摘 " "要:【目的】探討以HB柚為母本、華柑4號為父本的雜交后代群體果實(shí)相關(guān)性狀的遺傳規(guī)律,為雜交育種親本的選配提供理論依據(jù)?!痉椒ā繙y定該組合53個雜交后代果實(shí)的單果質(zhì)量、縱徑、橫徑、果皮厚度及維生素C、可滴定酸、可溶性固形物含量等性狀指標(biāo),分析雜交后代的遺傳規(guī)律?!窘Y(jié)果】HB柚×華柑4號組合后代果實(shí)形狀出現(xiàn)了4種類型,以高扁圓形、圓形或近圓形、橢圓形為主,比例分別為41.51%、39.62%和13.21%;果皮顏色在雜交群體后代中出現(xiàn)3種性狀類型,分別為橙紅色、橙色和黃色,比例分別為7.50%、62.26%和30.19%;果肉顏色只出現(xiàn)橙色和黃色2種性狀類型,比例分別為60.37%和39.62%。子代果實(shí)成熟期除1株中熟品系外,其余52株在12月下旬之后成熟,均比父母本更晚成熟。雜交后代單果質(zhì)量、縱徑和橫徑呈現(xiàn)趨中偏小變異;果形指數(shù)、果皮厚度、種子數(shù)和可食率呈現(xiàn)趨中變異;出汁率、可溶性固形物含量和固酸比表現(xiàn)為趨低遺傳趨勢;可滴定酸和維生素C含量呈現(xiàn)出超親趨勢。【結(jié)論】推測HB柚×華柑4號雜交后代的成熟期趨向父本遺傳,單果質(zhì)量、縱徑、橫徑、果皮厚度及維生素C、可滴定酸、可溶性固形物含量等性狀可能是受多個基因控制的數(shù)量性狀。
關(guān)鍵詞:柑橘;雜交育種;雜交后代;果實(shí)性狀;遺傳規(guī)律
中圖分類號:S666 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)01-0072-10
Genetic analysis of citrus fruit-related traits in the progeny of HB Pomelo × Huagan No. 4 hybrids
CHENG Hanyuan1, ZHENG Jierong1, XU Chenyu1, YI Hualin1, WU Juxun1, 2*
(1College of Horticulture amp; Forestry Science, Huazhong Agricultural University/National Key Laboratory for Germplasm Innovation amp; Utilization of Horticultural Crops, Wuhan 430070, Hubei, China; 2Hubei Provincial Key Laboratory of Fruit Tree Germplasm Innovation and Utilization/Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China)
Abstract: 【Objective】 The inheritance pattern of fruit-related traits in the cross progeny population with HB Pomelo as the female parent and Huagan No. 4 as the male parent was determined to provide a theoretical basis for the selection of parents for cross breeding. 【Methods】 A total of 53 trees of hybrid progeny with stable fruit set were selected. From the middle and lower parts of each tree, 9-10 mature fruit without obvious mechanical damage were selected and pooled into one sample. The trait indexes, including single fruit mass, longitudinal diameter, transverse diameter, peel thickness, total soluble solids, titratable acid, and so forth, were then measured. Three biological replicates were determined for each index. The mean, standard deviation, skewness, coefficient of variation, genetic transmission, and other parameters of these data were calculated to assess the genetic variation characteristics of the hybrid population. In this study, the experimental data were processed using Excel 2016 software, among others. 