国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

獼猴桃抗細菌性潰瘍病研究進展

2025-03-03 00:00:00張敏孫雷明付蓉林苗苗王然齊秀娟
果樹學報 2025年1期
關鍵詞:分子標記潰瘍病獼猴桃

摘 " "要:中國獼猴桃種質(zhì)資源豐富,種植面積及產(chǎn)量均居世界首位,已成為中國優(yōu)勢特色產(chǎn)業(yè)之一。然而,隨著產(chǎn)業(yè)的不斷發(fā)展,不同地區(qū)間引種增加,獼猴桃細菌性潰瘍病問題也愈發(fā)突出,已成為制約中國乃至世界獼猴桃產(chǎn)業(yè)發(fā)展的主要因素。該病害由丁香假單胞桿菌獼猴桃致病變種(Pseudomonas syringae pv. actinidiae,Psa)侵染引起,具有蔓延快、傳染性強、致病率高、根除難度大等特點,是生產(chǎn)中的毀滅性病害,目前尚無有效的防治方法。隨著現(xiàn)代生物技術的發(fā)展,人們利用分子標記構建了獼猴桃遺傳連鎖圖譜并進行相關性狀QTL定位分析,獲得了部分潰瘍病鑒定相關的抗性分子標記和基因,為其抗性育種提供了新途徑。筆者在綜述潰瘍病的危害、傳播媒介、致病菌以及不同種質(zhì)資源抗病性差異及成因等基礎上,闡述了分子標記、QTL定位技術及抗性相關基因等在獼猴桃研究上的應用進展,以期為獼猴桃分子輔助抗性育種的相關研究提供理論依據(jù)。

關鍵詞:獼猴桃;潰瘍?。环肿訕擞?;QTL;抗性基因

中圖分類號:S663.4 文獻標志碼:A 文章編號:1009-9980(2025)01-0196-11

Research advances on reisistance to kiwifruit bacterial canker

ZHANG Min1, 2, SUN Leiming1, 3, FU Rong1, LIN Miaomiao1, 2, WANG Ran1, QI Xiujuan1, 2*

(1National Key Laboratory for Germplasm Innovation amp; Utilization of Horticultural Crops/Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; 2Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, Henan, China; 3Chuxiong Yunguo Agriculture Technology Research Institute, Chuxiong 675000, Yunna, China)

