[摘" 要]" 目的" 分析老年糖尿病腎病患者尿路感染的危險(xiǎn)因素并構(gòu)建預(yù)測(cè)模型。方法" 選取2018年6月—2023年6月在中國(guó)人民解放軍北部戰(zhàn)區(qū)總醫(yī)院就診的2型糖尿病腎病老年患者240例為研究對(duì)象,其中168例列入疾病1組,72例列入疾病2組。疾病1組尿路感染52例(合并組)、未感染116例(非合并組);疾病2組尿路感染26例,未感染46例。比較疾病1組與疾病2組、合并組與非合并組的基線資料和實(shí)驗(yàn)室資料;多因素logistic回歸分析患者尿路感染的危險(xiǎn)因素;依據(jù)篩選出的危險(xiǎn)因素構(gòu)建并驗(yàn)證列線圖模型,通過(guò)生成校準(zhǔn)曲線進(jìn)行一致性檢驗(yàn)。結(jié)果" 疾病1組與疾病2組的資料比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。合并組與非合并組的性別、病程、使用導(dǎo)尿管、糖化血紅蛋白(HbA1c)、尿微量白蛋白與肌酐比值、估算腎小球?yàn)V過(guò)率(eGFR)、胱抑素C(Cys-C)比較,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。多因素logistic回歸分析顯示:女性、使用導(dǎo)尿管、HbA1c>7.5%、高Cys-C和低eGFR是老年糖尿病腎病患者尿路感染的危險(xiǎn)因素(P<0.05)。以多因素logistic回歸分析結(jié)果構(gòu)建了列線圖,驗(yàn)證列線圖模型的ROC曲線中,疾病1組與疾病2組的曲線下面積[0.915(95%CI:0.871~0.959)、0.926(95%CI:0.865~0.986)]較高(P<0.05)。擬合檢驗(yàn)結(jié)果顯示預(yù)測(cè)模型在疾病1組與疾病2組中的應(yīng)用性能良好,預(yù)測(cè)結(jié)果與實(shí)際結(jié)果差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。校準(zhǔn)曲線顯示疾病1組與疾病2組在該預(yù)測(cè)模型中與理想曲線幾乎一致。結(jié)論" 女性、使用導(dǎo)尿管、HbA1c>7.5%、高Cys-C、低eGFR是老年糖尿病腎病患者尿路感染的危險(xiǎn)因素,構(gòu)建的預(yù)測(cè)模型在準(zhǔn)確性和一致性方面具有臨床優(yōu)勢(shì)。
[關(guān)鍵詞]" 糖尿病腎??;尿路感染;危險(xiǎn)因素;預(yù)測(cè);列線圖" doi:10.3969/j.issn.1674-7593.2025.01.011
收稿日期:2024-03-11" 修回日期:2024-04-16" 錄用日期:2024-04-17
*遼寧省科技計(jì)劃項(xiàng)目(2023-MS-038)
**通信作者:梁琳瑯,電子郵箱lianglllj@sina.com
Risk factors and prediction model construction of urinary tract infection in elderly patients with diabetic nephropathy
Feng Cong, Yang Bo, Liang Linlang**
Department of Endocrinology, General Hospital of Northern Theater Command of Chinese PLArmy Hospital, Shenyang" 110016
**Corresponding author:Liang Linlang,email:lianglllj@sina.com
[Abstract]" Objective" To analyze the risk factors of urinary tract infection in elderly patients with diabetic nephropathy, and to establish a predictive model. Methods" From June 2018 to June 2023, a total of 240 elderly patients with type 2 diabetic nephropathy who visited General Hospital of Northern Theater Command of Chinese PLArmy Hospital were research object, of which 168 were included in disease group 1 and 72 were included in disease group 2.Disease