【摘 要】目的:利用“睡美人”轉(zhuǎn)座系統(tǒng)和快速大容量尾靜脈注射法,建立肝癌動(dòng)物模型,并觀察O-連接N-乙酰氨基葡萄糖轉(zhuǎn)移酶(O-linked N-acetylglucosamine transferase,OGT)抑制劑(R)-3-(2-甲氧基苯基)-1-(噻吩-2-基甲基)哌嗪-2,5-二酮[(R)-3-(2methoxyphenyl)-1-(thiophen-2-ylmethyl)piperazine-2,5dione,HLY838]對肝癌的治療效果。方法:將6~8周齡雄性C57BL/6J小鼠隨機(jī)分為3組,分別將插入神經(jīng)母細(xì)胞瘤ras病毒同源物(neuroblastoma RAS viraloncogene homolog,NRAS)的NRASV12轉(zhuǎn)座子質(zhì)粒、表達(dá)β-連環(huán)蛋白(β-catenin)基因轉(zhuǎn)座子質(zhì)粒、表達(dá)Yes相關(guān)蛋白(Yes-associated protein,YAP)基因的轉(zhuǎn)座子質(zhì)粒pT3-EF1aH Yap S127A與轉(zhuǎn)座酶SB100質(zhì)粒的混合溶液經(jīng)尾靜脈快速注射至小鼠體內(nèi),飼養(yǎng)8~16周后處死小鼠,觀察肝臟成瘤情況以及肝臟病理學(xué)變化。肝癌模型建成后,腹腔注射HLY838,觀察對肝癌的治療效果。結(jié)果:高壓注射質(zhì)粒8~16周后,小鼠肝臟體積增大,表面出現(xiàn)顆粒狀、結(jié)節(jié)樣改變;蘇木精-伊紅染色(hematoxylin-eosin staining,HE)染色顯示肝組織結(jié)構(gòu)紊亂,出現(xiàn)多個(gè)腫瘤結(jié)節(jié)。pT3-EF1aH YAP S127A組成瘤率高、時(shí)間短,但腫瘤較?。籶T/CAGGS-NrasV組腫瘤結(jié)節(jié)大小適中,但成瘤時(shí)間較長;pT3-N90-β-catenin組腫瘤主要為肝細(xì)胞癌。HLY838治療組小鼠肝腫瘤結(jié)節(jié)數(shù)變少,小鼠肝腫瘤負(fù)擔(dān)減輕。結(jié)論:應(yīng)用水動(dòng)力大容量尾靜脈注射質(zhì)粒的方法可快速建立小鼠肝癌模型,成功率較高。OGT抑制劑HLY838對小鼠肝癌有較好的抗腫瘤效果。
【關(guān)鍵詞】肝腫瘤;動(dòng)物模型;“睡美人”轉(zhuǎn)座系統(tǒng);水動(dòng)力尾靜脈注射;(R)-3-(2-甲氧基苯基)-1-(噻吩-2-基甲基)哌嗪-2,5-二酮
【中圖分類號】R735.7【文獻(xiàn)標(biāo)志碼】A【收稿日期】2024-06-26
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(編號:82272975)。
Therapeutic effect of the O-linked N-acetylglucosamine transferase inhibitor HLY838 on liver cancer:a study based on the Sleeping Beauty transposition system
Liang Huijun,Huang Luyi,Wang Kai,Tang Ni
(Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education,Chongqing Medical University)
【Abstract】Objective:To establish an animal model of liver cancer by rapid high-volume tail vein injection,and to investigate the therapeutic effect of O-linked N-acetylglucosamine transferase inhibitor(R)-3-(2methoxyphenyl)-1-(thiophen-2-ylmethyl)pipera‐zine-2,5dione(HLY838) on liver cancer based on the Sleeping Beauty(SB) transposition system. Methods:Male C57BL/6J mice,aged 6-8 weeks,were randomly divided into three groups and were given the NRASV12 transposon plasmid,the β-catenin geneexpressing transposon plasmid,or the YAP gene-expressing transposon plasmid pT3-EF1aH Yap S127A,mixed with the transposase SB100 plasmid,through rapid high-volume tail vein injection. The mice were sacrificed after 8-16 weeks of feeding to observe tumor formation and liver pathological changes. After the establishment of the liver cancer model,HLY838 was injected intraperitoneally to investigate its therapeutic effect on liver cancer.Results:After high-pressure injection of the plasmids for 8-16 weeks,there was an in‐crease in liver volume,with granular and nodular changes on the surface of the liver,and HE staining showed disordered structure of the liver and the presence of multiple tumor nodules. The pT3-EF1aH YAP S127A group had a higher tumor formation rate and a shorter duration,but with a relatively small tumor size;the pT/ CAGGS-NrasV group had moderately sized tumor nodules,but with a relative long time for tumor formation; the pT3-N90-β-catenin group mainly had hepatocellular carcinoma. The HLY838 treatment group had reductions in the number of liver tumor nodules and the burden of liver tumor. Conclusion:The method of hydrodynamic high-volume tail vein injection can be used to establish a mouse model of liver cancer rapidly,with a relatively high success rate. The OGT inhibitor HLY838 has a good antitumor effect on liver cancer in mice.