Abstract: Kiwifruit (Actinidia spp.) is origin from China, comprising rich germplasm resources and wide geographical distribution. It is one of the most successful fruit crops domesticated in the 20th century and has taken an important place in the development of the fruit industry. China ranks first in the world in both planting area and yield and it becomes one of the advantageous characteristic industries in our country. Kiwifruit bacterial canker (KBC), which is caused by Pseudomonas syringae pv. actinidiae (Psa), is one of the most serious diseases that harm the kiwifruit industry. Since the first KBC was detected in Japan in 1984, it has been discovered in various countries around the world. It has become a major factor restricting the development of industries in the world. The typical symptoms of KBC include necrotic spots on leaves, wilting and ulceration on vines and twigs, withering of vine trunks, and with milky white or red mucus. It is highly virulent, explosive and infective, and once a vine has been systemically invaded, it may quickly lead to death. It has extremely strong infectivity and can spread in major production areas around the world in a short period of time. In spring or autumn, low temperatures can greatly favor the multiplication of the bacterium. Some plants, insect and pollen, agronomical techniques, as well as extreme weather phenomena, can contribute to further spreading. Psa manipulates plant hosts and promotes diseases by producing toxic effector factors (HopZ5 and AvrRpm1) through its Type Ⅲ secretion system (T3SS). These toxic effectors can disrupt the immune defense response of plants, allowing pathogens to quickly adapt to the host environment. The integrative and conjugative elements (ICEs) are large mobile elements, which can confer new phenotypes to Psa and are frequently implicated as the mechanism underlying antimicrobial resistance evolution in bacterial pathogens. According to genetic diversity and toxin production, Psa can be classified into six biovars (Psa1-Psa6). Psa4 is substantially different from other strains in that it has less aggressive ability and only cause leaf spots. Due to the difference in phenotypic, genetic and phylogenetic aspects, it was renamed P. syringae pv. actinidifoliorum (Pfm). In existing research, no effective cure for KBC has been found. The frequent application of streptomycin and copper agents for controlling Psa shows that multiple Psa lineages have acquired streptomycin or copper resistance genes. Therefore, breeding resistant varieties and enhancing the disease resistance of kiwifruit are effective measures to solve KBC. Through analysis of the morphological structure, physiological level and molecular level of kiwifruit, it is shown that different kiwifruits have different resistance to Psa. It was found that the overall resistance trend is that the resistance of A. arguta and A. eriantha is stronger than A. chinensis by different resistance identification. The use of hybrid breeding technology can achieve the combination of excellent traits and cultivate resistant varieties. However, the traditional hybrid breeding method is too time-consuming and complex, usually taking 10-15 years to develop a new variety. With the development of modern sequencing techniques, the emergence of molecular marker assisted breeding technology has greatly shortened the breeding period and improved breeding efficiency. The use of molecular marker technology to screen germplasm resources with excellent resistance has been widely applied in crop research, and there are also a few applications in kiwifruit. For example, using random amplified polymorphic DNA (RAPD) analysis found that the resistant strains all had a 1458 bp DNA fragment, while the susceptible strains did not have. Using SSR technology combined with BSA analysis method, the molecular marker screening of disease resistant genes (PR) was carried out, and SSR molecular marker UDK97-428116 linked to disease resistant genes was obtained. With advances in modern biotechnology, the use of high-density genetic maps for quantitative trait locus (QTL) mapping plays an important role in the research on agronomic traits. In recent years, the construction of genetic maps for fruit crops has developed rapidly and has been applied to many fruit crops, such as grapes, cherries and kiwifruit. The application of genetic mapping and QTL mapping technology plays an important role in the exploration of kiwifruit traits such as gender, fruit quality and disease resistance. Using high-density genetic and QTL mapping, a major single QTL for Psa resistance on linkage 27 was identified on Hort16A, and six minor QTLs were identified in P1. Moreover, it was discovered that the resistance in the F1 population was improved by additive effects from Hort16A and P1 QTLs, providing evidence for the resistance mechanism of kiwifruit. When Psa toxic effector factors are injected into the host plant, it triggers the immune defense response of plant, PTI (PAMP-triggered-immunity) and ETI (effector-triggered-immunity). Nucleotide binding and leucine rich repeat receptors (NLRs) are the largest family of immune receptors in plants. At present, multiple NLR proteins that recognize Psa effector factors have been identified, like RPA1 and NbPTR1. It has shown that many genes play important roles in the kiwifruit disease resistance response, such as PR1, NPR1, TGA, RIN4, FLS2 and WRKY22, providing new genetic resources for resistance breeding. It is critically important to understanding how pathogens emerge and what drives their adaptation to cause virulent disease. Exploring disease prevention and control technologies, and breeding new disease resistant varieties are of great significance for the development of this industry. The purpose is to review the latest progress in research on KBC and kiwifruit resistance, providing theoretical basis for kiwifruit resistance breeding.