【Results】 The hybrid offspring resulting from the cross between HB Pomelo and Huagan No. 4 exhibited a wide range of fruit shapes, primarily including high flat round, round or nearly round, and oval shapes. Additionally, they displayed a variety of skin and flesh colors, with orange and yellow being the most common. The majority of the hybrid progenies matured later than their parents, with the majority matured in January and February. This suggests that there is a polygenic control of maturity, with a tendency of later ripening. Statistical analysis of fruit mass and fruit shape traits in the hybrid population from the cross between HB Pomelo and Huagan No. 4 revealed distinct distribution patterns. Specifically, the transverse diameter and juice recovery followed a normal distribution. On the other hand, the single fruit mass, longitudinal diameter, peel thickness, total soluble solids, solid to acid ratio, and vitamin C exhibited a right-skewed distribution. Furthermore, the fruit shape index, seed number, flesh recovery, and titratable acid showed a left-skewed distribution. The analysis of the hybrid offspring resulting from the cross between HB Pomelo and Huagan No. 4 demonstrated significant phenotypic variation in various fruit traits. The single fruit mass exhibited the highest coefficient of variation (33.15%), indicating a wide range of variation among the offspring. The longitudinal diameter showed a moderate coefficient of variation and a heritability of 79.42%, suggesting a genetic control with some environmental influence. Similarly, the transverse diameter also displayed a moderate coefficient of variation and a heritability of 84.93%, indicating a strong genetic influence. The fruit shape index had the lowest coefficient of variation (9.20%) and the highest heritability (96.97%), indicating that it is a highly heritable and consistent trait. Peel thickness exhibited a high coefficient of variation (27.03%) and a heritability of 71.54%, suggesting that there is considerable variation and moderate genetic control. Seed number showed a heritability of 81.86%, indicating that seediness trait is largely determined by genetics. Flesh recovery had the lowest coefficient of variation (11.44%) among the second set of traits with a heritability of 92.45%, indicating it is a stable and heritable trait. Juice recovery displayed a high heritability (94.60%) and tended to be lower than the parents. Total soluble solids had the lowest coefficient of variation (9.26%) among the flavor traits and a heritability of 87.36%, suggesting that it is a stable trait with a strong genetic influence. Titratable acid showed a high heritability (158.97%) and tended to exceed parental values, indicating a super-parental genetic trend. Vitamin C exhibited a heritability of 105.73% and a tendency to be higher than the mid-parent value, suggesting a super-parental genetic trend. The soluble solid to acid ratio had the highest coefficient of variation (32.87%) and a heritability of 57.80%, indicating that it is a complex trait with a genetic tendency towards lower values. 