group 1 included 52 cases of urinary tract infections (combined group) and 116 cases of non infection (non combined group); The disease group 2 included 26 cases of infection and 46 cases of non infection.Baseline and laboratory data were compared between disease group 1 and disease group 2, and between the combined group and non combined group; Multivariate logistic regression was applied to analyze the risk factors of urinary tract infections; The nomogram model was constructed based on the selected risk factors and validated, and consistency was checked by generating calibration curves. Results" There was no significant difference in the data between disease group 1 and disease group 2 (P>0.05).The gender, course of disease, use of catheter, glycosylated hemoglobin (HbA1c), urinary albumin/creatinine ratio, estimated glomerular filtration rate(eGFR), and cystatin C(Cys-C) of the combined group and the non combined group in disease group 1 were statistically significant(P<0.05).Multivariate logistic regression analysis showed that female, urinary catheter, HbA1cgt;7.5%, high Cys-C and low eGFR were the risk factors of urinary tract infection in elderly patients with diabetes nephropathy (Plt;0.05).A nomogram was constructed from the results of multivariate logistic regression analysis.In the ROC curve for validating the nomogram model, the area under the curve was higher in disease group 1 and disease group 2 [0.915 (95%CI: 0.871~0.959) and 0.926 (95%CI: 0.865~0.986)](P<0.05).The fitting test results showed that the application performance of the prediction model was good in the disease 1 group and the disease 2 group, and the difference between the prediction results and the actual results was not significant (P>0.05).Calibration curve showed that disease group 1 and disease group 2 were almost consistent with the ideal curve in this prediction model. Conclusion" Female, urinary catheter, HbA1c>7.5%, high Cys-C and low eGFR are the risk factors of urinary tract infection in elderly patients with diabetic nephropathy.The prediction model has clinical advantages in accuracy and consistency." [Key words]" Diabetic nephropathy; Urinary tract infection; Risk factors; Prediction; Nomogram
