摘 "要""抑郁傾向是介于抑郁情緒和抑郁癥之間的輕度抑郁狀態(tài), 這種狀態(tài)被連續(xù)誘發(fā)則會(huì)增加抑郁癥的發(fā)病率。認(rèn)知重評(píng)是使用廣泛且有效的情緒調(diào)節(jié)策略, 可分為自我關(guān)注重評(píng)和情境關(guān)注重評(píng), 抑郁傾向個(gè)體在這兩種策略下的調(diào)節(jié)效果及腦網(wǎng)絡(luò)特征如何變化尚不清楚。本研究采用復(fù)雜網(wǎng)絡(luò)探討抑郁傾向個(gè)體在自我關(guān)注重評(píng)和情境關(guān)注重評(píng)任務(wù)期間的調(diào)節(jié)效果及腦網(wǎng)絡(luò)特征。結(jié)果發(fā)現(xiàn), 抑郁傾向組在認(rèn)知重評(píng)任務(wù)期間的效價(jià)評(píng)分總體上低于健康對(duì)照組, 喚醒度評(píng)分差異并不顯著; 兩組被試在自我關(guān)注重評(píng)和情境關(guān)注重評(píng)任務(wù)期間的聚類(lèi)系數(shù)、局部效率和最大介數(shù)中心性存在顯著差異; 局部腦區(qū)差異主要位于邊緣葉、額葉和頂葉等。抑郁傾向組自我關(guān)注重評(píng)和情境關(guān)注重評(píng)任務(wù)腦網(wǎng)絡(luò)的異?;顒?dòng)與抑郁傾向的嚴(yán)重程度有關(guān)。這表明, 異常的腦網(wǎng)絡(luò)特征可能表明抑郁傾向個(gè)體認(rèn)知重評(píng)功能受損, 這為預(yù)防和改善抑郁傾向癥狀提供新的見(jiàn)解。
關(guān)鍵詞""抑郁傾向, 認(rèn)知重評(píng), 自我關(guān)注重評(píng), 情境關(guān)注重評(píng), 復(fù)雜網(wǎng)絡(luò)
分類(lèi)號(hào)""B842
抑郁傾向是介于正常的抑郁情緒和已經(jīng)達(dá)到臨床診斷標(biāo)準(zhǔn)抑郁癥之間的一種狀態(tài)(Rodríguez et"al.,"2012)??v向研究表明, 與對(duì)照組相比, 患有抑郁傾向的個(gè)體經(jīng)歷首次抑郁癥發(fā)作的風(fēng)險(xiǎn)增加了5倍(Fogel et al., 2006)。這表明, 抑郁傾向使個(gè)體處于抑郁癥發(fā)作的高風(fēng)險(xiǎn)階段, 如果抑郁傾向被長(zhǎng)期誘發(fā)且不能緩解, 很大可能發(fā)展為臨床抑郁癥, 此外, 抑郁傾向作為抑郁癥的早期階段, 其與抑郁癥相似,"會(huì)對(duì)個(gè)體的認(rèn)知能力和社會(huì)能力等造成不同程度的影響(Tuithof et al., 2018)。隨著社會(huì)競(jìng)爭(zhēng)力增大, 青年人抑郁傾向的表現(xiàn)越來(lái)越多(彭婉晴"等, 2019),"因此, 對(duì)尚未達(dá)到抑郁癥診斷標(biāo)準(zhǔn), 但社會(huì)功能下降, 并伴有較高抑郁癥發(fā)作風(fēng)險(xiǎn)的抑郁傾向個(gè)體, 應(yīng)給予高度的關(guān)注和重視。
Gross (1998)的情緒調(diào)節(jié)過(guò)程模型認(rèn)為, 情緒的產(chǎn)生是包含一個(gè)時(shí)間過(guò)程, 從心理上相關(guān)的情境開(kāi)始, 包括情境選擇、情境修訂、注意分配、認(rèn)知重評(píng)和反應(yīng)調(diào)節(jié)5個(gè)階段(Dryman amp; Heimberg, 2018)。認(rèn)知重評(píng)作為最常見(jiàn)、最有價(jià)值和適應(yīng)性的情緒調(diào)節(jié)策略(Dillon amp; Pizzagalli, 2013), 其定義為個(gè)體通過(guò)對(duì)情境的意義或與自我的相關(guān)性進(jìn)行重新解釋?zhuān)?從而對(duì)情緒進(jìn)行調(diào)節(jié)(Gross amp; Thompson, 2007; John amp; Gross, 2004)。Ochsner等人(2004)提出認(rèn)知重評(píng)包含兩種亞型, 即自我關(guān)注重評(píng)和情境關(guān)注重評(píng)。自我關(guān)注重評(píng)是指增加或降低個(gè)體與圖片情境的主觀距離, 從而調(diào)節(jié)情境引發(fā)的情緒體驗(yàn); 而情境關(guān)注是指?jìng)€(gè)體通過(guò)重新解釋情境內(nèi)容的意義, 將關(guān)注點(diǎn)放在圖片情境中, 為其賦予更加積極或消極的構(gòu)想來(lái)調(diào)節(jié)情緒體驗(yàn), 并不涉及直接改變真實(shí)情境(Ochsner et al., 2004; Shiota amp; Levenson, 2009, 2012)。自我關(guān)注重評(píng)包括兩個(gè)維度:脫離重評(píng)和卷入重評(píng); 情境關(guān)注重評(píng)同樣包括兩個(gè)維度:積極重評(píng)和消極重評(píng), 為降低個(gè)體的負(fù)性情緒, 現(xiàn)有研究較多使用自我關(guān)注重評(píng)中的脫離重評(píng)和情境關(guān)注重評(píng)中的積極重評(píng)(Moser et al., 2014; Qi et"al., 2017; Shiota amp; Levenson, 2002, 2009, 2012; Willroth amp; Hilimire, 2016)。
有研究發(fā)現(xiàn), 實(shí)施自我關(guān)注重評(píng)(脫離)降低消極情緒的能力隨年齡升高而下降, 實(shí)施情境關(guān)注重評(píng)(積極)降低消極情緒的能力隨年齡增長(zhǎng)逐漸增強(qiáng)(Shiota amp; Levenson, 2009)。讓不同年齡的群體使用兩種重評(píng)策略發(fā)現(xiàn), 不同年齡群體運(yùn)用兩種策略均能有效下調(diào)消極情緒, 但兩種重評(píng)策略的調(diào)節(jié)效果上存在差異(王彩鳳"等, 2021)。其中, 老年人的自我關(guān)注重評(píng)比情境關(guān)注重評(píng)依賴(lài)更多的認(rèn)知加工資源, 對(duì)個(gè)體的認(rèn)知控制能力要求更高(Liang et al., 2017)。孫巖等(2020)考察兩種重評(píng)亞型的調(diào)節(jié)效果以及對(duì)隨后認(rèn)知控制的影響, 結(jié)果發(fā)現(xiàn)無(wú)論是對(duì)消極情緒的調(diào)節(jié)效果還是對(duì)后續(xù)認(rèn)知控制的影響, 兩種重評(píng)亞型間均存在差異。在fMRI研究中兩種重評(píng)策略一方面具有共同的腦機(jī)制:都涉及前額皮層和杏仁核系統(tǒng)的共同激活(Ochsner amp; Gross., 2005; Ochsner et al., 2004), 另一方面, 兩種重評(píng)策略的神經(jīng)機(jī)制存在差異。如自我關(guān)注重評(píng)能夠激活中部前額皮層(PFC), 其與自我參照的判斷和自我監(jiān)控狀態(tài)有關(guān)(Gusnard et al., 2001; Kelley et al., 2002), 采用自我關(guān)注重評(píng)策略調(diào)節(jié)情緒同時(shí)也會(huì)激活前扣帶回(ACC) (kalisch et al., 2005)。自我關(guān)注重評(píng)涉及內(nèi)側(cè)前額葉區(qū)域, 而情境關(guān)注重評(píng)涉及外側(cè)前額葉區(qū)域(Ochsner et al., 2004)。此外兩種子策略在改善消極情緒的效果及LPP波幅的變化也有所不同。情境關(guān)注重評(píng)不僅能夠降低個(gè)體的負(fù)性情緒體驗(yàn), 其LPP波幅也隨之降低, 而自我關(guān)注重評(píng)則只能改善消極情緒, 其LPP波幅無(wú)顯著變化(Willroth amp; Hilimire, 2016)。
以往研究表明認(rèn)知重評(píng)能夠有效地調(diào)節(jié)抑郁群體的消極情緒(Ford et al., 2017; Lindsey et al., 2020), 但研究結(jié)果缺乏一致性。有研究發(fā)現(xiàn)認(rèn)知重評(píng)有利于健康和已康復(fù)的抑郁個(gè)體減少消極情緒(Ehring et al., 2010)。同時(shí), 抑郁個(gè)體與健康個(gè)體在使用認(rèn)知重評(píng)策略時(shí), 顯示出高度相似的神經(jīng)激活模式, 這表明抑郁個(gè)體能夠使用認(rèn)知重評(píng)策略來(lái)改善其消極情緒(Belden et al., 2015)。Aldao等人(2010)發(fā)現(xiàn), 個(gè)體自我報(bào)告的認(rèn)知重評(píng)使用頻率與抑郁癥狀呈負(fù)相關(guān)。認(rèn)知重評(píng)使用頻率越低, 預(yù)測(cè)個(gè)體的抑郁癥狀水平越高(Joormann amp; Gotlib, 2010)。劉巖等人(2023)發(fā)現(xiàn)兩種重評(píng)策略均能有效上調(diào)抑郁傾向個(gè)體的積極情緒, 同時(shí)有效降低抑郁傾向個(gè)體的消極情緒, 且積極認(rèn)知重評(píng)策略的效果更好。但也有研究發(fā)現(xiàn)認(rèn)知重評(píng)對(duì)抑郁個(gè)體并不總是有效(Diedrich et al., 2014; Joormann amp; Gotlib, 2010), 例如有研究發(fā)現(xiàn)抑郁癥患者的認(rèn)知重評(píng)效果不如健康對(duì)照組, 且持續(xù)性較差(Erk et al., 2010; 張闊"等,"2016)。因此, 本研究推測(cè)以往研究對(duì)于認(rèn)知重評(píng)調(diào)節(jié)抑郁個(gè)體有效性結(jié)果不一致的原因, 可能是未從認(rèn)知重評(píng)的亞型考察其對(duì)抑郁個(gè)體的有效性。同樣, 抑郁傾向作為抑郁的早期階段, 其認(rèn)知重評(píng)調(diào)節(jié)效果同樣可能受到認(rèn)知重評(píng)亞型的影響?;诖?, 本研究假設(shè)在不同認(rèn)知重評(píng)條件下, 抑郁傾向組和健康對(duì)照組的調(diào)節(jié)效果存在差異。