Key words: Actinidia; Bacterial canker; Molecular markers; QTL; Resistant genes

獼猴桃是獼猴桃科(Actinidiaceae)獼猴桃屬(Actinidia Lindl.)落葉藤本果樹,該屬有54個種和21個變種,共75個分類單元[1]。中國是獼猴桃屬植物的原產(chǎn)地,野生資源豐富,地域分布廣泛。自20世紀被人工馴化以來,該產(chǎn)業(yè)在世界范圍內(nèi)的栽培面積不斷擴大[2],因其果實風味獨特、營養(yǎng)豐富而深受人們喜愛。隨著產(chǎn)業(yè)的發(fā)展,不同區(qū)域間引種頻率增加,生產(chǎn)中的細菌性潰瘍病也越發(fā)嚴重,對產(chǎn)業(yè)造成了嚴重危害[3]。自1984年日本首次出現(xiàn)該病以來[4],隨后短短幾年內(nèi),迅速成為威脅世界獼猴桃產(chǎn)業(yè)的毀滅性病害[5]。中國、新西蘭、意大利、韓國等世界各大獼猴桃產(chǎn)區(qū)深受其害[6-9]。中國作為獼猴桃生產(chǎn)大國,在四川、安徽、陜西等主產(chǎn)省份也早已出現(xiàn),并逐漸向其他栽培地區(qū)蔓延[10]。因此,開展?jié)儾∠嚓P研究,了解其致病機制和作用機制、探索病害防控技術,選育抗病新品種,對助力產(chǎn)業(yè)高質(zhì)量發(fā)展具有重要意義。隨著現(xiàn)代測序技術的發(fā)展,分子生物學技術為獼猴桃潰瘍病研究提供了一種有效途徑。本文旨在綜述獼猴桃潰瘍病抗性研究方面最新進展,為該產(chǎn)業(yè)抗性育種和高效防控技術研發(fā)提供理論基礎。

1 潰瘍病的危害、傳播媒介及致病菌

獼猴桃細菌性潰瘍病在一年內(nèi)有冬末春初和秋季兩個發(fā)病高峰[11]。主要危害葉片、花、果實和枝蔓,病菌侵染多從傷口、皮孔、落葉痕、枝條分叉等部位開始[12]。枝蔓發(fā)病初期呈水漬狀,后病斑擴大、顏色加深;早期病斑部位流白色黏液,不久轉(zhuǎn)為鐵銹紅色,剝開病斑皮層后,可見韌皮部腐爛,木質(zhì)部變黑[13-14]。葉片染病后會形成不規(guī)則的黑色斑點,并帶有黃色暈圈。潰瘍病具有隱蔽性、傳染性、暴發(fā)性和毀滅性等特點,一旦發(fā)生,輕則減產(chǎn)、重則毀園。2010年新西蘭首次發(fā)現(xiàn)潰瘍病之后,感病果園數(shù)量迅速增加,到2012年占全部果園的37%[15],對該國獼猴桃產(chǎn)業(yè)造成嚴重危害。研究發(fā)現(xiàn),不同栽培品種對潰瘍病的抗性不一,一些商品性很好的品種抗病能力卻很弱,如新西蘭的黃肉品種Hort16A以及中國的紅心品種紅陽[16]。

獼猴桃潰瘍病病菌主要借助風、雨等在果園內(nèi)和果園間迅速散播,低溫潮濕的環(huán)境可極大地促進病原菌繁殖,一些不規(guī)范的農(nóng)藝操作以及低溫、冷害、凍害等極端氣候現(xiàn)象也有助于病菌的進一步傳播和流行[17]。苗木、接穗、工具、人員等都可能是攜帶病菌的重要載體,此外,昆蟲[18]、花粉[19]、非獼猴桃屬植物[20]等也可以作為中間媒介或中間寄主來實現(xiàn)病菌的傳播和侵染。