糖尿病腎病是由糖尿病引起的慢性腎臟病。糖尿病腎病不僅是2型糖尿病最常見(jiàn)和最嚴(yán)重的慢性微血管并發(fā)癥之一,也是糖尿病患者終末期腎功能衰竭和死亡的主要原因[1]。糖尿病腎病的發(fā)病機(jī)制復(fù)雜,機(jī)體內(nèi)的多種通路和媒介相互作用,損害機(jī)體平衡[2]。尿路感染是糖尿病腎病患者的主要并發(fā)癥之一,嚴(yán)重時(shí)可導(dǎo)致器官衰竭,引發(fā)膿毒癥[3]。糖尿病腎病患者的血糖代謝紊亂,血糖代謝過(guò)程與免疫細(xì)胞活性的相關(guān)性已得到證明,自身免疫力下降易受細(xì)菌等病原體的侵害,導(dǎo)致尿路感染[4]。另外,高尿糖被尿道、陰道周圍的吸附和對(duì)環(huán)境的浸潤(rùn),為病原體的定植和侵襲提供了有利條件,促進(jìn)病原體的逆行感染。本研究的目的是分析老年糖尿病腎病患者尿路感染的危險(xiǎn)因素,并開(kāi)發(fā)預(yù)測(cè)尿路感染的列線圖模型,從而指導(dǎo)臨床實(shí)踐。
1" 對(duì)象與方法
1.1" 研究對(duì)象
選取2018年6月—2023年6月于中國(guó)人民解放軍北部戰(zhàn)區(qū)總醫(yī)院就診的2型糖尿病腎病老年患者240例為研究對(duì)象,其中168例列入疾病1組,72例列入疾病2組。納入標(biāo)準(zhǔn):①年齡≥60歲;②依據(jù)《糖尿病腎臟疾病臨床診療中國(guó)指南》[5]確診為糖尿病腎?。虎?型糖尿?。虎芑颊呔裾?、神志清晰,依從性良好。排除標(biāo)準(zhǔn):①除尿路感染外存在其他部位或系統(tǒng)感染;②泌尿系統(tǒng)存在畸形、結(jié)構(gòu)障礙或結(jié)石;③合并惡性腫瘤、凝血障礙;④既往有泌尿系統(tǒng)感染史或手術(shù)史;⑤終末期腎衰竭。依據(jù)《尿路感染診斷與治療中國(guó)專家共識(shí)(2015版)》[6],判斷患者是否存在尿路感染。疾病1組感染52例(合并組)、未感染116例(非合并組),糖尿病腎病病程3~11年,中位時(shí)間6年;疾病2組感染26例,未感染46例,糖尿病腎病病程4~11年,中位時(shí)間6年。兩組一般資料比較,差異均無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。本研究經(jīng)醫(yī)院倫理委員審批。
1.2" 方法
1.2.1" 收集患者基線資料" 由同一專業(yè)人員收集患者信息,包括年齡、性別、體質(zhì)量指數(shù)(Body mass index,BMI)、糖尿病腎病病程(分析時(shí)以>6年、≤6年為統(tǒng)計(jì)標(biāo)準(zhǔn))、住院時(shí)長(zhǎng)、是否使用導(dǎo)尿管、是否使用抗生素、合并基礎(chǔ)疾病、其他并發(fā)癥等基線資料。
1.2.2" 收集患者實(shí)驗(yàn)室資料" 采集外周靜脈血3 mL、清晨潔凈尿5 mL,利用全自動(dòng)生化分析儀檢測(cè)糖化血紅蛋白(Glycosylated hemoglobin,HbA1c)(分析時(shí)以>7.5%、≤7.5%為統(tǒng)計(jì)標(biāo)準(zhǔn))、尿微量白蛋白與肌酐比值(Urinary albumin to creatinine ratio,UACR)、估算腎小球?yàn)V過(guò)率(Estimated glomerular filtration rate,eGFR),利用酶聯(lián)免疫吸附法檢測(cè)血清胱抑素C(Cystatin C,Cys-C)。
1.3" 統(tǒng)計(jì)學(xué)方法
采用SPSS27.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析。計(jì)數(shù)資料采用χ2檢驗(yàn);正態(tài)分布計(jì)量資料用x±s表示,采用多因素t檢驗(yàn);多因素分析采用多因素logistic回歸模型。采用R 3.6.3軟件構(gòu)建列線圖,ROC曲線和Hosmer-Lemeshow擬合驗(yàn)證列線圖。檢驗(yàn)水準(zhǔn)α=0.05。
2" 結(jié)果
2.1" 兩組基線資料和實(shí)驗(yàn)室指標(biāo)比較
兩組的基線資料和實(shí)驗(yàn)室指標(biāo)比較,差異均無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05),見(jiàn)表1。
2.2" 疾病1組樣本合并組與非合并組的資料比較