大多數(shù)研究均發(fā)現(xiàn)抑郁個(gè)體在認(rèn)知重評(píng)任務(wù)期間局部腦區(qū)存在異?;顒?dòng)(Davis"et al., 2018; Doré et al., 2018; Erk et al., 2010)。但人腦是由不同大腦區(qū)域組成的復(fù)雜網(wǎng)絡(luò), 僅通過(guò)局部腦區(qū)異常, 很難了解抑郁個(gè)體全局腦網(wǎng)絡(luò)的功能整合和功能分離(Zhang et al., 2011)。有研究表明, 腦功能全局網(wǎng)絡(luò)和局部網(wǎng)絡(luò)的重要信息, 可以通過(guò)復(fù)雜網(wǎng)絡(luò)實(shí)現(xiàn)(van den Heuvel amp; Hulshoff Pol, 2010), 進(jìn)而了解大腦網(wǎng)絡(luò)的分離和整合程度(Wong et al., 2016)。如一些研究通過(guò)復(fù)雜網(wǎng)絡(luò)分析發(fā)現(xiàn), 抑郁癥個(gè)體在靜息態(tài)下大腦拓?fù)渖窠?jīng)機(jī)制遭到破壞(Zhang et al., 2011), 抑郁傾向個(gè)體在全局和局部水平上功能網(wǎng)絡(luò)與結(jié)構(gòu)網(wǎng)絡(luò)都受損(Zhang et al., 2022), 其在處理消極情緒時(shí)額上回、額中回和扣帶回中部的激活顯著降低, 且額上回與尾狀核、紋狀體和島葉之間的功能連接性顯著增加(Zhang, Kranz et al., 2020), 眶額皮質(zhì)和左顳回變化模式與抑郁癥患者相似(Zhang, Zhao et al., 2020)。其次, 抑郁癥個(gè)體在認(rèn)知重評(píng)任務(wù)期間, 默認(rèn)模式網(wǎng)絡(luò)區(qū)域活動(dòng)異常(Sheline et al., 2010), 這表明抑郁傾向個(gè)體在認(rèn)知重評(píng)時(shí)同樣可能存在神經(jīng)機(jī)制的異常變化。一方面因?yàn)檎J(rèn)知重評(píng)包含自我關(guān)注和情境關(guān)注兩種亞型, 抑郁傾向個(gè)體在兩種重評(píng)任務(wù)期間調(diào)節(jié)效果的差異可能與其腦網(wǎng)絡(luò)特征的變化有關(guān)。另一方面因?yàn)橐钟魞A向作為一種輕度的抑郁狀態(tài), 其抑郁傾向的嚴(yán)重程度是否與其在任務(wù)期間腦網(wǎng)絡(luò)特征的變化有關(guān)也尚不可知。因此, 十分必要進(jìn)一步探討抑郁傾向組和健康對(duì)照組, 在不同認(rèn)知重評(píng)任務(wù)下, 全局和局部網(wǎng)絡(luò)特征的差異, 及腦網(wǎng)絡(luò)特征與抑郁傾向嚴(yán)重程度的關(guān)系?;诖?, 本研究假設(shè)在不同認(rèn)知重評(píng)條件下, 與健康對(duì)照組相比, 抑郁傾向組的全局和局部網(wǎng)絡(luò)特征存在異?;顒?dòng), 并且抑郁傾向組的全局和局部網(wǎng)絡(luò)特征與抑郁嚴(yán)重程度之間存在顯著的相關(guān)性。
腦電圖在全局或局部網(wǎng)絡(luò)上能夠成功地測(cè)量抑郁癥狀的神經(jīng)機(jī)制(Greco et al., 2021), 而頻域分析可以將腦電信號(hào)量化為不同頻段(Fingelkurts amp; Fingelkurts, 2015), 且復(fù)雜網(wǎng)絡(luò)分析可以獲取不同頻段的腦功能網(wǎng)絡(luò)的相關(guān)特征(De Vico Fallani et"al., 2007)。越來(lái)越多的研究基于腦電圖數(shù)據(jù), 并通過(guò)復(fù)雜網(wǎng)絡(luò)分析來(lái)探索抑郁癥個(gè)體在不同頻段上腦網(wǎng)絡(luò)特征的變化(Mohammadi amp; Moradi, 2021; Shao et al., 2021)。研究表明, alpha頻段與抑郁癥密切相關(guān)(Aleksandra et al., 2023; Bruder et al., 2017; Liu, Chen et al., 2022; Sun et al., 2021), 同時(shí)也與情緒處理和情緒喚醒的減弱相關(guān)(Balconi amp; Mazza, 2009)。Gamma振蕩是高級(jí)認(rèn)知功能神經(jīng)過(guò)程中至關(guān)重要的部分, 之前已有研究發(fā)現(xiàn)它在情緒加工過(guò)程中發(fā)揮重要作用(Fitzgerald amp; Watson, 2018; Kang et al., 2014; Li et al., 2015)。因此, 本研究將通過(guò)頻域分析提取alpha頻段和gamma頻段的腦電信號(hào)特征, 并結(jié)合復(fù)雜網(wǎng)絡(luò)分析探討抑郁傾向個(gè)體在自我關(guān)注重評(píng)和情境關(guān)注重評(píng)任務(wù)期間腦網(wǎng)絡(luò)特征的變化。
綜上所述, 本研究將通過(guò)復(fù)雜網(wǎng)絡(luò), 結(jié)合頻域分析來(lái)探討抑郁傾向組和健康對(duì)照組在自我關(guān)注重評(píng)和情境關(guān)注重評(píng)任務(wù)期間的腦網(wǎng)絡(luò)特征。同時(shí), 通過(guò)相關(guān)分析來(lái)評(píng)估抑郁傾向的嚴(yán)重程度與腦網(wǎng)絡(luò)的全局和局部指標(biāo)的關(guān)系, 以此探索腦網(wǎng)絡(luò)拓?fù)渖窠?jīng)機(jī)制在多大程度上反映了抑郁傾向個(gè)體的認(rèn)知重評(píng)行為。
為了得到更為準(zhǔn)確且有效的結(jié)果, 本研究采用多個(gè)量表對(duì)被試進(jìn)行施測(cè), 以保證所篩選抑郁傾向個(gè)體的穩(wěn)定性。本研究通過(guò)在問(wèn)卷星平臺(tái)發(fā)放并收回1014份貝克抑郁量表(Beck Depression Inventory-II, BDI-Ⅱ)的線(xiàn)上問(wèn)卷, 用于篩選符合初篩標(biāo)準(zhǔn)的抑郁傾向個(gè)體。初篩標(biāo)準(zhǔn)為: 當(dāng)BDI-II ≥ 14分即為抑郁傾向初篩組, BDI-II ≤ 13分即為健康對(duì)照初篩組(De Zorzi et al., 2021)。通過(guò)對(duì)初篩的問(wèn)卷結(jié)果進(jìn)行分析后, 符合初篩標(biāo)準(zhǔn)的抑郁傾向大學(xué)生有43名, 并隨機(jī)選取健康對(duì)照初篩組的大學(xué)生41名。然后通過(guò)電話(huà)、微信等方式邀請(qǐng)其到實(shí)驗(yàn)室進(jìn)行再次篩查。在被試到達(dá)實(shí)驗(yàn)室后用抑郁自評(píng)量表(Self-Rating Depression Scale, SDS)對(duì)被試進(jìn)行二次篩查, 二篩標(biāo)準(zhǔn)為:SDS ≥ 50分的個(gè)體即為抑郁傾向組, SDS lt; 50分的個(gè)體為健康對(duì)照組(Benning amp; Ait Oumeziane, 2017)。因有5名抑郁傾向被試符合初篩標(biāo)準(zhǔn)而不符合二篩標(biāo)準(zhǔn), 故被剔除。最終共有79名被試, 其中抑郁傾向組為38名, 對(duì)照組為41名, 所有被試均無(wú)情感障礙史和使用精神藥物的情況, 均為右利手, 視力或矯正視力正常。所有被試在實(shí)驗(yàn)前簽署了知情同意書(shū)。本研究得到了遼寧師范大學(xué)倫理委員會(huì)的審批。
2.2.1""實(shí)驗(yàn)材料
從國(guó)際情感圖片系統(tǒng)(IAPS)中選出場(chǎng)景圖片共160張, 其中負(fù)性圖片120張, 中性圖片40張。由于中國(guó)被試對(duì)IAPS圖片的情感評(píng)估上存在文化差異, 因此在正式實(shí)驗(yàn)前, 另外隨機(jī)選擇21名被試(12名女性:平均年齡"= 22.00歲, SD = 2.57)對(duì)圖片的效價(jià)和喚醒度進(jìn)行1~9等級(jí)評(píng)級(jí)。中性圖片效價(jià)(M = 5.22, SD = 0.68)和負(fù)性圖片效價(jià)(M = 2.40, SD = 0.72)存在顯著差異, t(158) = 21.62, p lt;"0.001; 中性圖片喚醒度(M = 4.16, SD = 0.80)和負(fù)性圖片喚醒度(M = 7.27, SD = 0.87)存在顯著差異, t(158) = ?19.96, p lt;"0.001。
2.2.2""實(shí)驗(yàn)任務(wù)及程序
認(rèn)知重評(píng)任務(wù)共包含4個(gè)blocks, 前兩個(gè)blocks為被動(dòng)觀看, 后兩個(gè)blocks為調(diào)節(jié)條件, 這兩個(gè)條件在被試間平衡。每個(gè)block含40張圖片。為避免疲乏, 每個(gè)block結(jié)束后都有2分鐘的休息時(shí)間。為幫助被試在不同的任務(wù)類(lèi)型之間有效切換, 本研究根據(jù)任務(wù)類(lèi)型對(duì)提示屏幕的背景進(jìn)行顏色編碼。每種任務(wù)類(lèi)型屏幕背景顏色如下:灰色為觀看中性, 黑色為觀看負(fù)性, 綠色為重評(píng)條件(Pierce et al., 2022; Sullivan amp; Strauss, 2017; Thiruchselvam et al., 2011)。
實(shí)驗(yàn)中在觀看中性圖片和負(fù)性圖片時(shí), 只要求被試認(rèn)真觀看圖片即可。在自我關(guān)注重評(píng)條件下, 屏幕上呈現(xiàn)“脫離”指示詞, 要求被試在觀看圖片過(guò)程中拉大主觀距離, 以超然的、第三人稱(chēng)的角度看待圖片中的事件, 盡量減少自己的消極情緒。比如當(dāng)看到病人的圖片時(shí), 認(rèn)為自己是以獨(dú)立的第三人稱(chēng)視角看待病人, 并且這個(gè)人物和情境與自己沒(méi)有關(guān)系。在情境關(guān)注重評(píng)條件下, 背景上呈現(xiàn)“積極”指示詞, 要求被試在觀看圖片過(guò)程中, 以樂(lè)觀的角度看待圖片中的事件, 想象圖片中的人物和事件正在變得更好。比如:當(dāng)看到病人的圖片時(shí), 可以想象這個(gè)病人很快能夠康復(fù)。
