(guó)內(nèi)樣本和國(guó)外樣本明顯區(qū)分開(kāi)。結(jié)果表明,家驢40K液相芯片位點(diǎn)集可以有效區(qū)分國(guó)內(nèi)來(lái)源和國(guó)外來(lái)源的驢皮樣本,滿(mǎn)足了國(guó)內(nèi)驢皮的鑒別需求,具有一定的實(shí)際應(yīng)用潛力。
3" 討" 論
本研究進(jìn)行了家驢40K液相芯片的位點(diǎn)篩選與評(píng)估,以此作為該芯片設(shè)計(jì)工作的核心內(nèi)容。芯片面板上絕大多數(shù)位點(diǎn)由基本標(biāo)準(zhǔn)篩選后生成,補(bǔ)充了SNP(15∶25408816)和InDel(8∶42742556)作為定制功能位點(diǎn)?;緲?biāo)準(zhǔn)在基于GBTS技術(shù)體系開(kāi)發(fā)的其他物種液相芯片中被廣泛采用,具有一定的代表性[34]。次等位基因頻率是篩選位點(diǎn)的首要標(biāo)準(zhǔn),次等位基因頻率較低的SNP很難出現(xiàn)有價(jià)值的遺傳變異,而其較少的可用信息會(huì)在GWAS或其他基因組分析中導(dǎo)致統(tǒng)計(jì)效能的降低,從而增加結(jié)果的假陽(yáng)性;缺失率代表變異位點(diǎn)在篩選群體基因組數(shù)據(jù)中被檢測(cè)到的概率,如果過(guò)高(gt;10%)很可能導(dǎo)致芯片測(cè)試及實(shí)際應(yīng)用中的位點(diǎn)檢出率低于正常標(biāo)準(zhǔn);雜合率是該位點(diǎn)雜合基因型樣本在篩選群體中的比例,由于變異位點(diǎn)為純合基因型的性狀通常較為穩(wěn)定,因此在篩選位點(diǎn)時(shí)應(yīng)該盡量降低雜合率;背景位點(diǎn)的篩選中還應(yīng)充分考慮間距,才能使位點(diǎn)集在全基因組研究中發(fā)揮最大作用。在完成篩選的位點(diǎn)集中,位點(diǎn)在驢基因組中的分布合理。本研究在完成背景位點(diǎn)的篩選后挑選了兩個(gè)經(jīng)過(guò)多組學(xué)方法驗(yàn)證的可靠遺傳變異:ASIP基因內(nèi)的錯(cuò)義突變c.349 Tgt;C(SNP:15∶25408816)與發(fā)生在TBX3基因內(nèi)的1 bp缺失g.42742556 CTgt;C-(InDel:8∶42742556)作為定制功能位點(diǎn)加入到位點(diǎn)集中。
為充分評(píng)估位點(diǎn)集在全基因組研究中的應(yīng)用前景,利用重測(cè)序數(shù)據(jù)進(jìn)行了家驢馴化和海拔適應(yīng)性的全基因組選擇信號(hào)檢測(cè),鑒定出2 842個(gè)具有潛在價(jià)值的SNPs,可以為后續(xù)驢選擇信號(hào)研究提供參考。此外,本研究還廣泛檢索并總結(jié)了驢主要經(jīng)濟(jì)性狀相關(guān)的基因組與轉(zhuǎn)錄組學(xué)研究成果,包括與毛色、體尺、胴體、產(chǎn)奶和繁殖等主要經(jīng)濟(jì)性狀相關(guān)的38個(gè)基因內(nèi)的257個(gè)潛在功能位點(diǎn),進(jìn)一步豐富了芯片位點(diǎn)集在未來(lái)驢經(jīng)濟(jì)性狀多組學(xué)研究中的價(jià)值。2022年,利用我國(guó)自主研發(fā)的“中芯一號(hào)”豬育種SNP芯片,通過(guò)全基因組關(guān)聯(lián)分析鑒定了7個(gè)與體尺性狀顯著相關(guān)的候選基因[1]。Illumina BovineHD SNP芯片被應(yīng)用于解析肉牛肉質(zhì)性狀[35]和估計(jì)奶?;蚪M近親繁殖系數(shù)[36]。與之相比,家驢40K液相芯片可以充分利用液相芯片位點(diǎn)靈活的優(yōu)勢(shì),根據(jù)最新家驢研究成果對(duì)位點(diǎn)集進(jìn)行自定義調(diào)整,推動(dòng)我國(guó)驢產(chǎn)業(yè)的快速發(fā)展。
為全面評(píng)估家驢40K液相芯片的實(shí)際應(yīng)用效能,本研究選取了210頭德州驢進(jìn)行基因分型測(cè)試。基因分型結(jié)果中,該芯片具有較高的位點(diǎn)檢出率和測(cè)序深度,同時(shí)位點(diǎn)檢出數(shù)量多于自身位點(diǎn)集,并且檢出的SNPs大部分次等位基因頻率高于0.35,以上結(jié)果說(shuō)明了芯片位點(diǎn)集設(shè)計(jì)的有效性。群體遺傳研究是驢種質(zhì)資源保護(hù)與品種鑒定工作的重要內(nèi)容,也是家驢40K液相芯片的一大用途。針對(duì)試驗(yàn)群體的40K位點(diǎn)集進(jìn)行了主成分分析,結(jié)果顯示40K位點(diǎn)集可以有效區(qū)分國(guó)內(nèi)家驢與國(guó)外家驢群體,但難以將國(guó)內(nèi)家驢中的不同品種區(qū)分開(kāi),這與已報(bào)道的中國(guó)家驢群體遺傳結(jié)構(gòu)研究結(jié)果一致[5]。為進(jìn)一步測(cè)試家驢40K液相芯片在實(shí)際應(yīng)用中的效能,本研究結(jié)合合作單位的生產(chǎn)需求對(duì)驢皮樣本進(jìn)行了基因分型,成功區(qū)分了國(guó)內(nèi)與國(guó)外驢皮組織樣本。以上結(jié)果表明,家驢40K液相芯片在驢群體遺傳結(jié)構(gòu)研究中具備基礎(chǔ)的應(yīng)用能力,并且具有進(jìn)一步優(yōu)化的空間。
4" 結(jié)" 論
本研究進(jìn)行了新型家驢40K液相芯片的位點(diǎn)集設(shè)計(jì)、評(píng)估與基因分型測(cè)試。該芯片共包含了45 894個(gè)位點(diǎn),綜合群體基因分型和驢皮鑒定測(cè)試,顯示家驢40K液相芯片的檢出率、次等位基因頻率和測(cè)序深度均滿(mǎn)足要求,且具有一定的實(shí)際應(yīng)用潛力,可在家驢生產(chǎn)實(shí)踐中進(jìn)行推廣,加快我國(guó)驢業(yè)的選育進(jìn)展。