丁香假單胞桿菌獼猴桃致病變種(Pseudomonas syringae pv. actinidiae,Psa)是引起獼猴桃細菌性潰瘍病的致病菌[4],其關鍵致病因子是存在T3SS(type Ⅲ secretion system)的蛋白分泌系統(tǒng)[10]。該分泌系統(tǒng)能分泌多種有毒效應因子(如HopZ5、AvrRpm1等)來破壞植物的免疫防御反應,使病原體快速適應宿主環(huán)境[21-22]。Psa的整合共軛元件(integrative and conjugative elements,ICEs)是可移動元件,賦予其新的表型,且常被認為是細菌病原體產(chǎn)生耐藥性進化的機制[22-23]。研究人員通過對目前收集到的Psa株系進行基因組比較、系統(tǒng)進化和起源分析等,可將目前已發(fā)現(xiàn)的Psa株系分為6類[24]:第一類是在日本和意大利海沃德品種上采集到的病原菌Psa1[25];第二類是在韓國發(fā)現(xiàn)的病原菌Psa2 [26];第三類是于2008年首次在意大利發(fā)現(xiàn),并對世界各國產(chǎn)業(yè)造成毀滅性傷害的Psa3[27];第四類是在新西蘭發(fā)現(xiàn)的病原菌Psa4,該類病菌致病能力較弱,僅引起葉斑[9],與前三類存在明顯不同,雖然Psa4是從獼猴桃屬植物上分離出來的,但由于其表型、遺傳和系統(tǒng)發(fā)育不同,后將其更名為Pseudomonas syringae pv. actinidifoliorum (Pfm)[28];第五類和第六類是在日本發(fā)現(xiàn)的Psa5[29]和Psa6[30]。在已有的研究報道中,并沒有發(fā)現(xiàn)對潰瘍病有效的治愈方法,生產(chǎn)上頻繁使用的藥物防治使得Psa菌株對銅和鏈霉素產(chǎn)生了抗藥性[31]。因此,選育抗性強的品種來增強自身的抗病性,是解決潰瘍病危害最直接的方法。

2 不同種質(zhì)資源抗病性差異及成因

不同種類和品種的獼猴桃對Psa的抗病性有所不同,研究人員分別從形態(tài)結構、生理和分子水平等方面對其抗病能力進行了研究分析。對24個不同種類或品種的獼猴桃進行抗性評價,不同種類抗性由強到弱的順序依次為:毛花獼猴桃(A. eriantha)、美味獼猴桃(A. chinensis var. delicious)、中華獼猴桃(A. chinensis)[32]。利用29個獼猴桃種或品種(系)進行抗性評價,在離體枝條接種Psa病原菌6 d后,中華獼猴桃紅陽、6-65、2-72就開始發(fā)病并溢出少量白色黏液,而接種21 d后軟棗獼猴桃(A. arguta)和毛花獼猴桃才開始出現(xiàn)病斑且病斑直徑明顯小于中華獼猴桃,體現(xiàn)出抗性相對較強[33]。通過采用離體枝條和葉片進行人工接種Psa病原菌的方法對51份軟棗獼猴桃進行抗性鑒定,結果顯示51份資源中高抗33份、中抗18份,無高感、中感和感病種質(zhì),體現(xiàn)了軟棗獼猴桃具有較好的抗性[34]。采用室內(nèi)和田間接種方法分別對12個和23個品種進行抗性鑒定,總體抗性趨勢為軟棗獼猴桃和毛花獼猴桃強于美味獼猴桃,而中華獼猴桃表現(xiàn)最差[35]。近年來,研究人員選育出了多個抗病新品種,如先沃五號[36]、華金3號[37]、金塘一號[38]等。

獼猴桃的組織結構及活性成分與抗病性有一定關系。通過比較不同抗性資源的葉片和枝條結構發(fā)現(xiàn),葉片氣孔密度和長度、枝條皮孔密度和長度與病情指數(shù)呈顯著正相關[39-40]。接種病原菌后,抗病品種金魁的枝條、葉片中可溶性糖和木質(zhì)素含量也顯著高于感病品種金豐[41]。在不同品種中,抗病性越強,葉片中可溶性蛋白質(zhì)和酚類物質(zhì)含量越高[42]。韌皮部蔗糖代謝的增加可能引起免疫應答相關酶的增加,但不同品種的抗病能力與蔗糖的含量呈負相關[43]。還有研究發(fā)現(xiàn),抗性砧木也能夠有效增強接穗的抗病性[44]。

綜上所述,不同獼猴桃種類、品種(系)的抗性情況存在差異,但總體抗性趨勢為軟棗獼猴桃和毛花獼猴桃強于美味獼猴桃,且強于中華獼猴桃。這種抗性差異可能與生理生化特性及遺傳背景等因素有關。因此,準確評價和篩選出高抗獼猴桃細菌性潰瘍病的品種(系)至關重要。