在正式實(shí)驗(yàn)前, 要求被試認(rèn)真閱讀指導(dǎo)語(yǔ)并進(jìn)行12個(gè)試次的練習(xí)。正式實(shí)驗(yàn)中每個(gè)block為40個(gè)試次。實(shí)驗(yàn)首先呈現(xiàn)注視點(diǎn)500 ms, 接著呈現(xiàn)2000 ms的指示詞, 再呈現(xiàn)一個(gè)300~700 ms的隨機(jī)空屏, 然后呈現(xiàn)情緒圖片3000 ms (Sullivan amp; Strauss,"2017), 最后讓被試根據(jù)指示詞對(duì)剛才進(jìn)行情緒調(diào)節(jié)后的效價(jià)和喚醒度進(jìn)行9點(diǎn)評(píng)分(Thiruchselvam et al., 2011)。單個(gè)試次流程見(jiàn)圖1。
采用德國(guó)Brain-Product公司的ERPs記錄與分析系統(tǒng), 按照10-20國(guó)際腦電記錄系統(tǒng)的"64導(dǎo)電極帽收集EEG信號(hào), AFz為接地電極, FCz為參考電極。右眼下方安置電極記錄垂直眼電(VEOG), 濾波帶寬為0.01~100 Hz, A/D采樣頻率500 Hz/導(dǎo), 每個(gè)電極點(diǎn)電阻低于10 kΩ。用Brain Vision Analyzer 2.0軟件離線(xiàn)分析EEG數(shù)據(jù)。數(shù)據(jù)重參考使用參考電極標(biāo)準(zhǔn)技術(shù)(REST)的無(wú)限零參考, 采樣率250 Hz。濾波帶通0.01~30 Hz (Willroth amp; Hilimire, 2016), 采用ICA剔除眼動(dòng)偽跡, 分析時(shí)程為2000 ms, 基線(xiàn)為刺激出現(xiàn)前200 ms。分段、基線(xiàn)校正后, 選擇無(wú)偽跡的數(shù)據(jù)并導(dǎo)入到sLORETA軟件進(jìn)行源定位分析。
使用sLORETA對(duì)預(yù)處理后的數(shù)據(jù)進(jìn)行源定位(Jaworska et al., 2012)。sLORETA實(shí)現(xiàn)了84個(gè)ROIs (42個(gè)左半球布魯?shù)侣X區(qū)(Brodmann area, BA)和42個(gè)右半球布魯?shù)侣X區(qū))之間的功能連接。通過(guò)計(jì)算相位滯后同步(PLI)進(jìn)行連通性分析, 根據(jù)64個(gè)電極位置下面的皮質(zhì)體素的MNI (蒙特利爾神經(jīng)學(xué)研究所)坐標(biāo)定義了84個(gè)感興趣區(qū)域(ROI)作為網(wǎng)絡(luò)節(jié)點(diǎn), 以此獲得84個(gè)布魯?shù)侣X區(qū)的坐標(biāo)信息, 獲得84×84的功能連接矩陣。為了探討兩組被試在認(rèn)知重評(píng)任務(wù)期間全局和局部腦網(wǎng)絡(luò)的差異, 本研究在MATLAB中使用GRETNA工具包將連通性矩陣轉(zhuǎn)換成一個(gè)具有固定稀疏度的二值化網(wǎng)絡(luò)。目前大多數(shù)研究為了避免選擇網(wǎng)絡(luò)稀疏性引起的偏差, 往往在整個(gè)稀疏范圍內(nèi)整合拓?fù)鋵傩詼y(cè)量值即AUC (Area under a curve)值。AUC表示計(jì)算一系列閾值范圍內(nèi)的網(wǎng)絡(luò)測(cè)量值曲線(xiàn)下的面積(Borges"et al., 2016)。本研究選擇的閾值范圍是0.15~0.85 (Arnold et al., 2014)。
全局網(wǎng)絡(luò)特征指標(biāo)主要包括聚類(lèi)系數(shù)、特征路徑長(zhǎng)度、全局效率、局部效率和最大介數(shù)中心性。聚類(lèi)系數(shù)指某個(gè)節(jié)點(diǎn)的相鄰節(jié)點(diǎn)之間現(xiàn)有連接數(shù)目與可能的最大連接數(shù)目的比值, 可以衡量網(wǎng)絡(luò)中節(jié)點(diǎn)在局部水平的集團(tuán)化程度(梁夏"等, 2010)。局部效率是給定節(jié)點(diǎn)的最短路徑長(zhǎng)度的倒數(shù), 用來(lái)衡量局部信息交換的效率(Latora amp; Marchiori, 2001), 這兩者主要是量化網(wǎng)絡(luò)的功能分離, 即在緊密相連的大腦區(qū)域中進(jìn)行專(zhuān)門(mén)處理的能力。而特征路徑長(zhǎng)度、全局效率和最大介數(shù)中心性主要用于量化網(wǎng)絡(luò)的功能整合, 即從分布的大腦區(qū)域快速組合專(zhuān)門(mén)信息的能力。特征路徑長(zhǎng)度是網(wǎng)絡(luò)中所有節(jié)點(diǎn)對(duì)之間最短路徑長(zhǎng)度之和的平均值, 用來(lái)衡量網(wǎng)絡(luò)并行信息傳遞效率和功能整合程度(Rubinov amp; Sporns,2010)。全局效率是網(wǎng)絡(luò)中所有節(jié)點(diǎn)對(duì)之間的并行信息傳輸?shù)钠骄笜?biāo), 可以衡量腦網(wǎng)絡(luò)傳遞和信息處理過(guò)程是否高效(Achard amp; Bullmore, 2007)。最大介數(shù)中心性是核心中樞節(jié)點(diǎn)(hub), 主要負(fù)責(zé)大腦信息的溝通與恢復(fù)(Hasanzadeh et al., 2020)。在局部網(wǎng)絡(luò)特征中, 本研究使用介數(shù)中心性(BC)作為單個(gè)節(jié)點(diǎn)重要性的度量, 它可以更好地衡量大腦區(qū)域?qū)W(wǎng)絡(luò)中信息傳遞的影響(Li et al., 2018)。
統(tǒng)計(jì)分析采用SPSS Statistics 22.0。采用2 (組別:抑郁傾向組、健康對(duì)照組) × 4 (認(rèn)知重評(píng)條件:觀看中性、觀看負(fù)性、自我關(guān)注重評(píng)、情境關(guān)注重評(píng))重復(fù)測(cè)量方差分析, 研究抑郁傾向組和健康對(duì)照組在不同認(rèn)知重評(píng)條件的主觀情緒評(píng)級(jí)、全局網(wǎng)絡(luò)特征差異, 其中組別為組間變量, 認(rèn)知重評(píng)條件為組內(nèi)變量; 因變量為效價(jià)和喚醒度評(píng)級(jí)、全局網(wǎng)絡(luò)特征, 當(dāng)球形檢驗(yàn)結(jié)果不符合球形假設(shè)時(shí), 使用Greenhouse-Geisser校正調(diào)整自由度, 采用Bonferroni方法對(duì)全局網(wǎng)絡(luò)特征多重比較結(jié)果進(jìn)行校正; 獨(dú)立樣本t檢驗(yàn)比較兩組在不同頻段下, 不同認(rèn)知重評(píng)條件下局部網(wǎng)絡(luò)特征的差異, 采用False discovery rate (FDR)方法對(duì)多重比較結(jié)果進(jìn)行校正, p lt;"0.05表示校正后仍存在顯著差異, 皮爾遜相關(guān)系數(shù)用于分析兩組全局網(wǎng)絡(luò)特征和局部網(wǎng)絡(luò)特征與貝克抑郁量表得分、抑郁自評(píng)量表得分的相關(guān)程度, 相關(guān)結(jié)果均進(jìn)行多重檢驗(yàn)Bonferroni方法校正。相關(guān)分析使用GRETNA完成。
3.1.1""被試基本信息
兩組被試的人口學(xué)信息和量表得分結(jié)果見(jiàn)表1。兩組被試在年齡(t(77) = 1.43, p = 0.156)和性別(c2(1)"= 0.777, p = 0.378)上都沒(méi)有顯著差異。抑郁傾向組的貝克抑郁量表分?jǐn)?shù)(20.34 ± 5.32)顯著高于健康對(duì)照組(4.51 ± 4.04), t(77) = ?14.97, p lt; 0.001; 抑郁傾向組的抑郁自評(píng)分?jǐn)?shù)(60.13 ± 6.63)顯著高于健康對(duì)照組(40.69 ± 7.46), t(77) = ?12.21, p lt; 0.001; 此外, 對(duì)兩組被試的積極消極情緒量表得分進(jìn)行分析發(fā)現(xiàn), 抑郁傾向組的積極情緒(27.55 ± 4.86)與健康對(duì)照組(34.34 ± 6.88)存在顯著差異, t(77) = 5.03, p lt; 0.001。同樣, 抑郁傾向組的消極情緒(25.63 ± 7.61)與健康對(duì)照組(17.90 ± 6.97)存在顯著差異, t(77) = ?4.71, p lt; 0.001。
3.1.2""主觀情緒評(píng)級(jí)
抑郁傾向組和健康對(duì)照組的主觀情緒評(píng)級(jí)結(jié)果見(jiàn)表2。對(duì)兩組被試在不同實(shí)驗(yàn)任務(wù)條件的效價(jià)評(píng)分進(jìn)行分析, 球形檢驗(yàn)結(jié)果表明不符合球形假設(shè), p lt;"0.001, 使用Greenhouse-Geisser方法校正。認(rèn)知重評(píng)條件的主效應(yīng)顯著, F(2.37, 182.18) = 114.03, p"lt; 0.001, ηp2"= 0.60。組別主效應(yīng)顯著, F(1, 71) = 6.08, p = 0.016, ηp2"= 0.07, 總體上抑郁傾向組效價(jià)評(píng)分比健康對(duì)照組更低。認(rèn)知重評(píng)條件與組別之間交互作用不顯著(p"= 0.669)。
對(duì)兩組被試在4種認(rèn)知重評(píng)條件的喚醒度評(píng)分進(jìn)行分析。球形檢驗(yàn)結(jié)果表明不符合球形假設(shè), p lt;"0.001, 使用Greenhouse-Geisser方法校正。認(rèn)知重評(píng)條件的主效應(yīng)顯著, F(2.73, 210.27) = 48.63, p lt;"0.001,"ηp2"= 0.39, 組別無(wú)顯著主效應(yīng)(p"= 0.736), 組別與認(rèn)知重評(píng)條件之間交互作用不顯著(p = 0.963)。