【Key words】liver tumor;animal model;Sleeping Beauty transposition system;hydrodynamic tail vein injection;(R)-3-(2methoxy‐phenyl)-1-(thiophen-2-ylmethyl)piperazine-2,5dione
肝癌(hepatocellular carcinoma,HCC)是全球公共衛(wèi)生問題之一,目前肝癌發(fā)病率已升至我國第4位,死亡率居第2位,構(gòu)成了嚴(yán)峻的公共衛(wèi)生挑戰(zhàn)[1]。肝癌起病隱匿,易侵襲性生長,難以早期診斷,極大阻礙了對其發(fā)病機(jī)制和治療策略的研究。因此建立合適的肝癌動(dòng)物模型對其生長、演進(jìn)和轉(zhuǎn)移等生物學(xué)特征研究和抗腫瘤藥物療效評價(jià)都具有重要意義。目前常見的肝癌小鼠模型包括自發(fā)性腫瘤模型、誘發(fā)性腫瘤模型、移植型腫瘤模型和基因修飾型腫瘤模型。自發(fā)性肝癌模型成瘤時(shí)間差異較大,耗時(shí)較長[2]。常見的誘導(dǎo)型模型存在建模時(shí)間長、小鼠死亡率較高等缺點(diǎn)[3]。移植型肝癌模型比如原位成瘤模型,則對操作技術(shù)要求較高[4]?;蛐揎椄伟┠P椭饕ㄟ^插入致癌基因誘導(dǎo)肝癌形成,該方法建模時(shí)間相對較短,而且可以研究特定基因?qū)Ω伟┻M(jìn)展的調(diào)控作用?!八廊恕鞭D(zhuǎn)座系統(tǒng)能快速將致癌基因整合到小鼠體內(nèi),過表達(dá)致癌基因,在短時(shí)間內(nèi)誘導(dǎo)腫瘤形成[5]。相比其他腫瘤模型,“睡美人”系統(tǒng)建立的肝癌模型具有周期短,死亡率低和成功率高等優(yōu)點(diǎn)。
O-連接-N-乙酰葡糖胺基化(O-GlcNAcylation,O-GlcNAc)糖基化修飾是細(xì)胞內(nèi)蛋白質(zhì)的一種重要的翻譯后修飾,催化單個(gè)β-O-GlcNAc可逆添加到蛋白質(zhì)的絲氨酸或蘇氨酸殘基上[6]。O-GlcNAc修飾是1個(gè)高度動(dòng)態(tài)的過程,真核細(xì)胞中O-連接N-乙酰氨基葡萄糖轉(zhuǎn)移酶(O-linked N-acetylglucosamine transferase,OGT)和O-連接N-乙酰氨基葡萄糖苷酶(O-linked N-acetylglucosamine glucosidase,OGA)是催化O-GlcNA修飾可逆反應(yīng)的唯一一對酶。多數(shù)腫瘤組織中OGT水平升高或OGA水平降低,導(dǎo)致O-GlcNAc糖基化修飾整體水平增加,促進(jìn)腫瘤的進(jìn)展[7-8]。但目前采用OGT抑制劑阻斷O-GlcNAc修飾抗腫瘤的實(shí)驗(yàn)研究較少[9],需要進(jìn)一步明確OGT抑制劑抗腫瘤效應(yīng)的確切機(jī)制,并在多種動(dòng)物模型中進(jìn)行驗(yàn)證。
本研究結(jié)合水動(dòng)力轉(zhuǎn)染技術(shù)與SB100“睡美人”系統(tǒng),將人類肝癌細(xì)胞常見突變基因pT/CAGGS- NrasV、pT3-EF1aH Yap S127A或pT3-N90-β-catenin整合到小鼠肝細(xì)胞基因組中構(gòu)建肝癌模型,比較神經(jīng)母細(xì)胞瘤ras病毒同源物(neuroblastoma RAS viraloncogene homolog,NRAS)、Yes相關(guān)蛋白(Yesassociated protein,YAP)以及β-連環(huán)蛋白(β-catenin)致癌基因誘導(dǎo)肝臟成瘤的差異。在YAP誘導(dǎo)的“睡美人”肝癌模型中,進(jìn)一步觀察OGT抑制劑(R)-3-(2-甲氧基苯基)-1-(噻吩-2-基甲基)哌嗪-2,5-二酮[(R)-3-(2methoxyphenyl)-1-(thiophen-2-ylmethyl)piperazine-2,5dione,HLY838]的抗腫瘤效果。