【Conclusion】 The present study undertook a comprehensive assessment of several key fruit traits in hybrid population from the cross between HB Pomelo and Huagan No. 4. In particular, the maturity, single fruit mass, fruit shape, seed number, flesh recovery, total soluble solid, and titratable acid content were evaluated. The findings of this study revealed that the fruit quality in the hybrid population exhibited substantial genetic variation, indicating that these traits are likely quantitative and influenced by multiple genes. This research not only enhances our understanding of the genetic patterns in citrus hybrid progeny but also provides essential data for the selection of parents for future citrus breeding programs.
Key words: Citrus; Cross-breeding; Hybrid offspring; Fruit traits; Laws of inheritance
中國是世界第一大柑橘生產(chǎn)國,有4000年以上的柑橘栽培歷史[1],近20年來,中國柑橘產(chǎn)業(yè)迎來了快速發(fā)展,通過資源發(fā)掘、引進(jìn)以及選育新品種,逐漸形成了品種多樣化與差異化的發(fā)展格局[2]。截止到2022年,中國柑橘種植面積已達(dá)到300萬hm2,產(chǎn)量超過6000萬t。目前,國內(nèi)栽培面積超過666.67 hm2的柑橘品種約有70個,極大增加了消費(fèi)者的選擇多樣性[3]。柑橘在中國鄉(xiāng)村振興、農(nóng)民致富中扮演著重要角色,栽培區(qū)域廣,產(chǎn)區(qū)生態(tài)環(huán)境多樣,然而當(dāng)下市場上流通的優(yōu)良雜交品種以日本的無核雜柑不知火、春見、甘平等為主[4],因此,加快選育自主知識產(chǎn)權(quán)的優(yōu)良品種成為中國柑橘產(chǎn)業(yè)發(fā)展的迫切需要。
柑橘新品種的主要選育途徑包括選擇育種、雜交育種和生物技術(shù)育種等[5]。雜交育種是柑橘目前獲得突破性品種的重要育種技術(shù)之一。在柑橘種間乃至屬間雜交過程中,由于缺乏生殖隔離機(jī)制,遺傳背景呈現(xiàn)出極為豐富的多樣性,親本選擇成為雜交育種成功的決定性因素[6]。另外,柑橘的長童期和多胚現(xiàn)象等也是限制柑橘雜交育種發(fā)展的重要因素[7]。
雜交群體的遺傳規(guī)律研究不僅為定向選育優(yōu)良品系提供了依據(jù),也為現(xiàn)代分子生物學(xué)的定向育種積累了寶貴素材。目前,對于雜交群體的遺傳規(guī)律研究在梨[8]、蘋果[9]、葡萄[10]、獼猴桃[11]、枇杷[12]、越橘[13]等作物中已有報道,但柑橘由于雜交種遺傳物質(zhì)雜合程度較高,其雜交遺傳規(guī)律研究相對較少。對子代雜交群體遺傳規(guī)律的歸納分析是未來雜交育種中優(yōu)良親本定向選擇的基礎(chǔ)[14]。對于雜交群體的遺傳規(guī)律研究果樹遺傳分析的基礎(chǔ),而由不同親本組成的雜交群體遺傳規(guī)律也不盡相同[15]。筆者以中熟HB柚[16]為母本、中晚熟華柑4號[17]無核椪柑為父本的雜交子代群體為基礎(chǔ),通過對其子代果實(shí)常規(guī)品質(zhì)進(jìn)行分析,探究果實(shí)的遺傳規(guī)律,以期為選育優(yōu)良雜交后代奠定基礎(chǔ)。
1 材料和方法
1.1 材料
以HB柚為母本、華柑4號為父本的有性雜交群體為研究材料。該雜交群體定植于宜昌市柑橘研究所。在2023—2024年期間,選擇已穩(wěn)定坐果的雜交子代群體實(shí)生樹(53株)為試驗(yàn)材料,進(jìn)行果實(shí)性狀統(tǒng)計調(diào)查。從每株樹選擇具代表性的成熟果實(shí)9~10個,用于果實(shí)品質(zhì)分析。
1.2 方法
果實(shí)品質(zhì)指標(biāo)參照文獻(xiàn)[18-20]的方法測定,每3~4個果實(shí)為1個重復(fù),設(shè)置3個重復(fù),簡述如下:
(1)單果質(zhì)量:使用感量0.01 g電子天平(德國Sartorius BS4202S)分別稱其果實(shí)質(zhì)量、果皮質(zhì)量和果肉質(zhì)量;