3.2.1""抑郁傾向組自我關(guān)注重評(píng)和情境關(guān)注重評(píng)全局網(wǎng)絡(luò)特征的結(jié)果
抑郁傾向組認(rèn)知重評(píng)全局網(wǎng)絡(luò)特征結(jié)果見(jiàn)表3、表4和圖2。結(jié)果發(fā)現(xiàn), alpha頻段中, 聚類(lèi)系數(shù)(C)的組別主效應(yīng)存在邊緣顯著差異, F(1, 71) = 3.04, p = 0.085, ηp2"= 0.04; 局部效率(Eloc)的組別主效應(yīng)存在邊緣顯著差異, F(1, 71) = 2.81, p"= 0.098, ηp2"= 0.04; 最大介數(shù)中心性(maxBC)的組別主效應(yīng)存在邊緣顯著差異, F(1, 71) = 3.11, p = 0.082, ηp2"= 0.04, 其他指標(biāo)的組別主效應(yīng)均不顯著(p"gt; 0.05); gamma頻段中, 聚類(lèi)系數(shù)(C)的組別主效應(yīng)存在顯著差異, F(1, 71) = 8.29, p"= 0.005, ηp2"= 0.10; 局部效率(Eloc) 的組別主效應(yīng)存在顯著差異, F(1, 71) = 8.33, p"= 0.005, ηp2"= 0.10; 最大介數(shù)中心性(maxBC)的組別主效應(yīng)存在顯著, F(1, 71) = 7.16, p = 0.009, ηp2"= 0.10, 其他指標(biāo)的組別主效應(yīng)均不顯著(p"gt; 0.05); 聚類(lèi)系數(shù)(C)的認(rèn)知重評(píng)條件主效應(yīng)存在邊緣顯著差異, F(1, 71) = 2.58, p = 0.055, ηp2"= 0.03; 局部效率(Eloc) 的認(rèn)知重評(píng)條件主效應(yīng)存在顯著差異, F(1, 71) = 3.04, p"= 0.030, ηp2"= 0.04; 最大介數(shù)中心性(maxBC)的認(rèn)知重評(píng)主效應(yīng)存在顯著差異, F(1, 71) = 3.33, p = 0.020, ηp2"= 0.04, 其他指標(biāo)的認(rèn)知重評(píng)條件主效應(yīng)均不顯著(p gt; 0.05), 組別與認(rèn)知重評(píng)條件的交互作用均不顯著(p gt; 0.05)。
3.2.2""抑郁傾向組自我關(guān)注重評(píng)和情境關(guān)注重評(píng)局部網(wǎng)絡(luò)特征的結(jié)果
抑郁傾向組和健康對(duì)照組在不同認(rèn)知重評(píng)條件下, 介數(shù)中心性指標(biāo)存在顯著差異的腦區(qū), 見(jiàn)表5、表6和圖3。alpha頻段中, 與健康對(duì)照組相比, 抑郁傾向組左側(cè)前扣帶回(ACC) (BA32, p"= 0.001)、右側(cè)海馬旁回(PHG) (BA30, p"= 0.010)、兩側(cè)后扣帶回(PCC) (BA29, p"= 0.029、p"= 0.035)的介數(shù)中心性更大, 而兩側(cè)顳上回/顳中回(MTG/STG) (BA38, p"= 0.014、BA39, p"= 0.034)、兩側(cè)中央后回(PoCG) (BA2, p"= 0.021、BA43, p"= 0.046)、左側(cè)顳下回(ITG)"(BA20, p"= 0.046)的介數(shù)中心性則更小。
gamma頻段中, 與健康對(duì)照組相比, 抑郁傾向組的兩側(cè)海馬旁回(PHG) (BA35, p"= 0.002、p"= 0.004、p"= 0.021; BA36, p"= 0.023、p"= 0.007、p"= 0.030; BA28, p"= 0.031、p"= 0.018; BA27, p"= 0.043、p"= 0.029、p"= 0.030、p"= 0.037; BA30, p"= 0.039)、左側(cè)前扣帶回(ACC) (BA24, p"= 0.014)、兩側(cè)后扣帶回(PCC) (BA30, p"= 0.017、p"= 0.032; BA29, p"= 0.021、p"= 0.023、p"= 0.024、p"= 0.003、p"= 0.009、p"= 0.032; BA23, p"= 0.003)、兩側(cè)顳上回(STG) (BA22, p"= 0.027; BA42, p"= 0.031)、左側(cè)額中回(MFG) (BA8, p"= 0.021)、右側(cè)中央前回(PreCG) (BA4, p"= 0.048、p"= 0.035)、右側(cè)中央后回(PoCG)(BA3, p"= 0.033、p"= 0.045)的介數(shù)中心性增加, 而右側(cè)顳中回(MTG) (BA37, p"= 0.012)、左側(cè)頂下葉(IPL) (BA40, p"= 0.018)的介數(shù)中心性則降低。
3.2.3""抑郁傾向組認(rèn)知重評(píng)腦網(wǎng)絡(luò)與抑郁傾向嚴(yán)重程度的相關(guān)結(jié)果
在不同頻段上, 對(duì)抑郁傾向組的全局網(wǎng)絡(luò)特征存在差異的指標(biāo)進(jìn)行分析, 即聚類(lèi)系數(shù)(C)、局部效率(Eloc)、最大介數(shù)中心性(maxBC)與貝克抑郁量表分?jǐn)?shù)(BDI)、抑郁自評(píng)量表分?jǐn)?shù)(SDS)進(jìn)行皮爾遜相關(guān)分析, 并采用Bonferroni方法對(duì)相關(guān)結(jié)果進(jìn)行校正, 結(jié)果見(jiàn)圖4。結(jié)果表明, alpha頻段中, 觀看負(fù)性條件下, 抑郁傾向組的抑郁自評(píng)量表分?jǐn)?shù)與聚類(lèi)系數(shù)(C)呈顯著負(fù)相關(guān)(r"= ?0.375, p"= 0.020)、與局部效率(Eloc) 呈顯著負(fù)相關(guān)(r"= ?0.375, p"= 0.020)、與最大介數(shù)中心性(maxBC)呈顯著正相關(guān)(r"= 0.376, p"= 0.020); gamma頻段中, 自我關(guān)注重評(píng)條件下, 抑郁傾向組的抑郁自評(píng)量表分?jǐn)?shù)與聚類(lèi)系數(shù)(C)呈顯著的負(fù)相關(guān)(r"= ?0.320, p"= 0.050), 與局部效率(Eloc) 呈顯著的負(fù)相關(guān)(r"= ?0.363, p"= 0.025)。
在不同頻段上, 對(duì)局部網(wǎng)絡(luò)特征與抑郁傾向組的BDI、SDS進(jìn)行皮爾遜相關(guān)分析, 并采用Bonferroni方法對(duì)相關(guān)結(jié)果進(jìn)行校正, 見(jiàn)圖5。結(jié)果表明, alpha頻段中, 觀看負(fù)性條件下, 抑郁傾向組的抑郁自評(píng)量表分?jǐn)?shù)與左側(cè)顳中回/顳上回(MTG/STG)呈顯著正相關(guān)(BA38, p"= 0.014)、與左側(cè)中央后回(PoCG)呈顯著正相關(guān)(BA43, p"= 0.029); gamma頻段中, 觀看負(fù)性條件下, 抑郁傾向組的貝克抑郁量表分?jǐn)?shù)與右側(cè)顳中回(MTG)呈顯著正相關(guān)(BA37, p"= 0.019)。
本研究采用復(fù)雜網(wǎng)絡(luò)分析, 探討抑郁傾向組自我關(guān)注重評(píng)和情境關(guān)注重評(píng)的調(diào)節(jié)效果和腦網(wǎng)絡(luò)特征, 及這種特征與抑郁傾向嚴(yán)重程度的關(guān)系。結(jié)果發(fā)現(xiàn):(1)抑郁傾向組在認(rèn)知重評(píng)任務(wù)過(guò)程中的效價(jià)評(píng)分總體上低于健康對(duì)照組; (2)兩組被試在自我關(guān)注重評(píng)和情境關(guān)注重評(píng)任務(wù)期間, 聚類(lèi)系數(shù)、局部效率和最大介數(shù)中心性存在顯著差異; 局部腦區(qū)差異主要位于前、后扣帶回、海馬旁回、中央前回、中央后回、額中回、額上回、顳上回和顳中回等; (3)抑郁傾向組在自我關(guān)注重評(píng)任務(wù)期間全局網(wǎng)絡(luò)特征與抑郁傾向嚴(yán)重程度相關(guān), 在觀看負(fù)性任務(wù)期間全局和局部網(wǎng)絡(luò)特征與抑郁傾向嚴(yán)重程度相關(guān)。這表明, 全局網(wǎng)絡(luò)的功能分離和整合, 及局部腦區(qū)重要性的變化可能會(huì)影響抑郁傾向個(gè)體的認(rèn)知重評(píng)效果。
本研究探討了抑郁傾向組和健康對(duì)照組自我關(guān)注重評(píng)和情境關(guān)注重評(píng)的效價(jià)和喚醒度差異。結(jié)果發(fā)現(xiàn), 整個(gè)實(shí)驗(yàn)任務(wù)過(guò)程中抑郁傾向組的效價(jià)評(píng)分顯著低于健康對(duì)照組, 即抑郁傾向個(gè)體在進(jìn)行認(rèn)知重評(píng)任務(wù)的過(guò)程中更多地體驗(yàn)到了消極情緒, 我們推測(cè)抑郁癥狀可能會(huì)影響個(gè)體情緒調(diào)節(jié)過(guò)程(Liu, Ma et al., 2022)。以往研究發(fā)現(xiàn), 早期不良的生活經(jīng)歷促成抑郁個(gè)體形成消極的認(rèn)知圖式, 其特征是自動(dòng)的且不消耗認(rèn)知資源(Beck, 2008), 當(dāng)其在抑郁發(fā)作之前或期間被反復(fù)激活, 導(dǎo)致個(gè)體在面對(duì)相似的負(fù)性刺激時(shí), 自動(dòng)地采用消極的情緒調(diào)節(jié)策略來(lái)調(diào)節(jié)情緒(Ehring et al., 2010)。由于兩種重評(píng)子策略需要個(gè)體有意識(shí)地對(duì)消極情緒刺激進(jìn)行重新解釋?zhuān)?并且需要調(diào)動(dòng)認(rèn)知資源來(lái)調(diào)節(jié)情緒(Gyurak et al., 2011), 而抑郁個(gè)體在進(jìn)行認(rèn)知重評(píng)任務(wù)時(shí)的認(rèn)知資源是有限的(Joormann amp; Gotlib, 2010)。因此, 與健康對(duì)照組相比, 抑郁傾向組可能無(wú)法更好地使用兩種子策略來(lái)調(diào)節(jié)消極情緒, 這也可能進(jìn)一步導(dǎo)致抑郁的發(fā)展和維持。但總體來(lái)說(shuō), 兩種子策略能夠在一定程度上降低抑郁傾向個(gè)體和健康個(gè)體的消極情緒, 并且兩組個(gè)體在使用效果上沒(méi)有顯著差異。由于抑郁傾向個(gè)體對(duì)快樂(lè)刺激的趨近動(dòng)機(jī)和對(duì)悲傷刺激的回避動(dòng)機(jī)都弱于正常個(gè)體, 因此無(wú)論是使其脫離于消極情緒還是關(guān)注負(fù)性事件積極的一面, 都具有相似的效果。此外, 本研究尚未發(fā)現(xiàn)抑郁傾向組和健康對(duì)照組在兩種重評(píng)任務(wù)期間的喚醒度評(píng)分存在顯著差異, 分析原因可能因?yàn)橐钟魞A向個(gè)體對(duì)負(fù)性刺激的精細(xì)加工能力減弱(李紅"等, 2019), 引起了抑郁傾向個(gè)體對(duì)較高強(qiáng)度負(fù)性刺激的低動(dòng)機(jī)反應(yīng)。對(duì)此, 未來(lái)研究可將負(fù)性情緒圖片分為不同類(lèi)型和不同刺激強(qiáng)度對(duì)抑郁傾向個(gè)體的情緒喚醒度進(jìn)行深入研究。