3 分子標記在抗病性鑒定中的應用

分子標記(Molecular Markers)是以個體間核苷酸序列變異為基礎的遺傳標記,能在DNA水平上直接反映遺傳的多態(tài)性[45]。與其他生物遺傳標記如生化標記、細胞學標記和形態(tài)學標記相比,具有不受個體發(fā)育時期和外界環(huán)境影響、多態(tài)性高、易于檢測等顯著的優(yōu)點[46]。分子標記技術的發(fā)展主要經(jīng)歷了3個階段,第1個階段是以Southern雜交為基礎的限制性片段長度多態(tài)性(Restriction fragment length polymorphism,RFLP)標記;第2個階段是以PCR反應為基礎的隨機擴增多態(tài)性(Random amplified polymorphic DNA,RAPD)、擴增片段長度多態(tài)性(Amplified fragment length polymorphism,AFLP)、簡單重復序列(Simple sequence repeat,SSR)標記;第3個階段則是以測序為基礎的單核苷酸標記(Single nucleotide polymorphism,SNP)[47]。目前,SNP技術已被廣泛應用于物種親緣關系進化分析、種質(zhì)資源鑒定保存、分子遺傳圖譜構建、植物抗病基因定位及遺傳育種等方面。

獼猴桃屬植物種類繁多,地域分布范圍廣泛,因此對其種質(zhì)資源進行準確鑒定是合理利用的基礎。利用分子標記技術篩選抗性優(yōu)異種質(zhì)資源已廣泛應用于大豆[48]、水稻[49]、番茄[50]、黃瓜[51]等植物的抗性育種中,獼猴桃中也有少量應用。通過利用ISSR標記進行遺傳多樣性分析,發(fā)現(xiàn)不同品種對潰瘍病的抗病能力與遺傳有關,且各品種抗性強弱分組與ISSR聚類組有明顯相關性,表明了該技術可用于輔助選育抗?jié)儾∑贩N[52]。采用SSR技術結合BSA分析方法對雜交F1代群體及40份資源進行抗病基因(PR)分子標記篩選,獲得了與抗病基因連鎖的SSR分子標記UDK97-428116[53]。利用SCoT分子標記確定了9個中華獼猴桃紅肉品種的親緣關系并篩選出較抗?jié)儾∑贩N[16]。對6個品系進行抗病相關的RAPD分析,結果發(fā)現(xiàn),抗病品系都有一條1458 bp的DNA片段,而感病品系均無該條帶[54]。通過構建表達序列標簽(EST)文庫,并基于同源序列設計EST引物,成功鑒定出部分參與基礎防御途徑的基因,為獼猴桃抗性育種提供了基礎[55]。

4 遺傳圖譜及QTL定位在抗病研究中的應用

遺傳連鎖圖譜是通過遺傳重組交換結果進行連鎖分析所得到的基因或分子標記在染色體上相對位置的線性排列圖[56],是數(shù)量性狀定位(quantitative trait locus,QTL)、分子標記輔助選擇育種等研究的理論依據(jù)。因此,構建高密度的遺傳連鎖圖譜是植物進化過程、遺傳育種及功能基因組學等研究的重要環(huán)節(jié)。