1 材料與方法
1.1 實(shí)驗(yàn)動(dòng)物
采用35只6~8 周齡、體質(zhì)量18~20 g的雄性C57BL/6J小鼠進(jìn)行動(dòng)物實(shí)驗(yàn)。小鼠飼養(yǎng)于重慶醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心,恒溫(18~22 ℃)和恒濕(50%~80%),自由攝取標(biāo)準(zhǔn)飼料與無菌水。動(dòng)物許可證號:SYXK(渝)2022-0016。本動(dòng)物實(shí)驗(yàn)通過了重慶醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物倫理委員會(huì)的審核(審批號:IACUC-CQMU-2023-09064)。所有動(dòng)物實(shí)驗(yàn)均符合實(shí)驗(yàn)動(dòng)物管理和使用的有關(guān)標(biāo)準(zhǔn)。
1.2 試劑
質(zhì)粒大量抽提試劑盒購于北京康為世紀(jì)生物科技有限公司(貨號:CW2104M)。質(zhì)粒pCMV-CAT-T7-SB100(貨號:#34879)、pT/CAGGS-NrasV(貨號:#20205)由重慶醫(yī)科大學(xué)感染實(shí)驗(yàn)室唐開福老師課題組贈(zèng)送,pT3-N90-β-catenin(貨號:#31785),pT3-EF1aH Yap S127A(貨號:#86497)購于Addgene公司??乖鲋臣?xì)胞核抗原抗體(Anti proliferating cell nuclear antigen antibody,PCNA)抗體購自美國Protein‐tech公司(貨號:10205-2-AP);AFP抗體購自美國Protein‐tech公司(貨號:14550-1-AP)??筄-GlcNAc抗體購自Ab‐cam公司(貨號:ab2739),β-actin抗體購自北京中山金橋生物技術(shù)有限公司(貨號:TA-09),OGT抗體購自Abcam公司(貨號:AB96718)。AKT抗體(貨號:2938T)、p-AKT抗體(貨號:4060S)均購于Cell Signaling Technology公司。EDU細(xì)胞增殖檢測試劑盒(貨號:C0071S)購于碧云天生物技術(shù)有限公司。
1.3 方法
1.3.1 質(zhì)粒提取 將轉(zhuǎn)化有目的質(zhì)粒的菌種增菌后取2 mL接種于500 mL相應(yīng)抗性的LB培養(yǎng)基中,37 ℃、200 r/min條件在恒溫?fù)u床內(nèi)振蕩培養(yǎng)12~16 h。按照無內(nèi)毒素提取試劑盒(貨號:CW2104M,北京康為世紀(jì)生物科技有限公司)標(biāo)準(zhǔn)操作步驟進(jìn)行質(zhì)粒提取。
1.3.2 質(zhì)粒注射 分別將6 μg pT/CAGGS-NrasV與3 μg pCMV-CAT-T7-SB100混合、50 μg pT3-EF1aH YAP S127A與5 μg pCMV-CAT-T7-SB100混合、25 μg pT3-N90-β-catenin與1 μg pCMV-CAT-T7-SB100混合后通過小鼠尾靜脈快速注射[10-11]。
1.3.3 藥物處理 HLY838藥物以及處理濃度由課題組前期確定[12]?!八廊恕毕到y(tǒng)構(gòu)建肝癌模型后,將小鼠隨機(jī)分為2組,分別于小鼠腹膜內(nèi)注射對照二甲基亞砜(dimethyl sulfox‐ide,DMSO)或HLY838(10 mg/kg),每周2次,持續(xù)4周后處死小鼠。OGT抑制劑OSMI-1(貨號:T16409)購于陶術(shù)生物,在HepG2細(xì)胞中作為陽性對照,使用20 μmol/L濃度處理12 h。