本研究探討了抑郁傾向組和健康對(duì)照組在自我關(guān)注重評(píng)和情境關(guān)注重評(píng)期間的全局網(wǎng)絡(luò)特征。結(jié)果發(fā)現(xiàn), 抑郁傾向組的大腦全局網(wǎng)絡(luò)特征, 在自我關(guān)注重評(píng)和情境關(guān)注重評(píng)任務(wù)過(guò)程中, alpha和gamma頻段存在異?;顒?dòng)。這些結(jié)果與以往研究結(jié)果相一致。例如有通過(guò)探索抑郁癥并且伴有認(rèn)知障礙的個(gè)體, 在對(duì)負(fù)性刺激進(jìn)行認(rèn)知重評(píng)的過(guò)程中, 發(fā)現(xiàn)其alpha頻段存在異?;顒?dòng)(Liu, Ma et al., 2022), 這表明, 抑郁個(gè)體的認(rèn)知重評(píng)受到影響可能與低頻帶的異?;顒?dòng)有關(guān)。此外, 有研究通過(guò)探索抑郁癥患者在處理情緒刺激時(shí)的大腦功能網(wǎng)絡(luò), 發(fā)現(xiàn)gamma頻段存在異?;顒?dòng)(Li et al., 2015)。因此, 抑郁傾向個(gè)體的認(rèn)知重評(píng)效果, 可能受到大腦全局網(wǎng)絡(luò)alpha和gamma頻段異常活動(dòng)的影響。
聚類(lèi)系數(shù)量化了相鄰區(qū)域間的相連程度, 因此可以衡量大腦網(wǎng)絡(luò)處理局部信息的能力(梁夏"等, 2010)。研究結(jié)果發(fā)現(xiàn), 與健康對(duì)照組相比, 抑郁傾向組在自我關(guān)注重評(píng)和情境關(guān)注重評(píng)任務(wù)期間, 聚類(lèi)系數(shù)呈顯著下降趨勢(shì), 與以往研究結(jié)果相一致。有研究發(fā)現(xiàn)抑郁癥個(gè)體在認(rèn)知重評(píng)任務(wù)期間, 聚類(lèi)系數(shù)顯著下降, 這代表大腦局部信息的處理能力下降, 進(jìn)而影響其情緒調(diào)節(jié)效果(Liu, Chen et al., 2022)。局部效率衡量大腦網(wǎng)絡(luò)中信息的傳輸效率(Latora amp; Marchiori, 2001), 而抑郁傾向個(gè)體在兩種重評(píng)任務(wù)期間表現(xiàn)出局部效率顯著低于健康對(duì)照組的趨勢(shì), 這表明抑郁傾向個(gè)體在處理負(fù)性情緒刺激時(shí)效率受到影響, 認(rèn)知重評(píng)的能力可能會(huì)受到抑郁情緒的影響(Liu, Chen et al., 2022)。最大介數(shù)中心性是具有高度中心性的節(jié)點(diǎn)(Hasanzadeh et al., 2020), 代表大腦區(qū)域在網(wǎng)絡(luò)間的信息傳遞(Bullmore amp; Sporns, 2009)。結(jié)果發(fā)現(xiàn), 抑郁傾向組在自我關(guān)注重評(píng)和情境關(guān)注重評(píng)任務(wù)期間, 最大介數(shù)中心性呈現(xiàn)顯著低于健康對(duì)照組的趨勢(shì)。由此推測(cè), 抑郁傾向個(gè)體大腦網(wǎng)絡(luò)整合效率和認(rèn)知重評(píng)效果均低于健康個(gè)體。
相關(guān)研究認(rèn)為大腦局部特征代表腦網(wǎng)絡(luò)中跨區(qū)域信息傳遞的能力(Wong et al., 2016), 反映了信息傳遞和整合的神經(jīng)生物學(xué)基礎(chǔ)(Olaf et al., 2007)。本研究通過(guò)計(jì)算節(jié)點(diǎn)的介數(shù)中心性(BC)來(lái)評(píng)估大腦皮層網(wǎng)絡(luò)局部特征的變化。
通過(guò)分析gamma頻段兩組被試的介數(shù)中心性(BC)可以發(fā)現(xiàn), 抑郁傾向組在自我關(guān)注重評(píng)和情境關(guān)注重評(píng)任務(wù)期間, 其后扣帶回、海馬旁回、中央前回、中央后回、額中回等腦區(qū)呈現(xiàn)異?;顒?dòng)。兩種認(rèn)知重評(píng)子策略存在腦機(jī)制的差異, 與情境關(guān)注重評(píng)任務(wù)期間相比, 自我關(guān)注重評(píng)涉及更多腦區(qū)的異?;顒?dòng)。
與alpha頻段相比, 抑郁傾向個(gè)體在gamma頻段存在更多腦區(qū)的異?;顒?dòng)。由于gamma振蕩在情緒加工過(guò)程中發(fā)揮重要作用(Fitzgerald amp; Watson, 2018), 在此頻段有助于識(shí)別個(gè)體情緒狀態(tài)變化(Murugappan et al., 2021)。在gamma頻段中, 抑郁傾向個(gè)體在自我關(guān)注重評(píng)任務(wù)期間, 除兩側(cè)后扣帶回、左側(cè)海馬旁回、左側(cè)額中回、右側(cè)中央前回表現(xiàn)出異?;顒?dòng)外, 還在右側(cè)海馬旁回、右側(cè)中央后回表現(xiàn)出異常活動(dòng)。具體來(lái)說(shuō), 后扣帶回主要接受來(lái)自頂葉皮層的輸入, 并參與空間記憶系統(tǒng)(Rolls, 2019)。由于以往消極情緒事件的影響(Beck, 2008), 抑郁傾向個(gè)體在進(jìn)行兩種重評(píng)任務(wù)時(shí), 可能會(huì)激活某些消極回憶, 從而影響其認(rèn)知重評(píng)的效果。海馬旁回受損可能影響抑郁傾向個(gè)體在自我關(guān)注重評(píng)和情境關(guān)注重評(píng)期間, 根據(jù)上下文線(xiàn)索對(duì)負(fù)性情境進(jìn)行重新解釋的能力(Frank et al., 2014)。自我關(guān)注重評(píng)任務(wù)期間同時(shí)受到兩側(cè)海馬旁回的影響, 此過(guò)程更依賴(lài)于個(gè)體對(duì)負(fù)性情境重新解釋的能力, 一旦這種能力受損, 自我關(guān)注重評(píng)對(duì)消極情緒的調(diào)節(jié)效果將降低。中央后回與情緒的感知和處理有關(guān)(Kassam et al., 2013), 這一區(qū)域受損可能會(huì)導(dǎo)致個(gè)體出現(xiàn)異常的情緒反應(yīng), 尤其影響抑郁傾向個(gè)體自我關(guān)注重評(píng)的效果。中央前回與負(fù)性認(rèn)知風(fēng)格有關(guān)(Picó-Pérez et al., 2017)。抑郁癥認(rèn)知模型提出早期不良事件會(huì)促進(jìn)個(gè)體形成消極認(rèn)知圖式, 當(dāng)個(gè)體面對(duì)消極情緒事件時(shí)會(huì)激活這種圖式, 導(dǎo)致記憶和情緒等方面消極偏好(Beck, 2008)。此外, 額中回負(fù)責(zé)調(diào)節(jié)情緒加工(Zhang et al., 2020), 額中回與注意力的靈活調(diào)節(jié)有關(guān)(Song et al., 2019), 其活動(dòng)異??赡軐?duì)負(fù)性刺激的注意導(dǎo)向發(fā)揮作用, 使得個(gè)體在面對(duì)足夠的消極刺激時(shí), 容易重新激活消極圖式(Davidson et al., 2002)。因此, 這兩個(gè)區(qū)域受損, 可能是抑郁個(gè)體偏好消極認(rèn)知的神經(jīng)基礎(chǔ)。如果額中回存在加工異常, 將極大程度影響抑郁傾向個(gè)體運(yùn)用情境關(guān)注重評(píng)策略的能力, 但對(duì)自我關(guān)注重評(píng)效果影響較小。
此外, 研究結(jié)果表明, 與健康對(duì)照組相比, 抑郁傾向組在alpha頻段認(rèn)知重評(píng)任務(wù)期間, 右側(cè)顳上回、右側(cè)顳中回、后扣帶回、兩側(cè)額下回、右側(cè)中央后回和右側(cè)頂上葉表現(xiàn)出異常活動(dòng)。顳上回的異常激活與以往研究一致(Ramezani et al., 2014)。顳上回(STG)屬于顳葉, 顳葉反映對(duì)情緒相關(guān)特征的注意, 這些特征對(duì)于觸發(fā)個(gè)體情緒并對(duì)其進(jìn)行重新解釋至關(guān)重要(Bebko et al., 2011)。個(gè)體在認(rèn)知重評(píng)任務(wù)中不僅需要識(shí)別情緒刺激的信息, 還需要認(rèn)知努力來(lái)下調(diào)消極情緒, 因此顳上回的異?;顒?dòng)可能反映了抑郁傾向個(gè)體的認(rèn)知控制能力下降。頂葉主要負(fù)責(zé)個(gè)體的認(rèn)知控制能力(Anderson amp; Huddleston, 2012), 這部分異?;顒?dòng)表明, 抑郁傾向個(gè)體在觀看負(fù)性圖片時(shí)無(wú)法抑制消極情緒, 并會(huì)影響情境關(guān)注重評(píng)的調(diào)節(jié)效果。額下回主要負(fù)責(zé)下調(diào)消極情緒反應(yīng)(Kravitz et al., 2011), 在反應(yīng)抑制中起重要作用(Aron et al., 2004; Hampshire et al., 2010)。以往研究也發(fā)現(xiàn), 抑郁癥患者存在抑制控制障礙(Langenecker et al., 2007), 由此推測(cè), 抑郁傾向個(gè)體可能受額下回的影響, 難以抑制消極情緒, 從而影響情境關(guān)注重評(píng)下的任務(wù)表現(xiàn), 但不會(huì)影響自我關(guān)注重評(píng)的調(diào)節(jié)效果(Dai amp; Feng, 2011)。綜上所述, 抑郁傾向個(gè)體在后扣帶回、海馬旁回、中央前回、中央后回、額中回、額上回、頂葉、顳上回和顳中回等腦區(qū)的介數(shù)中心性發(fā)生改變, 表明這些腦區(qū)受到影響較大(Long et al., 2015), 并在自我關(guān)注重評(píng)和情境關(guān)注重評(píng)任務(wù)期間存在差異。