兩組性別、病程、使用導(dǎo)尿管、HbA1c、UACR、eGFR、Cys-C比較,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),見(jiàn)表2。
2.3" 老年糖尿病腎病患者尿路感染的多因素分析
以是否發(fā)生感染作為因變量,將表2中差異有統(tǒng)計(jì)學(xué)意義的性別(男=0,女=1)、病程(≤6年=0,>6年=1)、是否使用導(dǎo)尿管(否=0,是=1)、HbA1c(≤7.5%=0,>7.5%=1)和UACR、eGFR、Cys-C(實(shí)測(cè)值原值代入)作為自變量進(jìn)行多因素logistic回歸分析,結(jié)果顯示:女性、有導(dǎo)尿管、HbA1c>7.5%、高Cys-C和低eGFR是老年糖尿病腎病患者尿路感染的危險(xiǎn)因素(P<0.05),見(jiàn)表3。
2.4" 預(yù)測(cè)老年糖尿病腎病患者尿路感染的列線圖
列線圖模型依據(jù)表3危險(xiǎn)因素構(gòu)建,結(jié)果見(jiàn)圖1。圖1中可見(jiàn)各項(xiàng)因素的分?jǐn)?shù),即患者為女性增加9分;使用導(dǎo)尿管增加6分;HbA1c>7.5%增加10分;eGFR每增加5個(gè)單位分?jǐn)?shù)降低9分;Cys-C每增加0.5個(gè)單位,分?jǐn)?shù)增加5分。患者所有因素得分總和對(duì)應(yīng)的概率即為發(fā)生尿路感染的風(fēng)險(xiǎn),即某女性(9分)、使用尿管(6分),HbA1c>7.5%(10分),eGFR為60 mL/(min·1.73 m2)(55分),Cys-C為4 mg/L(21分),那么該患者總分為101分,所對(duì)應(yīng)概率為76%。
2.5" 驗(yàn)證列線圖模型
ROC曲線結(jié)果顯示:疾病1組曲線下面積為0.915(95%CI:0.871~0.959,P<0.05),見(jiàn)圖2;疾病2組曲線下面積為0.926(95%CI:0.865~0.986,P<0.05),見(jiàn)圖3。Hosmer-Lemeshow擬合檢驗(yàn)結(jié)果顯示預(yù)測(cè)結(jié)果與實(shí)際結(jié)果擬合良好,具有較好的一致性(疾病1組:χ2=9.107,P=0.333;疾病2組:χ2=5.340,P=0.721)。校準(zhǔn)曲線表示疾病1組與疾病2組在該模型中與理想曲線幾乎一致,見(jiàn)圖4、圖5。
3" 討論
慢性糖尿病與器官的損傷、功能障礙和衰竭有關(guān),糖尿病的微血管并發(fā)癥會(huì)引起糖尿病腎病,是2型糖尿病最常見(jiàn)的并發(fā)癥之一[7]。糖尿病腎病的特征是持續(xù)性蛋白尿和腎小球?yàn)V過(guò)率逐漸降低,最終導(dǎo)致終末期腎病。一般來(lái)說(shuō),糖尿病患者的血糖控制不佳和高血糖易引起患者并發(fā)尿路感染;另外,慢性腎臟疾病被認(rèn)為是免疫功能低下;此外,老年人群多數(shù)伴有基礎(chǔ)疾病或存在潛在的慢性疾病,免疫機(jī)能較差[8]。因此,糖尿病腎病老年患者可能面臨更高的尿路感染風(fēng)險(xiǎn)。明確糖尿病腎病老年患者并發(fā)尿路感染的影響因素,可能是規(guī)避和改善尿路感染的重要方向和措施。
本研究就入選的糖尿病腎病老年患者尿路感染的影響因素進(jìn)行分析,結(jié)果發(fā)現(xiàn)女性、使用導(dǎo)尿管、HbA1c>7.5%、高Cys-C、低eGFR可能增加患者尿路感染的風(fēng)險(xiǎn)。2型糖尿病男性和女性患者中尿路感染的發(fā)病率不同,女性往往承受更高的感染風(fēng)險(xiǎn)。Carrondo等[9]發(fā)現(xiàn)女性尿路感染發(fā)生率是男性發(fā)生尿路感染的2倍。薛明月等[10]認(rèn)為女性的特殊生理構(gòu)造或許是女性高感染率的重要原因。陳昕等[11]發(fā)現(xiàn),2型糖尿病腎病老年患者尿路感染的發(fā)生與性別有關(guān),女性與尿路感染的關(guān)系更為密切。猜測(cè)原因可能是男性具有先天的器官優(yōu)勢(shì),尿道長(zhǎng)且距離肛門較遠(yuǎn),逆行感染的概率較低,故糖尿病腎病老年男性患者中尿路感染的發(fā)生率較低。導(dǎo)尿管相關(guān)尿路感染是全球最普遍的疾病之一,導(dǎo)尿管相關(guān)尿路感染與死亡率和住院時(shí)長(zhǎng)增加有關(guān)[12]。導(dǎo)尿管裝置與尿道黏膜的間隙可能為細(xì)菌進(jìn)入尿道提供一條途徑,細(xì)菌進(jìn)入膀胱感染膀胱內(nèi)的殘留尿液,導(dǎo)致菌尿發(fā)生率增加[13]。有研究證明,導(dǎo)尿前清潔尿道可降低導(dǎo)尿管相關(guān)尿路感染的發(fā)病率[14]。本研究結(jié)果顯示,導(dǎo)尿管可能增加糖尿病腎病老年患者尿路感染的發(fā)生。導(dǎo)尿管相對(duì)尿道來(lái)說(shuō)是一種外來(lái)刺激,長(zhǎng)期的留置對(duì)尿道的黏膜和生理環(huán)境可能造成破壞,導(dǎo)致尿道免疫功能降低,甚至可能因尿道局部感染擴(kuò)大至全身,進(jìn)一步促進(jìn)糖尿病腎病的發(fā)展。