1.3.4 免疫組化(immunohistological staining,IHC) 4%多聚甲醛固定肝臟標(biāo)本,石蠟包埋后,切成4 μm的切片。樣品脫蠟、水化后,采用3%過氧化氫溶液浸泡阻斷內(nèi)源性過氧化物酶處理,切片煮沸進(jìn)行抗原修復(fù),5%山羊血清孵育后,分別采用1∶3 000濃度的PCNA、1∶100濃度的AFP抗體或1∶100濃度的O-GlcNAc抗體過夜、然后將切片與第二抗兔或抗小鼠IgG孵育,用磷酸緩沖鹽溶液(phosphate buffered saline,PBS)洗5次后加入DAB顯色,蘇木精復(fù)染,Pannoramic Scan 250 Flash掃描,并使用Pannoromic Viewer 1.15.2(3DHistech,Budapest,Hungary)獲取圖像。
1.3.5 蘇木精-伊紅染色(hematoxylin-eosin staining,HE) 采用4%多聚甲醛固定肝臟標(biāo)本,委托里來醫(yī)學(xué)實(shí)驗(yàn)中心進(jìn)行包埋染色。
1.3.6 Western blot 肝組織提取蛋白質(zhì)后,通過10% SDS/ PAGE分離蛋白質(zhì)樣品,并將其電轉(zhuǎn)移到PVDF膜上。在5%脫脂牛奶中封閉1 h后,分別采用O-GlcNAc、OGT、AKT、pAKT或β-actin的抗體4 ℃下過夜孵育。隨后與辣根過氧化物酶偶聯(lián)的第二抗體一起孵育,加入ClarityTM Western ECL(Bio-Rad,CA,USA)底物,觀察染色條帶。
1.3.7 克隆形成實(shí)驗(yàn) 將2×103個(gè)細(xì)胞接種在6孔板中并培養(yǎng)10 d。菌落用0.04%結(jié)晶紫染料染色,并計(jì)數(shù)3次。
1.3.8 EDU細(xì)胞增殖實(shí)驗(yàn) 取對數(shù)生長期細(xì)胞,接種于12孔板中。HLY838處理12 h后,用EDU標(biāo)記。標(biāo)記完成后,對細(xì)胞進(jìn)行固定并染色,最后獲取圖像進(jìn)行分析,重復(fù)實(shí)驗(yàn)3次。
1.4 基因表達(dá)數(shù)據(jù)庫分析
采用腫瘤基因組圖譜數(shù)據(jù)庫(The Cancer Genome Atlas Program,TCGA,https://genome.ucsc.edu/)預(yù)測OGT和AKT之間的相關(guān)性。
1.5 統(tǒng)計(jì)學(xué)方法
使用Image J、Excel軟件、GraphPad Prism 8.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,2組間比較采用t檢驗(yàn),檢驗(yàn)水準(zhǔn)α=0.05。
2 結(jié) 果
2.1 小鼠大體和成瘤情況
實(shí)驗(yàn)小鼠注射質(zhì)粒2~3個(gè)月后,大部分小鼠活動(dòng)度變差,精神萎靡,并逐漸加重。各組成瘤情況見表1,其中pT/ CAGGS-NrasV組在12周成瘤,其成瘤率為80%、pT3-EF1aH YAP S127A組第8周成瘤,成瘤率為70%、pT3-N90-β-catenin組16周成瘤率為70%。
2.2 小鼠肝臟形態(tài)學(xué)變化
模型小鼠肝臟體積明顯增大,肝臟表面出現(xiàn)大量顆粒狀、結(jié)節(jié)樣改變(圖1A~C),pT/CAGGS-NrasV組腫瘤呈彌漫性生長;其余2組成結(jié)節(jié)狀生長,pT3-EF1aH YAP S127A組有3~6個(gè)大小不同的腫瘤結(jié)節(jié);pT3-N90-β-catenin組腫瘤結(jié)節(jié)為1~3個(gè)(圖1D)。pT/CAGGS-NrasV組與pT3-EF1aH YAP S127A組比較差異有統(tǒng)計(jì)學(xué)意義(t=4.131,P=0.003);pT/CAGGS-NrasV組與pT3-N90-β-catenin組比較差異有統(tǒng)計(jì)學(xué)意義(t=8.083,P<0.001);pT3-EF1aH YAP S127A組與pT3-N90-β-catenin組比較差異有統(tǒng)計(jì)學(xué)意義(t=3.795,P= 0.005)。