(2)縱徑、橫徑:用游標(biāo)卡尺逐個測定其縱徑H(由果頂端至蒂端)和橫徑D(赤道面的切斷面直徑);
(3)果形指數(shù):果形指數(shù)=H/D(式中:D:果實(shí)橫徑/mm;H:果實(shí)縱徑/mm);
(4)可食率:寬皮柑橘可食率/%=[W1?(W2+W3)]/W1×100;柚可食率/%= [W1?(W2+W3+W4)]/W1×100(式中:W1:果實(shí)總質(zhì)量/g;W2:果皮質(zhì)量/g;W3:果實(shí)中種子質(zhì)量/g;W4:果實(shí)囊瓣皮質(zhì)量/g);
(5)出汁率:出汁率/%= [W1?(W2+W3+W5)]/W1×100;(式中:W1:果實(shí)總質(zhì)量/g;W2:果皮質(zhì)量/g;W3:果實(shí)中種子質(zhì)量/g;W5:果實(shí)中果渣質(zhì)量/g);
(6)果皮?果肉顏色:在果實(shí)的赤道面選取3個點(diǎn)進(jìn)行色差測定,記錄紅色飽和度(a)和黃色飽和度(b),計算色相角度(H),當(dāng)a>0,b>0時,H=arctan(b/a);當(dāng)a<0,b>0時,H=3.14+arctan(b/a);做3次生物學(xué)重復(fù)并取平均值;當(dāng)H用弧度表示時,從0到3.14分別代表紫紅?橙紅?橙?黃?黃綠?綠?藍(lán)綠;根據(jù)H值偏向和肉眼判斷顏色;
(7)可溶性固形物含量:使用手持式折射計(ATAGO PAL-1)對果實(shí)的混合果汁進(jìn)行測定和數(shù)據(jù)記錄,平行測定3次并取其均值,即為果汁中可溶性固形物含量;
(8)可滴定酸含量:可滴定酸含量采用手動滴定方法進(jìn)行樣品測定:取3個錐形瓶,每個錐形瓶中分別加入5 mL果汁溶液和2滴酚酞,用0.1 mol·L-1 NaOH溶液滴定至溶液呈粉紅色,且30 s內(nèi)不褪色。TA/%=0.064×C(NaOH)×V(消耗NaOH的體積)/V(樣品體積)×100;
(9)固酸比:固酸比=可溶性固形物含量/可滴定酸含量;
(10)維生素C含量:維生素C含量采用2,6-二氯靛酚滴定法測定,用標(biāo)定過的2,6-二氯酚靛酚溶液滴定至出現(xiàn)淡粉色且在30 s內(nèi)不褪色為滴定終點(diǎn),記錄消耗的2,6-二氯酚靛酚溶液體積,滴定3次取平均值,所有數(shù)據(jù)均做3次生物學(xué)重復(fù)。
1.3 數(shù)據(jù)統(tǒng)計與分析
利用SPSS 26.0軟件分析各項(xiàng)指標(biāo)的平均值(Mean)、標(biāo)準(zhǔn)差(SD)、偏度(Skewness)、變異系數(shù)(CV)等,參考前人研究方法計算遺傳傳遞力(Ta)、超高親比率(HH)、低低親比率(LL)、中親值(MP)以及中親優(yōu)勢率(RHm)等參數(shù)[21],以評估遺傳變異的特征,其對應(yīng)計算公式為:
(1)變異系數(shù)(CV)/%=(S/F)×100;
(2)遺傳傳遞力(Ta)/%=(F/MP)×100;
(3)中親優(yōu)勢率(RHm)/%=[(F-MP)/MP]×100;
(4)超高親比率(HH)/%=(高于高親表型值的子代單株數(shù)/子代單株總數(shù))×100;
(5)低低親比率(LL)/%=(低于低親表型值的子代單株數(shù)/子代單株總數(shù))×100。
式中S表示子代單株數(shù)據(jù)標(biāo)準(zhǔn)差;F表示子代平均值;MP表示中親值。使用Excel 2016軟件進(jìn)行試驗(yàn)數(shù)據(jù)統(tǒng)計與作圖處理。
2 結(jié)果與分析
2.1 果實(shí)相關(guān)性狀分布情況
2.1.1 果皮顏色、果肉顏色及果實(shí)形狀統(tǒng)計分析 對母本HB柚和父本華柑4號及雜交子代群體的果皮顏色、果肉顏色、果實(shí)形狀進(jìn)行統(tǒng)計發(fā)現(xiàn)(表1),子代群體果實(shí)形狀出現(xiàn)4種類型,其中以高扁圓形、圓或近圓形、橢圓形為主,各占比為41.51%、39.62%和13.21%。果皮顏色在雜交群體后代中出現(xiàn)了3種性狀類型(圖1),分別為橙紅色、橙色和黃色,各占7.50%、62.26%和30.19%。子代果肉顏色只出現(xiàn)橙色和黃色2種性狀類型,占比分別為60.37%和39.62%。
2.1.2 果實(shí)成熟期統(tǒng)計分析 對親本及雜交后代群體成熟期統(tǒng)計分析發(fā)現(xiàn)(表2),母本HB柚成熟期在12月上旬[16],父本華柑4號成熟期在12月下旬[17]。后代群體成熟期分布較為廣泛,其中12月上旬成熟的僅有1株,占比1.89%;12月下旬成熟的后代有8株,占比15.10%;1月中下旬成熟的后代株數(shù)最多,為24株,占比45.28%;2月下旬至3月上旬成熟的后代為20株,占比37.74%。后代群體熟期相較于兩親本而言,超過一半株數(shù)成熟期為晚熟,符合微效多基因控制的數(shù)量性狀特征。
2.2 單果質(zhì)量與果形遺傳分析
通過對雜交子代單果質(zhì)量與果形性狀的頻數(shù)統(tǒng)計分析(圖2),其中,橫徑的偏度為0.14,表明其符合正態(tài)分布特征。同時觀察單果質(zhì)量與縱徑指標(biāo)發(fā)現(xiàn),這2個性狀均有不同程度的右偏分布,而果形指數(shù)則表現(xiàn)出明顯的左偏分布。各性狀在群體內(nèi)呈現(xiàn)連續(xù)變異,符合微效多基因控制的數(shù)量性狀特征。