利用果樹基因組中的多種分子標記技術構建高精度的遺傳圖譜已逐漸成為該學科研究的重要內(nèi)容。近年來,已在棗[57]、蘋果[58]、葡萄[59]、柑橘[60]、櫻桃[61]、梨[62]等果樹作物中構建了分子遺傳圖譜。目前,獼猴桃相關分子遺傳圖譜的構建也在逐步完善。自2001年Testolin等[63]利用AFLP和SSR標記,分別構建中華獼猴桃和硬齒獼猴桃的遺傳圖譜以來,目前已報道構建的遺傳圖譜共有11組(表1)。這些遺傳圖譜對獼猴桃相關性狀定位研究具有重要意義。在目前已構建的圖譜中,應用于潰瘍病研究的只有兩組,分別是2019年以二倍體中華獼猴桃為親本和2020年以四倍體中華獼猴桃為親本構建。在得到的二倍體中華獼猴桃高密度遺傳圖譜中,通過QTL定位技術在Hort16A的27號染色體上定位到了一個主效QTL,在P1中定位到了6個微效QTLs(3、14、15、22、24和28號染色體),并驗證27、14、22、28之間的互作效應,結果表明,F(xiàn)1代對潰瘍病抗性的增強是Hort16A和P1上的QTL加性效應引起的[64]。隨后,在四倍體中華獼猴桃遺傳圖譜中定位到了4個抗Psa的QTLs(LG1、LG2、LG4和LG7);其中,高抗親本包含3個QTLs(LG1、LG4和LG7),耐病親本包含1個QTL(LG2)[65]。主要抗性基因與數(shù)量抗性因子的結合,可以保持抗性品種的持久性,QTL的加性效應增強了子代對病原菌的抗性[66-67]。

潰瘍病可能是由數(shù)量性狀引起[64],而數(shù)量性狀通常會被多個基因共同作用,且易受到環(huán)境因素的影響,遺傳情況復雜,因而數(shù)量性狀的研究非常困難。隨著分子標記技術的發(fā)展,利用遺傳標記和QTL間的遺傳連鎖現(xiàn)象,可以確定QTL在染色體上的位置和效應,從而提高育種效率、加快新品種選育。

5 潰瘍病抗性關鍵基因挖掘

當植物受到病原菌的感染時,會激發(fā)植物的天然防御系統(tǒng),使植物產(chǎn)生抗病反應。植物的天然免疫系統(tǒng)可分為兩個水平,第一是通過植物細胞表面的模式識別受體(Pattern Recognition Receptors,PRRs)識別病原微生物保守成分(Pathogen Associated Molecular Patterns,PAMPs),從而激活與病原相關分子模式成分觸發(fā)的免疫反應(PAMP-Triggered-Immunity,PTI)[77],第二是病原微生物釋放的效應因子觸發(fā)的免疫反應(Effector-Triggered-Immunity,ETI)[78]。植物強大的免疫系統(tǒng)能抵御大多數(shù)病原微生物的侵染,但是丁香假單胞桿菌等部分病菌能向寄主植物細胞內(nèi)注入毒力蛋白,抑制植物免疫力,從而引起毀滅性病害[79]。核苷酸結合富亮氨酸重復受體(nucleotide-binding and leucine-rich repeat receptors,NLRs)是植物最大的免疫受體家族[80],來自擬南芥和本氏煙草的NLR蛋白ZAR1能識別HopZ5并觸發(fā)細胞死亡[81]。目前,已鑒定出多個識別Psa效應因子的NLR蛋白,如RPA1[82]、NbPTR1[83]等,這些蛋白在植物抗病反應中具有關鍵作用。

NHL(NDR1/HIN1-like)基因家族成員在抵御丁香假單胞桿菌的侵染時具有積極作用。如擬南芥NHL基因家族的成員NHL2和NHL3在抵御丁香假單胞桿菌侵染中發(fā)揮重要作用[84];在采用不同丁香假單胞桿菌處理擬南芥時,發(fā)現(xiàn)NHL3基因的表達量均顯著增加,且過表達該基因增強了植株對Pseudomonas syringae pv. tomato DC3000 (Pst)病菌的抗性[85]。NHL基因在其他病原菌防御反應中也發(fā)揮了重要作用。如擬南芥NHL10基因能調(diào)控黃瓜對花葉病毒(CMV)的超敏反應[86];在馬鈴薯中過表達NHL基因成員StPOTHR1增強了植株對疫霉?。≒hytophthora infestans)的抗性[87]。