肝組織HE染色顯示肝索排列紊亂,結(jié)構(gòu)紊亂,并出現(xiàn)腫瘤結(jié)節(jié)(圖2A),其中pT/CAGGS-NrasV組伴隨肝細(xì)胞脂肪變性。IHC結(jié)果顯示各組肝癌AFP,PCNA均有陽性表達(dá),提示肝癌細(xì)胞增殖較活躍(圖2B)。
2.3 觀察HLY838對“睡美人”構(gòu)建肝癌模型的治療效果
本研究選取pT3-EF1aH YAP S127A組構(gòu)建肝癌模型(圖3A),研究OGT抑制劑HLY838對肝癌的治療效果。實(shí)驗(yàn)結(jié)果顯示,HLY838處理組小鼠肝臟腫瘤結(jié)節(jié)變?。▓D3B~C),肝癌增殖指標(biāo)PCNA表達(dá)明顯下調(diào)(圖3E),O-GlcNAc糖基化修飾整體水平降低(圖3D),進(jìn)而抑制腫瘤的進(jìn)展(圖3F)。
2.4 HLY838抗腫瘤活性機(jī)制的初步研究
采用80 μmol//L HLY838處理HepG2細(xì)胞可以有效抑制細(xì)胞內(nèi)O-GlcNAc修飾水平,并且無明顯毒性(圖4A)[12]。TCGA數(shù)據(jù)庫發(fā)現(xiàn)OGT與AKT的表達(dá)有較好的相關(guān)性(圖4B),并且有文獻(xiàn)報(bào)道OGT通過影響AKT活化,促進(jìn)PI3KAKT-mTOR通路的激活[13-14]。本研究也觀察到使用OGT抑制劑HLY838后,AKT磷酸化修飾水平下調(diào),提示該信號通路被抑制(圖4C)??寺⌒纬蓪?shí)驗(yàn)和EDU細(xì)胞增殖實(shí)驗(yàn)發(fā)現(xiàn)HLY838抑制HepG2細(xì)胞增殖(圖4D~E)。
3 討 論
目前肝腫瘤模型大致可分為4類:自發(fā)性腫瘤模型、誘發(fā)性腫瘤模型、移植型腫瘤模型、基因修飾型腫瘤模型[15-16]。自發(fā)性肝癌模型是指模型動(dòng)物沒有經(jīng)過人工處置而自發(fā)性形成的腫瘤,其最大的優(yōu)點(diǎn)就是排除了人為因素的干擾,較好還原了動(dòng)物模型在自然條件下的發(fā)病情況[2],但是自發(fā)成瘤模型個(gè)體差異大、耗時(shí)長。常見的誘導(dǎo)型模型通過二乙基硝胺、四氯化碳等化學(xué)藥物誘導(dǎo)建立肝癌模型,這類模型的誘發(fā)因素經(jīng)人為控制,誘發(fā)腫瘤的成功率高于自然發(fā)病率[3],但存在建模時(shí)間長、動(dòng)物死亡率較高等缺點(diǎn)。移植型肝癌模型主要有皮下成瘤和原位成瘤等,運(yùn)用較廣,但是該方法對于操作技術(shù)要求較高。而基因修飾型腫瘤模型通過基因工程導(dǎo)入特定的促癌基因或者敲除抑癌基因,進(jìn)而構(gòu)建腫瘤模型。該方法耗時(shí)短,可以研究特定基因?qū)ο嚓P(guān)腫瘤發(fā)生發(fā)展的調(diào)控作用。
“睡美人”系統(tǒng)是一種轉(zhuǎn)座元件,被用于轉(zhuǎn)座遺傳元件,從而導(dǎo)致轉(zhuǎn)基因的體細(xì)胞整合。由于SB轉(zhuǎn)座酶在許多不同器官中的多功能活性,它已被廣泛用于基因遞送和體內(nèi)基因遞送[17]。本研究通過“睡美人”轉(zhuǎn)座子快速將腫瘤致癌基因整合到小鼠基因組中,實(shí)現(xiàn)在小鼠肝細(xì)胞中過表達(dá)目的基因,使其在短時(shí)間內(nèi)發(fā)展為肝臟腫瘤[5]。RAS基因是惡性腫瘤中常見的驅(qū)動(dòng)基因,其突變多發(fā)生于癌癥早期,在多種惡性腫瘤中高頻突變并異常活化,是驅(qū)動(dòng)腫瘤發(fā)生發(fā)展的重要因素。