抑郁傾向組的全局網(wǎng)絡(luò)特征與抑郁嚴(yán)重程度的相關(guān), 進(jìn)一步證實(shí)了抑郁會(huì)影響大腦拓?fù)渖窠?jīng)機(jī)制。具體來(lái)說(shuō), 本研究發(fā)現(xiàn)抑郁傾向個(gè)體的嚴(yán)重程度與聚類(lèi)系數(shù)、局部效率呈負(fù)相關(guān)。由于聚類(lèi)系數(shù)和局部效率主要是了解大腦區(qū)域在網(wǎng)絡(luò)間的信息傳遞(Rubinov amp; Sporns, 2010), 這表明抑郁傾向個(gè)體的嚴(yán)重程度越高, 其大腦信息傳輸效率可能越慢(Meng et al., 2014)。局部網(wǎng)絡(luò)特征也與抑郁傾向個(gè)體的嚴(yán)重程度存在相關(guān)。抑郁傾向組的嚴(yán)重程度與顳中回/顳上回、左側(cè)中央后回呈正相關(guān)。因此, 本研究推測(cè)抑郁傾向個(gè)體的癥狀發(fā)展可能與這些腦區(qū)的神經(jīng)活動(dòng)有關(guān), 并以此了解腦網(wǎng)絡(luò)屬性在多大程度上反映了抑郁傾向個(gè)體的認(rèn)知重評(píng)行為和抑郁的嚴(yán)重程度。
綜上所述, 本研究有助于揭示抑郁傾向個(gè)體使用認(rèn)知重評(píng)策略的效果及對(duì)應(yīng)的大腦神經(jīng)機(jī)制的變化, 補(bǔ)充抑郁傾向的相關(guān)研究, 但仍存在以下不足:
(1)本研究?jī)H通過(guò)腦電數(shù)據(jù)研究抑郁傾向個(gè)體認(rèn)知重評(píng)任務(wù)狀態(tài)的腦網(wǎng)絡(luò), 未來(lái)可采用多模態(tài)腦電/fMRI集成方法(Lioi et al., 2020; Zhang et al., 2011)探討更豐富的結(jié)果。
(2)本研究只測(cè)量靜態(tài)腦網(wǎng)絡(luò), 而忽略動(dòng)態(tài)腦網(wǎng)絡(luò)。在進(jìn)一步的研究中, 將探討大腦網(wǎng)絡(luò)的動(dòng)態(tài)分析和時(shí)間網(wǎng)絡(luò)特性(Liu et al., 2019)。
(3)本研究主要是從認(rèn)知重評(píng)的有意識(shí)層面入手進(jìn)行探究, 未來(lái)可以考慮從認(rèn)知重評(píng)的無(wú)意識(shí)層面來(lái)豐富相關(guān)研究。
本研究采用復(fù)雜網(wǎng)絡(luò)分析探討了抑郁傾向個(gè)體自我關(guān)注重評(píng)和情境關(guān)注重評(píng)的效果和腦網(wǎng)絡(luò)特征, 及這種特征與抑郁傾向嚴(yán)重程度的關(guān)系。結(jié)果發(fā)現(xiàn), 抑郁傾向個(gè)體的全局和局部網(wǎng)絡(luò)特征均發(fā)生了改變, 這也與抑郁傾向嚴(yán)重程度有關(guān)。這表明, 異常的拓?fù)渖窠?jīng)機(jī)制可能暗示著抑郁傾向個(gè)體認(rèn)知重評(píng)功能受損, 并為預(yù)防和改善抑郁傾向癥狀提供新的見(jiàn)解。
參""考""文""獻(xiàn)
Achard, S., amp; Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17.
Aldao, A., Nolen-Hoeksema, S., amp; Schweizer, S. (2010). Emotion regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30(2), 217?237.
Aleksandra, M., Neil, W. B., Oscar, W. M., Prabhavi, N. P., amp; Paul, B. F. (2023). Alterations in EEG functional connectivity"in individuals with depression: A systematic review. Journal of Affective Disorders, 328, 287?302.
Anderson, M. C., amp; Huddleston, E. (2012). Towards a cognitive"and neurobiological model of motivated forgetting. Nebraska Symposium on Motivation. Nebraska Symposium on Motivation, 58, 53?120.
Arnold, A. E., Protzner, A. B., Bray, S., Levy, R. M., amp; Iaria, G. (2014). Neural network configuration and efficiency underlies individual differences in spatial orientation ability. Journal of Cognitive Neuroscience, 26(2), 380?394.
Aron, A. R., Robbins, T. W., amp; Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8(4), 170?177.
Balconi, M., amp; Mazza, G. (2009). Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked emotional cues. ERS/ERD and coherence measures of alpha band. International Journal of Psychophysiology, 74(2), 158?165.
Bebko, G. M., Franconeri, S. L., Ochsner, K. N., amp; Chiao, J. Y. (2011). Look before you regulate: Differential perceptual strategies underlying expressive suppression and cognitive reappraisal. Emotion, 11(4), 732?742.
Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. The American Journal of Psychiatry, 165(8), 969?977.
Belden, A. C., Pagliaccio, D., Murphy, E. R., Luby, J. L., amp; Barch, D. M. (2015). Neural activation during cognitive emotion regulation in previously depressed compared to healthy children: Evidence of specific alterations. Journal of the American Academy of Child and Adolescent Psychiatry, 54(9), 771?781.
Benning, S. D., amp; Ait Oumeziane, B. (2017). Reduced positive emotion and underarousal are uniquely associated with subclinical depression symptoms: Evidence from psychophysiology, self-report, and symptom clusters. Psychophysiology, 54(7), 1010?1030.
Borges, A. M., Kuang, J., Milhorn, H., amp; Yi, R. (2016). An alternative approach to calculating area-under-the-curve (auc)"in delay discounting research. Journal of the Experimental Analysis of Behavior, 106(2), 145?155.
Bruder, G. E., Stewart, J. W., amp; McGrath, P. J. (2017). Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings. Neuroscience and Biobehavioral Reviews, 78, 178?191.
Bullmore, E., amp; Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems."Nature Reviews Neuroscience, 10(3), 186?198.
Dai, Q., amp; Feng, Z. (2011). Dysfunctional distracter inhibition and facilitation for sad faces in depressed individuals. Psychiatry Research, 190(2-3), 206?211.
Davidson, R. J., Lewis, D. A., Alloy, L. B., Amaral, D. G., Bush, G., Cohen, J. D., ... Peterson, B. S. (2002). Neural and behavioral substrates of mood and mood regulation. Biological Psychiatry, 52(6), 478?502.