對HB柚×華柑4號雜交子代的單果質(zhì)量、果實(shí)縱徑、果實(shí)橫徑和果形指數(shù)這4個果實(shí)性狀進(jìn)行調(diào)查分析(表3)。結(jié)果顯示,4個果實(shí)性狀在雜交群體中的變異系數(shù)范圍為9.20%~33.15%,說明果實(shí)大小性狀在子代中有較為廣泛的分布。其中,單果質(zhì)量的變異系數(shù)最大,為33.15%;果形指數(shù)的變異系數(shù)最小,為9.20%。
針對這4個果實(shí)性狀的遺傳傳遞力分析發(fā)現(xiàn),其遺傳傳遞力由高到低分別為果形指數(shù)(96.97%)、橫徑(84.93%)、縱徑(79.42%)和單果質(zhì)量(57.92%)。這表明果形及果實(shí)大小主要受遺傳因素的調(diào)控,環(huán)境因素的影響相對較小。單果質(zhì)量、縱徑和橫徑的平均值均小于中親值,且超高親比率與低低親比率較低,甚至為0%,中親優(yōu)勢率為負(fù)值,推測在遺傳上存在趨中偏小變異;果形指數(shù)的平均值小于中親值,超高親比率為13.21%,低低親比率為22.64%,中親優(yōu)勢率為-3.03%,顯示出較強(qiáng)的趨中遺傳傾向。
2.3 果皮厚度、種子數(shù)、可食率與出汁率遺傳分析
對雜交子代進(jìn)行果皮厚度、種子數(shù)量、可食率和出汁率的頻數(shù)統(tǒng)計分析(圖3),果皮厚度的偏度為0.96,表明其存在明顯的右偏分布特征。同時觀察種子數(shù)與可食率指標(biāo)發(fā)現(xiàn),這2個性狀均有不同程度的左偏分布;而出汁率的偏度值為0.09,較接近正態(tài)分布。觀察到這些性狀在群體中表現(xiàn)出連續(xù)變異,這與數(shù)量性狀由多個微效基因共同作用的特點(diǎn)相吻合。
對HB柚×華柑4號雜交子代的果皮厚度、種子數(shù)、可食率和出汁率這4個果實(shí)性狀進(jìn)行統(tǒng)計分析(表4),結(jié)果顯示,4個果實(shí)性狀在雜交群體中的變異系數(shù)范圍為11.44%~27.03%,其中果皮厚度的變異系數(shù)最大,表明不同子代間果皮厚度的離散程度較高,分布較廣。可食率的變異系數(shù)最小,為11.44%。針對這4個果實(shí)性狀的遺傳傳遞力分析發(fā)現(xiàn),其遺傳傳遞力由高到低分別為出汁率(94.60%)、可食率(92.45%)、種子數(shù)(81.86%)和果皮厚度(71.54%)。這表明這些性狀主要受遺傳因素決定。果皮厚度和種子數(shù)在子代之間的平均值均小于中親值,超高親比率與低低親比率均為0%,且子代果實(shí)性狀數(shù)值介于雙親之間,表明其具有趨中遺傳趨勢;可食率的平均值低于中親值,子代果實(shí)性狀數(shù)值介于雙親之間,表明可食率具有趨中變異趨勢;出汁率的平均值低于中親值,且低低親比率高達(dá)47.17%,推測出汁率存在趨低遺傳趨勢。
2.4 果實(shí)可溶性固形物、可滴定酸、維生素C含量與固酸比的遺傳分析
對雜交群體子代可溶性固形物、可滴定酸、維生素C含量和固酸比的頻數(shù)統(tǒng)計分析(圖4),可滴定酸的偏度為-0.33,表現(xiàn)出明顯的左偏分布。觀察可溶性固形物、維生素C含量和固酸比指標(biāo)發(fā)現(xiàn),這三者均有不同程度的右偏分布。發(fā)現(xiàn)這些性狀在群體內(nèi)呈現(xiàn)連續(xù)變異,符合微效多基因控制的數(shù)量性狀特征。
筆者對HB柚×華柑4號雜交子代的可溶性固形物、可滴定酸、維生素C含量和固酸比4個果實(shí)性狀進(jìn)行統(tǒng)計分析(表5),結(jié)果顯示,這4個果實(shí)性狀在雜交群體中的變異系數(shù)范圍為9.26%~32.87%,說明果實(shí)風(fēng)味性狀在子代群體中展現(xiàn)出廣泛的遺傳變異與分布,體現(xiàn)了其高度的多樣性和復(fù)雜性。其中,固酸比的變異系數(shù)最大;可溶性固形物含量的變異系數(shù)最小。針對這4個果實(shí)性狀的遺傳傳遞力分析發(fā)現(xiàn),其遺傳傳遞力由高到低分別為可滴定酸含量(158.97%)、維生素C含量(105.73%)、可溶性固形物含量(87.36%)和固酸比(57.80%),表明這些性狀主要受遺傳因素決定。其中,可溶性固形物含量和固酸比的平均值低于中親值,且低低親比率超過70%,可推測這兩個性狀存在趨低遺傳趨勢;可滴定酸含量的子代平均值高于中親值,且超高親比率高達(dá)90.57%,表明其遺傳趨勢為超親遺傳。維生素C的子代平均值高于中親值,超高親比率為41.51%,也表現(xiàn)出超親遺傳特征。
3 討 論
筆者以中熟HB柚與中晚熟華柑4號為雜交組合,雜交子代的成熟期以晚熟為主,占比超過一半;出現(xiàn)1株子代成熟期提前。陳力耕等[22]以2個早熟品種做雜交,子代大部分表現(xiàn)偏向中親值或更晚。但以中熟品種和晚熟品種做雜交發(fā)現(xiàn),其大部分株系成熟期在中熟或早熟[23]。對于本研究中的2個親本來說,雜交子代的植株成熟期主要靠近父本,推測在柑橘果實(shí)熟期遺傳上具有較強(qiáng)的遺傳力,但這一假設(shè)還需通過更廣泛的柑橘雜交種群進(jìn)行進(jìn)一步的驗(yàn)證。通過對母本HB柚和父本華柑4號及其雜交子代群體的果皮顏色、果肉顏色、果實(shí)形狀進(jìn)行統(tǒng)計,發(fā)現(xiàn)子代性狀變異豐富,具備培育優(yōu)良新品種的潛力。其中形狀分為高扁圓形(41.51%)、圓形(39.62%)和橢圓形(13.21%)。果皮顏色有橙紅色(7.50%)、橙色(62.26%)和黃色(30.19%)的分離,而果肉顏色主要為橙色(60.37%)和黃色(39.62%)。