RAS蛋白可以通過調(diào)控RAF-MEK-ERK、PI3K/Akt/mTOR等下游通路,進(jìn)而影響細(xì)胞的生長分化以及腫瘤的發(fā)生和發(fā)展[18-19]。Wnt/β-catenin的異常激活導(dǎo)致多種腫瘤的發(fā)生發(fā)展[20]。Wnt/β-catenin信號通常在肝癌細(xì)胞中過度活躍,其介導(dǎo)的下游靶向基因的激活,如谷氨酰胺合成酶等在肝癌中發(fā)揮關(guān)鍵作用,誘導(dǎo)腫瘤發(fā)生、生長和侵襲、細(xì)胞周期變化等腫瘤病理生理的改變[21]。YAP及其旁系同源物、具有PDZ結(jié)合基序(PDZ binding motif,TAZ)的轉(zhuǎn)錄共激活因子在促進(jìn)肝細(xì)胞癌的進(jìn)展中發(fā)揮關(guān)鍵作用[22-24]。因此NRAS、β-catenin、YAP等致癌基因的異常激活與肝癌的發(fā)生和發(fā)展密切相關(guān)。
本實(shí)驗(yàn)通過尾靜脈注射pCMV-CAT-T7-SB100質(zhì)粒以及pT/CAGGS-NrasV,pT3-N90-β-catenin,pT3-EF1aH Yap S127A構(gòu)建肝癌模型[10-11,25-26]?!八廊恕毕到y(tǒng)建模大多采用FVB/N小鼠,本實(shí)驗(yàn)采用常規(guī)的C57BL/6J小鼠,證實(shí)利用“睡美人”系統(tǒng)在C57BL/6J小鼠中建模的可行性。相比于FVB/N小鼠,C57BL/6J小鼠獲取途徑更為廣泛,價(jià)格較低。各組成瘤時(shí)間進(jìn)行統(tǒng)計(jì)發(fā)現(xiàn),質(zhì)粒注射8周后,pT3-EF1aH YAP S127A組肝臟表面出現(xiàn)顆粒狀、結(jié)節(jié)樣改變,其成瘤率約為70%;pT/CAGGS-NrasV組和pT3-N90-β-catenin組分別在12周、16周后出現(xiàn)腫瘤結(jié)節(jié),其小鼠成瘤率分別為80%、70%。后續(xù)可以根據(jù)實(shí)驗(yàn)?zāi)康囊约皩?shí)驗(yàn)進(jìn)程安排選擇不同的質(zhì)粒構(gòu)建肝癌動(dòng)物模型。pT3-EF1aH YAP S127A組成瘤時(shí)間短,成瘤率高,適用于抗腫瘤藥物研究等。pT/CAGGS-NrasV組為肝細(xì)胞癌與肝內(nèi)膽管細(xì)胞癌混合腫瘤,腫瘤結(jié)節(jié)大小適中,但成瘤時(shí)間比前2組稍長,可用于觀察腫瘤進(jìn)程和腫瘤演進(jìn)機(jī)制的研究。pT3-N90-β-catenin組多數(shù)形成肝細(xì)胞癌,對肝細(xì)胞癌的研究提供了重要的實(shí)驗(yàn)工具。
目前已發(fā)現(xiàn)的OGT抑制劑包括底物類似物、雙底物抑制劑和高通量篩選抑制劑比如OSMI-1、OSMI-4,在不同的腫瘤模型中顯示了一定的抗腫瘤效應(yīng)[27]。本課題組前期發(fā)現(xiàn)了一種基于二酮哌嗪的新的OGT抑制劑HLY838,前期實(shí)驗(yàn)發(fā)現(xiàn)HLY838可以抑制c-MYC的O-GlcNAc修飾,并在細(xì)胞模型和裸鼠體內(nèi)成瘤模型中觀察了HLY838與CDK9聯(lián)用對肝癌的抑制作用[12],本研究在基于“睡美人”轉(zhuǎn)座系統(tǒng)構(gòu)建的肝癌動(dòng)物模型中驗(yàn)證了HLY838具有明顯抗腫瘤效應(yīng)。