Davis, E. G., Foland-Ross, L. C., amp; Gotlib, I. H. (2018). Neural correlates of top-down regulation and generation of negative affect in major depressive disorder. Psychiatry Research: Neuroimaging, 276, 1?8.
De Vico Fallani, F., Astolfi, L., Cincotti, F., Mattia, D., Tocci, A., Capitanio, S., ... Babiloni, F. (2007). Features extraction from time-varying cortical networks adopting a theoretical graph approach. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 5198?5201.
De Zorzi, L., RanFaing, S., Honoré, J., amp; Sequeira, H. (2021). Autonomic reactivity to emotion: A marker of sub-clinical anxiety and depression symptoms? Psychophysiology,"58(4), e13774.
Diedrich, A., Grant, M., Hofmann, S. G., Hiller, W., amp; Berking, M. (2014). Self-compassion as an emotion regulation strategy in major depressive disorder. Behaviour Research and Therapy, 58, 43?51.
Dillon, D. G., amp; Pizzagalli, D. A. (2013). Evidence of successful modulation of brain activation and subjective experience during reappraisal of negative emotion in unmedicated depression. Psychiatry Research, 212(2), 99?107.
Doré, B. P., Rodrik, O., Boccagno, C., Hubbard, A., Weber, J., Stanley, B., ... Ochsner, K. N. (2018). Negative autobiographical"memory in depression reflects elevated amygdala- hippocampal reactivity and hippocampally associated emotion"regulation. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(4), 358?366.
Dryman, M. T., amp; Heimberg, R. G. (2018). Emotion regulation in social anxiety and depression: A systematic review of expressive suppression and cognitive reappraisal. Clinical Psychology Review, 65, 17?42.
Ehring, T., Tuschen-Caffier, B., Schnülle, J., Fischer, S., amp; Gross, J. J. (2010). Emotion regulation and vulnerability to depression: Spontaneous versus instructed use of emotion suppression and reappraisal. Emotion, 10(4), 563?572.
Erk, S., Mikschl, A., Stier, S., Ciaramidaro, A., Gapp, V., Weber, B., amp; Walter, H. (2010). Acute and sustained effects of cognitive emotion regulation in major depression. The Journal of Neuroscience, 30(47), 15726?15734.
Fingelkurts, A. A., amp; Fingelkurts, A. A. (2015). Altered structure"of dynamic electroencephalogram oscillatory pattern in major depression. Biological Psychiatry, 77(12), 1050?1060.
Fitzgerald, P. J., amp; Watson, B. O. (2018). Gamma oscillations as a biomarker for major depression: An emerging topic. Translational Psychiatry, 8(1), 177.
Fogel, J., Eaton, W. W., amp; Ford, D. E. (2006). Minor depression as a predictor of the first onset of major depressive disorder over a 15-year follow-up. Acta Psychiatrica Scandinavica, 113(1), 36?43.
Ford, B. Q., Karnilowicz, H. R., amp; Mauss, I. B. (2017). Understanding reappraisal as a multicomponent process: The psychological health benefits of attempting to use reappraisal depend on reappraisal success. Emotion, 17(6), 905?911.
Frank, D. W., Dewitt, M., Hudgens-Haney, M., Schaeffer, D. J., Ball, B. H., Schwarz, N. F., ... Sabatinelli, D. (2014). Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. Neuroscience and Biobehavioral Reviews, 45, 202?211.
Greco, C., Matarazzo, O., Cordasco, G., Vinciarelli, A., Callejas, Z., amp; Esposito, A. (2021). Discriminative power of EEG-based biomarkers in major depressive disorder: A systematic review. IEEE Access, 9, 112850?112870.
Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2(3), 271?299.
Gross, J. J., amp; Thompson, R. A. (2007). Emotion regulation: Conceptual foundations. In J. J. Gross (Ed.), Handbook of emotion regulation"(pp. 3?24). New York, NY: Guilford Press.
Gusnard, D. A., Akbudak, E., Shulman, G. L., amp; Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences, 98(7), 4259?4264.
Gyurak, A., Gross, J. J., amp; Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition amp; Emotion, 25(3), 400?412.
Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., amp; Owen, A. M. (2010). The role of the right inferior frontal gyrus: Inhibition and attentional control. NeuroImage, 50(3), 1313?1319.
Hasanzadeh, F., Mohebbi, M., amp; Rostami, R. (2020). Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal. Journal of Neural Engineering, 17(2), 026010.
Jaworska, N., Blier, P., Fusee, W., amp; Knott, V. (2012). α Power, α asymmetry and anterior cingulate cortex activity in depressed males and females. Journal of Psychiatric Research,"46(11), 1483?1491.
John, O. P., amp; Gross, J. J. (2004). Healthy and unhealthy emotion regulation: Personality processes, individual differences, and life span development. Journal of Personality,"72(6), 1301?1334.
Joormann, J., amp; Gotlib, I. H. (2010). Emotion regulation in depression: Relation to cognitive inhibition. Cognition amp; Emotion, 24(2), 281?298.
Kalisch, R., Wiech, K., Critchley, H. D., Seymour, B., O’Doherty, J. P., amp; Oakley, D. A. (2005). Anxiety reduction through detachment: Subjective, physiological, and neural effects. Journal of Cognitive Neuroscience, 17(6), 874?883.
Kang, J.-H., Jeong, J. W., Kim, H. T., Kim, S. H., amp; Kim, S.-P. (2014). Representation of cognitive reappraisal goals in frontal gamma oscillations."PLoS ONE, 9(11), e113375.
Kassam, K. S., Markey, A. R., Cherkassky, V. L., Loewenstein, G., amp; Just, M. A. (2013). Identifying emotions on the basis of neural activation. PloS ONE, 8(6), e66032.
Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., amp; Heatherton, T. F. (2002). Finding the self? An event-related fMRI study."Journal of Cognitive Neuroscience,"14(5), 785?794.
Kravitz, D. J., Saleem, K. S., Baker, C. I., amp; Mishkin, M. (2011). A new neural framework for visuospatial processing."Nature reviews. Neuroscience, 12(4), 217?230.
Langenecker, S. A., Kennedy, S. E., Guidotti, L. M., Briceno, E. M., Own, L. S., Hooven, T., ... Zubieta, J. K. (2007). Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. Biological Psychiatry, 62(11), 1272?1280.
Latora, V., amp; Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701.
Li, F., Lui, S., Yao, L., Ji, G. J., Liao, W., Sweeney, J. A., amp; Gong, Q. (2018). Altered white matter connectivity within and between networks in antipsychotic-naive first-episode schizophrenia. Schizophrenia Bulletin, 44(2), 409?418.
Li, H., Yang, X. G., Zheng, W. Y., amp; Wang, C. (2019). Emotional regulation goals of young adults with depression inclination: An event-related potential study. Acta Psychologica Sinica, 51(6), 637?647.
[李紅, 楊小光, 鄭文瑜, 王超. (2019). 抑郁傾向?qū)€(gè)體情緒調(diào)節(jié)目標(biāo)的影響——來(lái)自事件相關(guān)電位的證據(jù). 心理學(xué)報(bào), 51(6), 637?647.]
Li, Y., Cao, D., Wei, L., Tang, Y., amp; Wang, J. (2015). Abnormal"functional connectivity of EEG gamma band in patients with depression during emotional face processing. Clinical Neurophysiology, 126(11), 2078?2089.
Liang, X., Wang, J. H., amp; He, Y. (2010). Human connectome: Structural and functional brain networks. Chinese Science Bulletin, 55(16), 1565?1583.
[梁夏, 王金輝, 賀永. (2010). 人腦連接組研究: 腦結(jié)構(gòu)網(wǎng)絡(luò)和腦功能網(wǎng)絡(luò). 科學(xué)通報(bào), (16), 1565?1583.]
Liang, Y., Huo, M., Kennison, R., amp; Zhou, R. L. (2017). The role of cognitive control in older adult cognitive reappraisal: Detached and positive reappraisal."Frontiers in Behavioral Neuroscience, 11,"27.
Lindsey, M. R., Katherine D. M. L., James, O., Jaclyn, B. D., Michelle, Q., Hunter, P. D., amp; Jennifer, B. (2020). Effects of a brief interpersonal conflict cognitive reappraisal intervention on improvements in access to emotion regulation strategies and depressive symptoms in college students."Psychology amp; Health. 35(10), 1207?1227.
Lioi, G., Cury, C., Perronnet, L., Mano, M., Bannier, E., Lécuyer, A., amp; Barillot, C. (2020). Simultaneous eeg-fmri during a neurofeedback task, a brain imaging dataset for multimodal data integration. Entific Data, 7(1), 173.
Liu, M., Ma, J., Fu, C. Y., Yeo, J., Xiao, S. S., Xiao, W. X., ... Li, Y. X. (2022). Dysfunction of emotion regulation in mild cognitive impairment individuals combined with depressive disorder: A neural mechanism study. Frontiers in Aging Neuroscience, 14, 884741.
Liu, S., Chen, S. T., Huang, Z. N., Liu, X. Y., Li, M. J., Su, F. Y., Hao, X. Y., amp; Ming, D. (2022). Hypofunction of directed brain network within alpha frequency band in depressive patients: A graph-theoretic analysis. Cognitive Neurodynamics, 16(5), 1059?1071.
Liu, X., Li, T., Tang, C., Xu, T., Chen, P., Bezerianos, A., amp; Wang, H. (2019). Emotion recognition and dynamic functional"connectivity analysis based on EEG. IEEE Access, 7, 143293?143302.
Liu, Y., Ren, G. Q., amp; Qu, K. J. (2023). The emotion regulation"effect of cognitive reappraisal strategies on college students with depression tendency."Chinese Journal of Clinical Psychology, (1), 39?44.
[劉巖, 任桂琴, 曲可佳. (2023). 認(rèn)知重評(píng)策略對(duì)抑郁傾向大學(xué)生的情緒調(diào)節(jié)研究. 中國(guó)臨床心理學(xué)雜志, (1), 39?44.]
Long, Z., Duan, X., Wang, Y., Liu, F., Zeng, L., Zhao, J. P., amp; Chen, H. (2015). Disrupted structural connectivity network in treatment-naive depression. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 56, 18?26.