雜交群體的單果質(zhì)量和果形性狀在群體內(nèi)顯示連續(xù)變異,表明這些性狀受微效多基因控制。橫徑接近正態(tài)分布,而單果質(zhì)量與縱徑呈現(xiàn)右偏分布,果形指數(shù)呈左偏分布。性狀變異系數(shù)表明子代果實(shí)大小特征分布廣泛,尤其是單果質(zhì)量變異最大。這些性狀的遺傳趨勢表現(xiàn)為超過較差親本,但平均值低于中親值,這可能意味著這些性狀在雜交群體中存在向較低水平遺傳的傾向。趙海靜等[9]在蘋果中也發(fā)現(xiàn)雜交群體的單果質(zhì)量與果形指數(shù)整體呈現(xiàn)偏小遺傳趨向。在統(tǒng)計分析果實(shí)形狀特征時,對果形指數(shù)進(jìn)行了細(xì)致分類。具體而言,果形指數(shù)低于0.8的果實(shí)呈現(xiàn)出扁圓形特征;果形指數(shù)位于0.8至0.9區(qū)間內(nèi),果實(shí)形狀被界定為高扁圓形;當(dāng)果形指數(shù)在0.9至1.0范圍內(nèi)時,果實(shí)則展現(xiàn)為圓形或近圓形的外觀;果形指數(shù)超過1.0的果實(shí),其形狀表現(xiàn)為橢圓形。這一分類結(jié)果與鄭妮[23]、張文龍[6]的研究結(jié)果相吻合,進(jìn)一步驗(yàn)證了果形指數(shù)作為劃分果實(shí)形狀有效指標(biāo)的科學(xué)性。
對雜交群體的果皮厚度、種子數(shù)量、可食率和出汁率進(jìn)行分析時,發(fā)現(xiàn)這些性狀均表現(xiàn)出連續(xù)變異,符合數(shù)量性狀的遺傳特征。果皮厚度主要呈現(xiàn)右偏分布,而種子數(shù)與可食率呈左偏分布,出汁率較接近正態(tài)分布。變異系數(shù)分析顯示,果皮厚度變異最大,可食率變異最小,提示不同子代間這些性狀的離散程度不同。其中,果皮厚度、種子數(shù)的平均值低于中親值,顯示趨中遺傳傾向;而可食率的遺傳傳遞力接近100%,表明該性狀主要由遺傳因素決定。管書萍等[24]通過對多個三倍體有性后代群體進(jìn)行果實(shí)品質(zhì)遺傳分析,發(fā)現(xiàn)果皮厚度均高于中親值,呈現(xiàn)超親遺傳趨勢。該結(jié)果與本研究中的結(jié)果存在差異,可能是由本研究中的親本物種差異較大引起的。
前人研究發(fā)現(xiàn),通過對9個雜交組合后代的糖酸遺傳規(guī)律進(jìn)行研究,發(fā)現(xiàn)糖酸含量呈連續(xù)變異,這些性狀的分布與微效多基因控制的數(shù)量性狀特征一致[25],與本研究結(jié)果相符。具體來說,可滴定酸含量呈現(xiàn)右偏分布,而可溶性固形物、維生素C含量和固酸比也表現(xiàn)出不同程度的右偏分布。這些性狀的變異系數(shù)表明了這4個性狀在子代中廣泛分布,尤其是固酸比變異系數(shù)最大,而可溶性固形物含量的變異系數(shù)最小??扇苄怨绦挝锖颗c固酸比的遺傳趨勢表明子代中這些指標(biāo)普遍低于中親值,顯示出趨低的遺傳傾向。子代中可滴定酸含量與維生素C含量平均值高于中親值且大部分子代表現(xiàn)超親現(xiàn)象,推測其遺傳趨勢為超親遺傳。
4 結(jié) 論
通過對HB柚與華柑4號雜交子代果實(shí)的成熟期、單果質(zhì)量、果形、種子數(shù)、可食率、可溶性固形物和可滴定酸含量等性狀的測定,結(jié)果表明,雜交子代果實(shí)品質(zhì)表現(xiàn)出豐富的遺傳變異,這些性狀可能是由幾個或多個基因共同控制的數(shù)量性狀。本研究結(jié)果為柑橘雜交后代果實(shí)遺傳規(guī)律研究提供了依據(jù),并為未來柑橘雜交育種中親本的選擇提供了參考。
參考文獻(xiàn) References:
[1] 郭文武,葉俊麗,鄧秀新. 新中國果樹科學(xué)研究70年:柑橘[J]. 果樹學(xué)報,2019,36(10):1264-1272.
GUO Wenwu,YE Junli,DENG Xiuxin. Fruit scientific research in new China in the past 70 years:Citrus[J]. Journal of Fruit Science,2019,36(10):1264-1272.
[2] 鄧秀新. 中國柑橘育種60年回顧與展望[J]. 園藝學(xué)報,2022,49(10):2063-2074.
DENG Xiuxin. A review and perspective for citrus breeding in China during the last six decades[J]. Acta Horticulturae Sinica,2022,49(10):2063-2074.
[3] 伊華林,劉慧宇. 我國柑橘品種分布特點(diǎn)及適地適栽品種選擇探討[J]. 中國果樹,2022(1):1-7.
YI Hualin,LIU Huiyu. Distribution characteristics of citrus varieties and selection of varieties suitable for planting in China[J]. China Fruits,2022(1):1-7.
[4] 江東,孫珍珠,王婷,王小柯,劉小豐,冉志林. 雜柑“甘平” 在重慶北碚的引種表現(xiàn)及栽培技術(shù)[J]. 中國南方果樹,2017,46(1):32-33.
JIANG Dong,SUN Zhenzhu,WANG Ting,WANG Xiaoke,LIU Xiaofeng,RAN Zhilin. Introduction performance and cultivation technology of citrus “Ganping” in Beibei,Chongqing[J]. South China Fruits,2017,46(1):32-33.
[5] 龔江美. 一個琯溪蜜柚新種質(zhì)的選育與品質(zhì)評價研究[D]. 福州:福建農(nóng)林大學(xué),2018.