因此,本實(shí)驗(yàn)基于“睡美人”轉(zhuǎn)座子系統(tǒng),通過尾靜脈注射pCMV-CAT-T7-SB100,pT/CAGGS-NrasV,pT3-N90-β-catenin,pT3-EF1aH Yap S127A質(zhì)粒成功構(gòu)建肝細(xì)胞癌動(dòng)物模型?!八廊恕鞭D(zhuǎn)座子系統(tǒng)構(gòu)建肝癌模型耗時(shí)較短、成瘤率較為穩(wěn)定、小鼠耐受性好,為肝癌的相關(guān)研究提供了重要的動(dòng)物模型。本實(shí)驗(yàn)還初步觀察到OGT抑制劑HLY838的抑癌作用,后續(xù)將著重闡明HLY838抗腫瘤的確切分子機(jī)制,并評估其作為潛在臨床靶點(diǎn)的應(yīng)用前景。
參 考 文 獻(xiàn)
[1] Sung H,F(xiàn)erlay J,Siegel RL,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 can‐cers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249.
[2] Noij DP,van Der Linden PWG. Spontaneous regression of hepato‐cellular carcinoma in a Caucasian male patient:a case report and review of the literature[J]. Mol Clin Oncol,2017,6(2):225-228.
[3] Romualdo GR,Grassi TF,Goto RL,et al. An integrative analysis of chemically-induced cirrhosis-associated hepatocarcinogenesis:Histo‐logical,biochemical and molecular features[J]. Toxicol Lett,2017,281:84-94.
[4] Reiberger T,Chen Y,Ramjiawan RR,et al. An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis[J]. Nat Protoc,2015,10(8):1264-1274.
[5] Sandoval-Villegas N,Nurieva W,Amberger M,et al. Contempo‐rary transposon tools:a review and guide through mechanisms and appli‐cations of Sleeping beauty,piggyBac and Tol2 for genome engineering[J]. Int J Mol Sci,2021,22(10):5084.
[6] Saha A,Bello D,F(xiàn)ernández-Tejada A. Advances in chemical prob‐ing of protein O-GlcNAc glycosylation:structural role and molecular mechanisms[J]. Chem Soc Rev,2021,50(18):10451-10485.
[7] Hart GW. Nutrient regulation of signaling and transcription[J]. J Biol Chem,2019,294(7):2211-2231.
[8] Zhu Y,Hart GW. Targeting O-GlcNAcylation to develop novel therapeutics[J]. Mol Aspects Med,2021,79:100885.
[9] Zhu Q,Wang HX,Chai SY,et al. O-GlcNAcylation promotes tu‐mor immune evasion by inhibiting PD-L1 lysosomal degradation[J]. Proc Natl Acad Sci USA,2023,120(13):e2216796120.