高血糖是糖尿病并發(fā)尿路感染及不良預(yù)后的關(guān)鍵因素,有研究證明,保持對(duì)血糖的適當(dāng)控制和嚴(yán)格監(jiān)測(cè),有利于降低感染及其他并發(fā)癥發(fā)生的風(fēng)險(xiǎn)[15-16]。HbA1c反映患者在過(guò)去幾周內(nèi)的血糖控制情況,本研究中尿路感染的糖尿病腎病患者多數(shù)伴血糖控制不佳,慢性高血糖與慢性低度炎癥狀態(tài)有關(guān),損害先天免疫和體液免疫,激活的促炎狀態(tài)更有利于尿道的局部感染和發(fā)展為全身炎癥反應(yīng)。Cys-C是一種由人體有核細(xì)胞分泌的內(nèi)源性半胱氨酸蛋白酶抑制劑,血清中的Cys-C分子量小,易通過(guò)腎小球過(guò)濾,是eGFR和腎功能評(píng)估的理想生物標(biāo)志物[17]。Cys-C作為腎功能指標(biāo),與eGFR密切相關(guān),診斷腎功能不全的靈敏度較高[18]。血清Cys-C受炎癥細(xì)胞因子、病原體的影響,其水平波動(dòng)可在炎癥、感染等疾病中觀察到[19]。本研究單因素分析中,Cys-C和eGFR在老年糖尿病腎病患者尿路感染與未感染中表現(xiàn)出統(tǒng)計(jì)學(xué)的差異,多因素分析也證明其是患者尿路感染的獨(dú)立危險(xiǎn)因素之一,在鑒別尿路感染中可能具有診斷意義。
本研究構(gòu)建老年糖尿病腎病患者尿路感染風(fēng)險(xiǎn)評(píng)估模型具有較好的區(qū)分度和一致性,擬合良好,包含的5項(xiàng)預(yù)測(cè)因子獲得0.915和0.926的ROC曲線下面積值。該模型可幫助醫(yī)生直觀分析不同水平的各種因素對(duì)老年糖尿病腎病患者尿路感染的風(fēng)險(xiǎn)權(quán)重,實(shí)現(xiàn)個(gè)體化預(yù)測(cè),根據(jù)模型的評(píng)分,計(jì)算每位患者尿路感染的風(fēng)險(xiǎn)。該模型對(duì)尿路感染高危老年糖尿病腎病患者的識(shí)別和干預(yù)策略制定具有指導(dǎo)意義。
參考文獻(xiàn)
[1]" Xi C, Wang C, Rong G, et al. A Nomogram model that predicts the risk of diabetic nephropathy in type 2 diabetes mellitus patients: a retrospective study[J]. Int J Endocrinol, 2021,2021:6672444.
[2]" Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment[J]. Biomed Res Int, 2021,2021:1497449.
[3]" Zhang L, Zhang F, Xu F, et al. Construction and evaluation of a sepsis risk prediction model for urinary tract infection[J]. Front Med (Lausanne), 2021,8:671184.
[4]" Edgar L, Akbar N, Braithwaite A T, et al. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis[J]. Circulation, 2021,144(12):961-982.
[5]" 中華醫(yī)學(xué)會(huì)腎臟病學(xué)分會(huì)專家組. 糖尿病腎臟疾病臨床診療中國(guó)指南[J].中華腎臟病雜志,2021,37(3):255-304.
Expert Group of Nephrology Branch of Chinese Medical Association. Chinese guidelines for diagnosis and treatment of diabetic kidney disease[J].Chin J Nephrol, 2021,37(3):255-304.
[6]" 尿路感染診斷與治療中國(guó)專家共識(shí)編寫組. 尿路感染診斷與治療中國(guó)專家共識(shí)(2015版)——尿路感染抗菌藥物選擇策略及特殊類型尿路感染的治療建議[J].中華泌尿外科雜志,2015,36(4):245-248.