參考文獻(xiàn)(References):
[1]" LI C,DUAN D D,XUE Y H,et al.An association study on imputed whole-genome resequencing from high-throughput sequencing data for body traits in crossbred pigs[J].Anim Genet,2022,53(2):212-219.
[2]" WANG P P,OU G Y,LI G C,et al.Analysis of genetic diversity and structure of endangered Dengchuan cattle population using a single-nucleotide polymorphism chip[J].Anim Biotechnol,2024,35(1):2349625.
[3]" WIGGANS G R,COLE J B,HUBBARD S M,et al.Genomic selection in dairy cattle:the USDA experience[J].Annu Rev Anim Biosci,2017,5:309-327.
[4]" MATUKUMALLI L K,LAWLEY C T,SCHNABEL R D,et al.Development and characterization of a high density SNP genotyping assay for cattle[J].PLoS One,2009,4(4):e5350.
[5]" WANG C F,LI H J,GUO Y,et al.Donkey genomes provide new insights into domestication and selection for coat color[J].Nat Commun,2020,11(1):6014.
[6]" MCKENNA A,HANNA M,BANKS E,et al.The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data[J].Genome Res,2010,20(9):1297-1303.
[7]" ABITBOL M,LEGRAND R,TIRET L.A missense mutation in the agouti signaling protein gene (ASIP) is associated with the no light points coat phenotype in donkeys[J].Genet Sel Evol,2015,47(1):28.
[8]" DANECEK P,AUTON A,ABECASIS G,et al.The variant call format and VCFtools[J].Bioinformatics,2011,27(15):2156-2158.
[9]" PURCELL S,NEALE B,TODD-BROWN K,et al.PLINK:a tool set for whole-genome association and population-based linkage analyses[J].Am J Hum Genet,2007,81(3):559-575.
[10]" WANG G,LI M,ZHOU J,et al.A novel Agt;G polymorphism in the intron 2 of TBX3 gene is significantly associated with body size in donkeys[J].Gene,2021,785:145602.
[11]" LI Y,MA Q S,SHI X Y,et al.Comparative transcriptome analysis of slow-twitch and fast-twitch muscles in Dezhou donkeys[J].Genes (Basel),2022,13(9):1610.
[12]" WANG M,LI H J,ZHANG X H,et al.An analysis of skin thickness in the Dezhou donkey population and identification of candidate genes by RNA-seq[J].Anim Genet,2022,53(3):368-379.
[13]" SHEN J F,YU J,DAI X L,et al.Genomic analyses reveal distinct genetic architectures and selective pressures in Chinese donkeys[J].J Genet Genomics,2021,48(8):737-745.
[14]" WANG F W,WANG G,DALIELIHAN B,et al.A novel 31bp deletion within the CDKL5 gene is significantly associated with growth traits in Dezhou donkey[J].Anim Biotechnol,2023,34(3):503-507.
[15]" LAI Z Y,WU F,LI M,et al.Tissue expression profile,polymorphism of IGF1 gene and its effect on body size traits of Dezhou donkey[J].Gene,2021,766:145118.