[10] Chen X,Calvisi DF. Hydrodynamic transfection for generation of novel mouse models for liver cancer research[J]. Am J Pathol,2014,184(4):912-923.
[11] Tang M,Zhao Y,Zhao JH,et al. Liver cancer heterogeneity mod‐eled by in situ genome editing of hepatocytes[J]. Sci Adv,2022,8(25): eabn5683.
[12] Shan XQ,Jiang R,Gou DM,et al. Identification of a diketopiperazine-based O-GlcNAc transferase inhibitor sensitizing he‐patocellular carcinoma to CDK9 inhibition[J]. FEBS J,2023,290(18):4543-4561.
[13] Very N,Vercoutter-Edouart AS,Lefebvre T,et al. Crossdysregulation of O-GlcNAcylation and PI3K/AKT/mTOR axis in human chronic diseases[J]. Front Endocrinol (Lausanne),2018,9:602.
[14] Raab S,Gadault A,Very N,et al. Dual regulation of fatty acid synthase (FASN) expression by O-GlcNAc transferase (OGT) and mTOR pathway in proliferating liver cancer cells[J]. Cell Mol Life Sci,2021,78(13):5397-5413.
[15] Olson B,Li YD,Lin Y,et al. Mouse models for cancer immuno‐therapy research[J]. Cancer Discov,2018,8(11):1358-1365.
[16] May M. Cancer research with a human touch[J]. Nature,2018,556(7700):259-261.
[17] Boehme P,Doerner J,Solanki M,et al. The sleeping beauty trans‐poson vector system for treatment of rare genetic diseases:an unrealized hope?[J]. Curr Gene Ther,2015,15(3):255-265.
[18] Asquith CRM,Temme L. STK19:a new target for NRAS-driven cancer[J]. Nat Rev Drug Discov,2020,19(9):579.
[19] Zhang MQ,Pan JC,Huang P. Interaction between RAS gene and lipid metabolism in cancer[J]. J Zhejiang Univ Med Sci,2021,50(1):17-22.
[20] Ni CJ,Qin XS,Huang ZS. Role of Wnt/β-catenin signaling path‐way in occurrence and development of hepatocellular carcinoma[J]. World Chin J Dig,2021,29(4):190-196.
[21] Ozcan M,Altay O,Lam S,et al. Improvement in the current thera‐pies for hepatocellular carcinoma using a systems medicine approach[J]. Adv Biosyst,2020,4(6):e2000030.
[22] Zhu H,Yan FJ,Yuan T,et al. USP10 promotes proliferation of he‐patocellular carcinoma by deubiquitinating and stabilizing YAP/TAZ[J]. Cancer Res,2020,80(11):2204-2216.
[23] Juan WC,Hong WJ. Targeting the hippo signaling pathway for tis‐sue regeneration and cancer therapy[J]. Genes,2016,7(9):55.
[24] Moya IM,Halder G. Hippo-YAP/TAZ signalling in organ regen‐eration and regenerative medicine[J]. Nat Rev Mol Cell Biol,2019,20(4):211-226.
[25] Ho C,Wang CM,Mattu S,et al. AKT (v-akt murine thymoma vi‐ral oncogene homolog 1) and N-Ras (neuroblastoma ras viral oncogene homolog) coactivation in the mouse liver promotes rapid carcinogenesis by way of mTOR(mammalian target of rapamycin complex 1),F(xiàn)OXM1(forkhead box M1)/SKP2,and c-Myc pathways[J]. Hepatology,2012,55(3):833-845.
[26] Sun RQ,Zhang ZY,Bao RX,et al. Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcino‐genesis[J]. J Hepatol,2022,77(2):453-466.
[27] Zhang N,Jiang HL,Zhang KX,et al. OGT as potential novel tar‐get:structure,function and inhibitors[J]. Chem Biol Interact,2022,357:109886.
(責(zé)任編輯:曾 玲)
本文引用格式:
梁惠鈞,黃露義,汪 凱,等. 基于“睡美人”轉(zhuǎn)座系統(tǒng)觀察OGT抑制劑HLY838對肝癌的治療作用[J]. 重慶醫(yī)科大學(xué)學(xué)報(bào),2025,50(1):30-36.