GONG Jiangmei. Identification and quality evaluation of a new bud mutant of pummelo[D]. Fuzhou:Fujian Agriculture and Forestry University,2018.
[6] 張文龍. 四個柑橘雜交組合F1代果實(shí)基本性狀遺傳分析及無核優(yōu)株篩選[D]. 重慶:西南大學(xué),2022.
ZHANG Wenlong. Genetic analysis of basic fruit traits and selection of seedless superior plants in F1 generation of four citrus hybrid combinations[D]. Chongqing:Southwest University,2022.
[7] 楊海健. 柑橘有性雜交創(chuàng)造新種質(zhì)及授粉對馬家柚和HB柚果實(shí)品質(zhì)的影響研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2012.
YANG Haijian. The study of creating citrus new germplasm by sexual hybridization and the hybridization influence on the fruit quality of Majiayou and HB pomelo[D]. Wuhan:Huazhong Agricultural University,2012.
[8] 崔艷波,陳慧,樂文全,張樹軍,伍濤,陶書田,張紹鈴. ‘京白梨’與‘鴨梨’正反交后代果實(shí)性狀遺傳傾向研究[J]. 園藝學(xué)報,2011,38(2):215-224.
CUI Yanbo,CHEN Hui,LE Wenquan,ZHANG Shujun,WU Tao,TAO Shutian,ZHANG Shaoling. Studies on genetic tendency of fruit characters in reciprocal crosses generation between ‘Jingbaili’ and ‘Yali’ pear cultivars[J]. Acta Horticulturae Sinica,2011,38(2):215-224.
[9] 趙海靜,王璐,朱俊菲,趙海山,楊萍,高敬東. 丹霞蘋果F1代主要性狀遺傳趨勢研究[J]. 現(xiàn)代農(nóng)業(yè)科技,2018(4):96-98.
ZHAO Haijing,WANG Lu,ZHU Junfei,ZHAO Haishan,YANG Ping,GAO Jingdong. Study on genetic tendency of main characters in F1 generation of ‘Danxia’ apple[J]. Modern Agricultural Science and Technology,2018(4):96-98.
[10] 劉政海,董志剛,李曉梅,譚敏,楊镕兆,楊兆亮,唐曉萍. ‘威代爾’與‘霞多麗’葡萄雜交F1代果實(shí)性狀遺傳傾向分析[J]. 果樹學(xué)報,2020,37(8):1122-1131.
LIU Zhenghai,DONG Zhigang,LI Xiaomei,TAN Min,YANG Rongzhao,YANG Zhaoliang,TANG Xiaoping. Inheritance trend of fruit traits in F1 progenies of ‘Vidal’ and ‘Chardonnay’ of grape[J]. Journal of Fruit Science,2020,37(8):1122-1131.
[11] 李明章,邱利娜,王麗華,鄭曉琴,廖明安. 紅陽獼猴桃雜交F1代果實(shí)主要經(jīng)濟(jì)性狀遺傳傾向分析[J]. 果樹學(xué)報,2011,28(1):51-54.
LI Mingzhang,QIU Lina,WANG Lihua,ZHENG Xiaoqin,LIAO Ming’an. Inheritance trend of main characters in F1 progenies of Hongyang kiwifruit variety[J]. Journal of Fruit Science,2011,28(1):51-54.
[12] 鄭少泉,許秀淡,黃金松,周建強(qiáng). 枇杷若干性狀的遺傳研究Ⅰ. 果實(shí)性狀的遺傳傾向研究[J]. 福建省農(nóng)科院學(xué)報,1993,8(1):19-26.
ZHENG Shaoquan,XU Xiudan,HUANG Jinsong,ZHOU Jianqiang. Study on heredity of several characters in loquat I. Genetic trendency of fruit agronomic characters[J]. Fujian Journal of Agricultural Sciences,1993,8(1):19-26.
[13] 劉月,劉海楠,鄧宇,劉禹姍,殷秀巖,孫海悅,李亞東. 越橘正反交后代部分性狀的遺傳傾向[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報,2019,41(1):35-41.
LIU Yue,LIU Hainan,DENG Yu,LIU Yushan,YIN Xiuyan,SUN Haiyue,LI Yadong. Genetic predisposition of some traits of blueberry in hybrid progenies[J]. Journal of Jilin Agricultural University,2019,41(1):35-41.
[14] DE OLIVEIRA R P,AGUILAR-VILDOSO C I,MACHADO M A. Genetic divergence among hybrids of ‘Cravo’ mandarin with ‘Pêra’ sweet orange[J]. Scientia Agricola,2003,60(1):115-118.
[15] 潘依玲,鮑荊凱,陳萬年,吳翠云,王玖瑞,劉孟軍,閆芬芬. 棗JMS2×交城5號F1代果實(shí)性狀遺傳分析與優(yōu)系篩選[J]. 果樹學(xué)報,2023,40(6):1085-1098.