[16]" CHANG T J,LI M,AN X Y,et al.Association analysis of IGF2 gene polymorphisms with growth traits of Dezhou donkey[J].Anim Biotechnol,2023,34(4):1143-1153.
[17]" LAI Z Y,WU F,ZHOU Z H,et al.Expression profiles and polymorphic identification of the ACSL1 gene and their association with body size traits in Dezhou donkeys[J].Arch Anim Breed,2020,63(2):377-386.
[18]" LIU Z W,GAO Q C,WANG T Q,et al.Multi-thoracolumbar variations and NR6A1 gene polymorphisms potentially associated with body size and carcass traits of Dezhou donkey[J].Animals (Basel),2022,12(11):1349.
[19]" LIU Z W,WANG T Q,SHI X Y,et al.Identification of LTBP2 gene polymorphisms and their association with thoracolumbar vertebrae number,body size,and carcass traits in Dezhou donkeys[J].Front Genet,2022,13:969959.
[20]" WANG T Q,LIU Z W,WANG X R,et al.Polymorphism detection of PRKG2 gene and its association with the number of thoracolumbar vertebrae and carcass traits in Dezhou donkey[J].BMC Genom Data,2023,24(1):2.
[21]" WANG T Q,WANG X R,LIU Z W,et al.Genotypes and haplotype combination of DCAF7 gene sequence variants are associated with number of thoracolumbar vertebrae and carcass traits in Dezhou donkey[J].J Appl Anim Res,2023,51(1):31-39.
[22]" WANG G,WANG F W,PEI H Y,et al.Genome-wide analysis reveals selection signatures for body size and drought adaptation in Liangzhou donkey[J].Genomics,2022,114(6):110476.
[23]" IS′IK R,ZDIL F.Determination of DGAT1 K232A polymorphism in donkey populations reared in thrace region of turkey by DNA sequencing[J].J Equine Vet Sci,2019,73:48-50.
[24]" LI W F,QIU L X,GUAN J W,et al.Comparative transcriptome analysis of longissimus dorsi tissues with different intramuscular fat contents from Guangling donkeys[J].BMC Genomics,2022,23(1):644.
[25]" CHAI W Q,QU H L,MA Q G,et al.RNA-seq analysis identifies differentially expressed gene in different types of donkey skeletal muscles[J].Anim Biotechnol,2023,34(5):1786-1795.
[26]" HE H Y,LIU L L,CHEN B,et al.Study on lactation performance and development of KASP marker for milk traits in Xinjiang donkey (Equus asinus)[J].Anim Biotechnol,2023,34(7):2724-2735.
[27]" TIAN F,WANG J P,LI Y H,et al.Integrated analysis of mRNA and miRNA in testis and cauda epididymidis reveals candidate molecular markers associated with reproduction in Dezhou donkey[J].Livest Sci,2020,234:103885.
[28]" ZHANG F L,ZHANG S E,SUN Y J,et al.Comparative transcriptomics uncover the uniqueness of oocyte development in the donkey[J].Front Genet,2022,13:839207.
[29]" SUN Y,WANG Y H,LI Y H,et al.Identification of circular RNAs of testis and caput epididymis and prediction of their potential functional roles in donkeys[J].Genes (Basel),2023,14(1):66.
[30]" XIE T F,ZHANG S E,SHEN W,et al.Identification of candidate genes for twinning births in Dezhou donkeys by detecting signatures of selection in genomic data[J].Genes (Basel),2022,13(10):1902.
[31]" SUN Y,LI Y H,ZHAO C H,et al.Genome-wide association study for numbers of vertebrae in Dezhou donkey population reveals new candidate genes[J].J Integr Agric,2023,22(10):3159-3169.
[32]" SONG S,WANG S W,LI N,et al.Genome-wide association study to identify SNPs and candidate genes associated with body size traits in donkeys[J].Front Genet,2023,14:1112377.
[33]" WANG X R,WANG T Q,LIANG H L,et al.A novel SNP in NKX1-2 gene is associated with carcass traits in Dezhou donkey[J].BMC Genom Data,2023,24(1):41.
[34]" GUO Y W,BAI F T,WANG J T,et al.Design and characterization of a high-resolution multiple-SNP capture array by target sequencing for sheep[J].J Anim Sci,2023,101:skac383.
[35]" BASSON A,STRYDOM P E,VAN MARLE-KSTER E,et al.Sustained effects of muscle calpain system genotypes on tenderness phenotypes of south African beef bulls during ageing up to 20 days[J].Animals (Basel),2022,12(6):686.
[36]" DADOUSIS C,ABLONDI M,CIPOLAT-GOTET C,et al.Genomic inbreeding coefficients using imputation genotypes:assessing the effect of ancestral genotyping in Holstein-Friesian dairy cows[J].J Dairy Sci,2024,107(8):5869-5880.
(編輯" 郭云雁)