Chinese expert consensus writing group for the diagnosis and treatment of urinary tract infections. Chinese expert consensus on diagnosis and treatment of urinary tract infection (2015 edition) —complex urinary tract infection[J]. Chin J Urol, 2015,36(4):245-248.
[7]" 陳月梅, 張春瑩, 龍婷婷, 等. 隨機(jī)尿蛋白、尿蛋白/肌酐比值及尿微量白蛋白/肌酐比值在早期糖尿病腎病中應(yīng)用價(jià)值[J].臨床軍醫(yī)雜志,2023,51(4):362-365,369.
Chen Y M, Zhang C Y, Long T T, et al. Application value of random urine protein,urinary albumin/urinary creatinine ratio and urine microalbumine creatinine ra-tio in early diabetic nephropathy[J]. Clin J Med Offic, 2023,51(4):362-365,369.
[8]" Girard R, Gaujard S, Pergay V, et al. Risk factors for urinary tract infections in geriatric hospitals[J]. J Hosp Infect, 2017,97(1):74-78.
[9]" Carrondo M C, Moita J J. Potentially preventable urinary tract infection in patients with type 2 diabetes-a hospital-based study[J]. Obes Med, 2020,17:100190.
[10]薛明月, 李鑫, 康曉慧, 等. 住院2型糖尿病患者合并尿路感染的危險(xiǎn)因素及防治對(duì)策探討[J].現(xiàn)代生物醫(yī)學(xué)進(jìn)展,2022,22(13):2453-2457.
Xue M Y, Li X, Kang X H, et al. Discussion of risk factors and prevent measures for urinary tract infection in hospitalized patients with type 2 diabetes mellitus[J]. Progr Mod Biomed, 2022,22(13):2453-2457.
[11]陳昕, 陳彤, 李忠發(fā), 等. 老年糖尿病腎病患者尿路感染發(fā)生的相關(guān)因素[J].中國(guó)老年學(xué)雜志,2023,43(15):3751-3754.
Chen X, Chen T, Li Z F, et al. Related factors of urinary tract infection in elderly patients with diabetes nephropathy[J]. Chin J Gerontolt, 2023,43(15):3751-3754.
[12]Rubi H, Mudey G, Kunjalwar R. Catheter-associated urinary tract infection (CAUTI)[J]. Cureus, 2022,14(10):e30385.
[13]Barford J M T, Anson K, Hu Y M, et al. A model of catheter-associated urinary tract infection initiated by bacterial contamination of the catheter tip[J]. BJU Int, 2008,102(1):67-74.
[14]Mitchell B, Curryer C, Holliday E, et al. Effectiveness of meatal cleaning in the prevention of catheter-associated urinary tract infections and bacteriuria: an updated systematic review and meta-analysis[J]. BMJ Open, 2021,11(6):e046817.
[15]李瑩瑩, 柳晨, 潘華. 老年2型糖尿病合并尿路感染患者病原菌分布特點(diǎn)及血糖水平與炎癥因子的變化研究[J].實(shí)驗(yàn)與檢驗(yàn)醫(yī)學(xué),2021,39(1):187-190.
Li Y Y, Liu C, Pan H. Study on the distribution of pathogens and the changes of blood glucose levels and inflammatory factors in elderly patients with type 2 diabetes mellitus complicated with urinary tract infection[J]. Exp Lab Med, 2021,39(1):187-190.
[16]Pari B, Gallucci M, Ghigo A, et al. Insight on infections in diabetic setting[J]. Biomedicines, 2023,11(3):971.
[17]Serwin N, Cecerska-Heryc' E, Pius-Sadowska E, et al. Renal and inflammation markers-renalase, cystatin C, and NGAL levels in asymptomatic and symptomatic SARS-CoV-2 infection in a one-month follow-up study[J]. Diagnostics(Basel), 2022,12(1):108.
[18]Liao X, Zhu Y, Xue C. Diagnostic value of serum cystatin C for diabetic nephropathy: a meta-analysis[J]. BMC Endocr Disord, 2022,22(1):149.
[19]Tan S M, Wu D C, Wu Y Y, et al. Association between serum Cys C and PTB cavitation[J]. Dis Markers, 2023,2023:6465182.