利用轉(zhuǎn)錄組學的方法對Psa侵染后獼猴桃中的基因表達進行分析,發(fā)現(xiàn)免疫系統(tǒng)PTI、ETI、HR中多個抗性基因的表達受到誘導,它們可能通過調(diào)整代謝過程,并改變次級代謝產(chǎn)物的產(chǎn)生以抑制Psa的生長[88]。研究發(fā)現(xiàn),在受到Psa侵染后,高抗品種華特中編碼Pti1和RPS2的效應受體及參與水楊酸信號通路的NPR1、TGA和PR-1基因均顯著上調(diào)表達[89]。PR-1基因能在潰瘍病菌誘導下顯著表達,且其過表達能增強煙草對潰瘍病的抗性[90]。AcTGA07基因的過表達顯著增強了獼猴桃的抗性,且TGA轉(zhuǎn)錄因子能特異性地結合PR基因的啟動子區(qū)域并與NPR蛋白相互作用[91]。NPR1同源基因AeNPR1a在煙草中過表達后,相比與野生型株系其Psa和Pst感染癥狀明顯減輕,轉(zhuǎn)基因煙草抗性顯著增強;與接種Pst的擬南芥npr1-1突變體植株相比,NPR1a回補株系抗性顯著增強[92]。使用殼聚糖處理可誘導獼猴桃防御相關基因(PR1、PR5)表達,使其產(chǎn)生系統(tǒng)獲得性抗性(systemic acquired resistance,SAR)[93]。

6 展 望

自1984年在日本首次發(fā)現(xiàn)獼猴桃細菌性潰瘍病以來,世界各產(chǎn)區(qū)深受其害。經(jīng)過多年的研究積累,對該病害的發(fā)病規(guī)律與傳播途徑、致病菌Psa的致病機制、不同種類或品種獼猴桃的抗病特性等研究均已取得一定成果,但一直未有有效的防治方法。因此,在今后的生產(chǎn)實踐中應選擇抗性強的品種、加強苗木或花粉等媒介物的檢疫監(jiān)測、提高果園栽培管理農(nóng)藝措施,這對早期病害預防和減少種植者的經(jīng)濟損失具有重要作用。

中國獼猴桃種質(zhì)資源豐富,倍性多樣,充分利用這些寶貴資源進行抗病新品種培育具有重要意義,但傳統(tǒng)實生選種或雜交育種不僅耗時長而且目標性狀聚合困難,后代易出現(xiàn)性狀分離。隨著現(xiàn)代測序技術的發(fā)展,通過QTL定位、轉(zhuǎn)錄組等方法,在獼猴桃中已經(jīng)挖掘出許多與抗?jié)儾∠嚓P的基因和轉(zhuǎn)錄因子等,這不僅為抗病材料的選育提供了重要的基因資源和分子標記,還可在早期進行目標性狀的預判和選擇,極大地提高育種效率。但是由于獼猴桃遺傳背景復雜,分子標記技術還無法很好的應用于育種實踐,今后還需加大穩(wěn)定性較好的分子標記開發(fā)力度。

近年來QTL定位技術在許多果樹重要性狀鑒定方面的應用取得重大進展并已在獼猴桃樹種中實施,獼猴桃定向高效精準育種策略成為可能。但該樹種染色體基數(shù)大、倍性復雜且雜合度高,因此構建高密度的遺傳圖譜較為困難,QTL精細定位實施還很少。今后應針對不同研究目的,將圖譜構建與雜交育種工作相結合,構建高層次和高實用價值的遺傳連鎖圖。

隨著基因組、轉(zhuǎn)錄組、代謝組等各類技術的發(fā)展以及獼猴桃多倍體基因組信息的不斷完善,可以建立不同倍性組合的遠緣雜交新基因?qū)肴后w開展QTL定位及抗性基因發(fā)掘工作,從而開發(fā)出潰瘍病抗性相關分子標記,為獼猴桃抗性新品種培育提供新途徑。雖然已報道許多與抗性相關基因,但整體而言對獼猴桃抗病分子機制及調(diào)控網(wǎng)絡研究存在不足,在抗病關鍵基因挖掘方面的研究也有待進一步深入。今后應注重抗性基因的功能驗證,以及關鍵基因在調(diào)控網(wǎng)絡中的作用,結合免疫途徑、代謝途徑等相關反應,解析其抗病分子機制。

參考文獻References:

[1] 黃宏文. 中國獼猴桃種質(zhì)資源[M]. 北京:中國林業(yè)出版社,2013:29-37.