PAN Yiling,BAO Jingkai,CHEN Wannian,WU Cuiyun,WANG Jiurui,LIU Mengjun,YAN Fenfen. Genetic analysis of fruit traits and selection of superior lines in F1 generation of jujube JMS2 × Jiaocheng 5[J]. Journal of Fruit Science,2023,40(6):1085-1098.
[16] 伊華林,鄧秀新,夏仁學(xué),李國懷,胡世全,覃偉. 柚新品種:HB柚[J]. 中國南方果樹,2003,32(2):3.
YI Hualin,DENG Xiuxin,XIA Renxue,LI Guohuai,HU Shiquan,QIN Wei. New grapefruit variety--HB grapefruit[J]. South China Fruits,2003,32(2):3.
[17] 吳巨勛,張雅菁,伊華林,謝宗周,鄧秀新. 無核柑橘新品種華柑4號的選育[J]. 果樹學(xué)報,2022,39(3):495-498.
WU Juxun,ZHANG Yajing,YI Hualin,XIE Zongzhou,DENG Xiuxin. Breeding report of a new seedless ponkan cultivar Huagan No. 4[J]. Journal of Fruit Science,2022,39(3):495-498.
[18] 李準(zhǔn). 60Co-γ輻射馬家柚和雞尾葡萄柚的遺傳變異研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2023.
LI Zhun. Study genetic variation of majia pomelo and citrusparadisi ‘Grapefruit’ lrradiated by 60Co-γ[D]. Wuhan:Huazhong Agricultural University,2023.
[19] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京:高等教育出版社,2000.
LI Hesheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing:Higher Education Press,2000.
[20] 國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局,中國國家標(biāo)準(zhǔn)化管理委員會. 柑桔鮮果檢驗(yàn)方法:GB/T 8210—2011[S]. 北京:中國標(biāo)準(zhǔn)出版社,2011.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Method of inspection for fresh citrus fruit:GB/T 8210—2011[S]. Beijing:Standards Press of China,2011.
[21] 趙崇斌,郭乙含,李舒慶,徐紅霞,黃天啟,林順權(quán),陳俊偉,楊向暉. 寧海白×大房枇杷F1雜交群體果實(shí)性狀的相關(guān)性及遺傳分析[J]. 果樹學(xué)報,2021,38(7):1055-1065.
ZHAO Chongbin,GUO Yihan,LI Shuqing,XU Hongxia,HUANG Tianqi,LIN Shunquan,CHEN Junwei,YANG Xianghui. Correlation and genetic analysis of fruit traits in F1 hybrid population of loquat generated from Ninghaibai × Dafang[J]. Journal of Fruit Science,2021,38(7):1055-1065.
[22] 陳力耕,胡運(yùn)權(quán),陳克玲. 克里邁丁×本地早果實(shí)主要性狀的遺傳[J]. 中國柑桔,1988,17(2):3-5.
CHEN Ligeng,HU Yunquan,CHEN Keling. Inheritance of major traits in early fruits of Climactin × Native[J]. South China Fruits,1988,17(2):3-5.
[23] 鄭妮. ‘紅美人’柑橘雜交后代群體果實(shí)主要性狀的遺傳分析及早熟優(yōu)株的篩選[D]. 重慶:西南大學(xué),2021.
ZHENG Ni. Genetic analysis of major fruit traits in the hybrid offspring of citrus ‘Hongmeiren’ and screening for the superior early-maturing varieties[D]. Chongqing:Southwest University,2021.
[24] 管書萍,王婷婷,周陽廣,朱虹嫻,伍小萌,龍春瑞,高俊燕,郭文武,解凱東. 柑橘2個三倍體有性后代群體果實(shí)品質(zhì)性狀的遺傳特點(diǎn)[J/OL]. 果樹學(xué)報,1-14[2024-03-29](2024-01-13). https://doi.org/10.13925/i.cnki.gsxb.20230419.
GUAN Shuping,WANG Tingting,ZHOU Yangguang,ZHU Hongxian,WU Xiaomeng,LONG Chunrui,GAO Junyan,GUO Wenwu,XIE Kaidong. Inheritance of some quality traits of the fruits in triploid hybrids derived from two citrus 2x × 4x interploidy crosses[J/OL]. Journal of Fruit Science,1-14[2024-03-29](2024-01-13). https://doi.org/10.13925/i.cnki.gsxb.20230419.
[25] 陳克玲,陳力耕,劉建軍,洪棋斌,李洪雯. 柑桔果實(shí)主要性狀的遺傳傾向研究[J]. 西南農(nóng)業(yè)學(xué)報,2006,19(6):1114-1120.
CHEN Keling,CHEN Ligeng,LIU Jianjun,HONG Qibin,LI Hongwen. Study on the trend of inheritance of main characters of citrus fruit[J]. Southwest China Journal of Agricultural Sciences,2006,19(6):1114-1120.