Meng, C., Brandl, F., Tahmasian, M., Shao, J., Manoliu, A., Scherr, M., ... Sorg, C. (2014). Aberrant topology of striatum’s connectivity is associated with the number of episodes in depression. Brain, 137(2), 598?609.
Mohammadi, Y., amp; Moradi, M. H. (2021). Prediction of depression severity scores based on functional connectivity and complexity of the EEG signal."Clinical EEG and Neuroscience, 52(1), 52?60.
Moser, J. S., Hartwig, R., Moran, T. P., Jendrusina, A. A., amp; Kross, E. (2014). Neural markers of positive reappraisal and their associations with trait reappraisal and worry. Journal of Abnormal Psychology, 123(1), 91?105.
Murugappan, M., Zheng, B. S., amp; Khairunizam, W. (2021). Recurrent quantification analysis-based emotion classification"in stroke using electroencephalogram signals. Arabian Journal for Science and Engineering, 46, 9573?9588.
Ochsner, K. N., amp; Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242?249.
Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., amp; Gross, J. J. (2004). For better or for worse: Neural systems supporting the cognitive down-and up-regulation of negative emotion. Neuroimage, 23(2), 483?499.
Olaf, S., Honey, C. J., Rolf, K., amp; Marcus, K. (2007). Identification and classification of hubs in brain networks. PLoS ONE, 2(10), e1049.
Peng, W. Q., Luo, W., amp; Zhou, R. L. (2019). HRV evidence for the improvement of emotion regulation in university students with depression tendency by working memory training."Acta Psychologica Sinica, 51(6), 648?661.
[彭婉晴, 羅幃, 周仁來(lái). (2019). 工作記憶刷新訓(xùn)練改善抑郁傾向大學(xué)生情緒調(diào)節(jié)能力的HRV證據(jù). 心理學(xué)報(bào), 51(6), 648?661.]
Picó-Pérez, M., Radua, J., Steward, T., Menchón, J. M., amp; Soriano-Mas, C. (2017). Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. Progress in Neuro-Psychopharmacology"amp; Biological Psychiatry, 79(Pt B), 96?104.
Pierce, J. E., Haque, E., amp; Neta, M. (2022). Affective flexibility as a developmental building block of cognitive reappraisal: An fMRI study. Developmental Cognitive Neuroscience, 58, 101170.
Qi, S. Q., Li, Y. P., Tang, X. M., Zeng, Q. H., Diao, L. T., Li, H., amp; Hu, W. P. (2017). The temporal dynamics of detached versus positive reappraisal: An ERP study. Cognitive, Affective, amp; Behavioral Neuroscience, 17(3), 516?527.
Ramezani, M., Johnsrude, I., Rasoulian, A., Bosma, R., Tong, R., Hollenstein, T., ... Abolmaesumi, P. (2014). Temporal- lobe morphology differs between healthy adolescents and those with early-onset of depression. NeuroImage: Clinical, 6, 145?155.
Rodríguez, M. R., Nuevo, R., Chatterji, S., amp; Ayuso-Mateos, J. L. (2012). Definitions and factors associated with subthreshold"depressive conditions: A systematic review. BMC Psychiatry, 12, 1?7.
Rolls, E. T. (2019). The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure amp; Function, 224(9), 3001?3018.
Rubinov, M., amp; Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059?1069.
Shao, X., Sun, S., Li, J., Kong, W., Zhu, J., Li, X., amp; Hu, B. (2021). Analysis of functional brain network in MDD based on improved empirical mode decomposition with resting state EEG data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1546?1556.
Sheline, Y. I., Price, J. L., Yan, Z., amp; Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11020?11025.
Shiota, M. N., amp; Levenson, R. W. (2002). Turn down the volume or change the channel? Emotional effects of detached versus positive reappraisal. Journal of Personality and Social Psychology, 103(3), 416?429
Shiota, M. N., amp; Levenson, R. W. (2009). Effects of aging on experimentally instructed detached reappraisal, positive reappraisal, and emotional behavior suppression. Psychology and Aging, 24(4), 890?900.
Shiota, M. N., amp; Levenson, R. W. (2012). Turn down the volume or change the channel? Emotional effects of detached versus positive reappraisal. Journal of Personality and Social Psychology, 103(3), 416?429.
Song, P., Lin, H., Liu, C., Jiang, Y., Lin, Y., Xue, Q., Xu, P., amp; Wang, Y. (2019). Transcranial magnetic stimulation to the middle frontal gyrus during attention modes induced dynamic"module reconfiguration in brain networks. Frontiers in Neuroinformatics, 13, 22.
Sullivan, S. K., amp; Strauss, G. P. (2017). Electrophysiological evidence for detrimental impact of a reappraisal emotion regulation strategy on subsequent cognitive control in schizophrenia. Journal of Abnormal Psychology, 126(5), 679?693.
Sun, X. F., Zheng, X. W., Xu, Y. H., Cui, L. Z., amp; Hu, B. (2021). Major depressive disorder recognition and cognitive analysis based on multi-layer brain functional connectivity networks. arXiv - CS - Machine Learning, 2111, 01351.
Sun, Y., Lv, J. J., Lan, F., amp; Zhang, L. N. (2020)."Emotion regulation strategy of self-focused and situation-focused reappraisal and their impact on subsequent cognitive control. Acta Psychologica Sinica, 52(12), 1393?1406.
[孫巖, 呂嬌嬌, 蘭帆, 張麗娜. (2020). 自我關(guān)注重評(píng)和情境關(guān)注重評(píng)情緒調(diào)節(jié)策略及對(duì)隨后認(rèn)知控制的影響. 心理學(xué)報(bào), 52(12), 1393?1406.]
Thiruchselvam, R., Blechert, J., Sheppes, G., Rydstrom, A., amp; Gross, J. J. (2011). The temporal dynamics of emotion regulation: An EEG study of distraction and reappraisal. Biological Psychology, 87(1), 84?92.
Tuithof, M., Ten Have, M., van Dorsselaer, S., Kleinjan, M., Beekman, A., amp; de Graaf, R. (2018). Course of subthreshold"depression into a depressive disorder and its risk factors. Journal of Affective Disorders, 241, 206?215.
van den Heuvel, M. P., amp; Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI"functional connectivity. European Neuropsychopharmacology,"20(8), 519?534.
Wang, C. F., Zhang, Q., amp; Zhang, X. X. (2021). The differences in regulatory effect and success degree of negative emotions"between detached and positive cognitive reappraisals in juveniles, youths, diddle and elderly peoples. Journal of Psychological Science, 44(6), 1376?1382.
[王彩鳳, 張奇, 張笑笑. (2021). 積極與分離認(rèn)知重評(píng)負(fù)性情緒調(diào)節(jié)效果和成功程度的差異:青年、中老年和少年的實(shí)驗(yàn)結(jié)果. 心理科學(xué), 44(6), 1376?1382.]
Willroth, E. C., amp; Hilimire, M. R. (2016). Differential effects of self- and situation-focused reappraisal. Emotion, 16(4), 468?474.
Wong, N. M., Liu, H. L., Lin, C., Huang, C. M., Wai, Y. Y., Lee, S. H., amp; Lee, T. M. (2016). Loneliness in late-life depression: Structural and functional connectivity during affective processing. Psychological Medicine, 46(12), 2485?2499.
Zhang, J., Wang, J., Wu, Q., Kuang, W., Huang, X., He, Y., amp; Gong, Q. (2011). Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biological"Psychiatry, 70(4), 334?342.
Zhang, K., Wang, C. M., amp; Wang, J. X. (2016). The Effect of Reappraisal and Distraction for Patients of Depression:ERPs Study. Psychological Exploration, (3), 245?250.
[張闊, 王春梅, 王敬欣. (2016). 抑郁癥患者認(rèn)知重評(píng)和分心情緒調(diào)節(jié)的有效性: ERPs研究. 心理學(xué)探新, (3), 245? 250.]
Zhang, R., Kranz, G. S., Zou, W., Deng, Y., Huang, X., Lin, K., amp; Lee, T. (2020). Rumination network dysfunction in major depression: A brain connectome study. Progress in Neuro- psychopharmacology amp; Biological Psychiatry, 98, 109819.
Zhang, T., Zhao, B., Shi, C., Nie, B., Liu, H., Yang, X., ... Shan, B. (2020). Subthreshold depression may exist on a spectrum with major depressive disorder: Evidence from gray matter volume and morphological brain network. Journal of Affective Disorders, 266, 243?251.
Zhang, W., Zou, Y., Zhao, F., Yang, Y., Mao, N., Li, Y., Huang, G., Yao, Z., amp; Hu, B. (2022). Brain network alterations in rectal cancer survivors with depression tendency: Evaluation"with multimodal magnetic resonance imaging. Frontiers in Neurology, 13, 791298.
A brain network study on the influence of a depressive tendency on self-focused reappraisal and situation-focused reappraisal
SUN Yan, WANG Yijin, HOU Peiyu, FENG Xue, LAN Fan
(School of Psychology, Liaoning Normal University, Dalian"116029, China)
Abstract
Depression inclination is the state between normal depressed mood and depression that meets clinical diagnostic criteria. If a depressed mood is continuously induced and cannot be transferred, it increases the likelihood of the development of clinical depression. Cognitive reappraisal, which includes self-focused reappraisal and situation-focused reappraisal, is the most widely used and effective emotion regulation strategy. The regulatory effects of these two strategies and the changes in brain network characteristics in individuals with an inclination towards depression are still unclear.""""In this study, complex networks were used to investigate the moderating effects and brain network characteristics of individuals inclined toward depression during self-focused reappraisal and situation-focused reappraisal tasks.
The results of the cognitive reappraisal task indicated that undergraduate students inclined toward depression had lower emotional valence scores overall compared to the control group, although there was no significant difference in arousal scores. The results of the brain network analysis for the cognitive reappraisal task revealed that clustering coefficients, local efficiency, and maximum mediated centrality were significantly different between the depression inclination group and the control group; local brain area differences between the two groups of subjects were mainly located in the limbic lobe, frontal lobe and parietal lobe.""""These findings suggest that abnormal topological neural mechanisms may impair negative emotion regulation in individuals with an inclination towards depression and provide new insights into the prevention and improvement of depression symptoms.
Keywords "depression inclination, cognitive reappraisal, self-focused reappraisal, situation-focused reappraisal, complex network