HUANG Hongwen. Actinidia germplasm resources in China[M]. Beijing:China Forestry Publishing House,2013:29-37.

[2] 齊秀娟,郭丹丹,王然,鐘云鵬,方金豹. 我國獼猴桃產(chǎn)業(yè)發(fā)展現(xiàn)狀及對策建議[J]. 果樹學報,2020,37(5):754-763.

QI Xiujuan,GUO Dandan,WANG Ran,ZHONG Yunpeng,F(xiàn)ANG Jinbao. Development status and suggestions on Chinese kiwifruit industry[J]. Journal of Fruit Science,2020,37(5):754-763.

[3] MCCANN H C,LI L,LIU Y F,LI D W,PAN H,ZHONG C H,RIKKERINK E H A,TEMPLETON M D,STRAUB C,COLOMBI E,RAINEY P B,HUANG H W. Origin and evolution of the kiwifruit canker pandemic[J]. Genome Biology and Evolution,2017,9(4):932-944.

[4] CAMERON A,SAROJINI V. Pseudomonas syringae pv. actinidiae:Chemical control,resistance mechanisms and possible alternatives[J]. Plant Pathology,2014,63(1):1-11.

[5] CHAPMAN J R,TAYLOR R K,WEIR B S,ROMBERG M K,VANNESTE J L,LUCK J,ALEXANDER B J R. Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae[J]. Phytopathology,2012,102(11):1034-1044.

[6] SCORTICHINI M. Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy[J]. Plant Pathology,1994,43(6):1035-1038.

[7] KOH Y J,KIM G H,JUNG J S,LEE Y S,HUR J S. Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea[J]. New Zealand Journal of Crop and Horticultural Science,2010,38(4):275-282.

[8] VANNESTE J L. The scientific,economic,and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae)[J]. Annual Review of Phytopathology,2017,55:377-399.

[9] BUTLER M I,STOCKWELL P A,BLACK M A,DAY R C,LAMONT I L,POULTER R T M. Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China[J]. PLoS One,2013,8(2):e57464.

[10] 王濤,張計育,王剛,賈展慧,潘德林,郭忠仁. 獼猴桃細菌性潰瘍病研究進展[J]. 中國農(nóng)學通報,2020,36(3):123-128.

WANG Tao,ZHANG Jiyu,WANG Gang,JIA Zhanhui,PAN Delin,GUO Zhongren. Advances in kiwifruit bacterial canker[J]. Chinese Agricultural Science Bulletin,2020,36(3):123-128.

[11] 秦虎強,高小寧,趙志博,朱穗層,李建民,黃麗麗. 陜西獼猴桃細菌性潰瘍病田間發(fā)生動態(tài)和規(guī)律[J]. 植物保護學報,2013,40(3):225-230.

QIN Huqiang,GAO Xiaoning,ZHAO Zhibo,ZHU Suiceng,LI Jianmin,HUANG Lili. The prevalence dynamics and rules of bacterial canker of kiwi fruit in Shaanxi[J]. Journal of Plant Protection,2013,40(3):225-230.

[12] 鐘彩虹,李黎,潘慧,鄧蕾,陳美艷. 獼猴桃細菌性潰瘍病的發(fā)生規(guī)律及綜合防治技術[J]. 中國果樹,2020(1):9-13.

ZHONG Caihong,LI Li,PAN Hui,DENG Lei,CHEN Meiyan. Occurrence rule and comprehensive control of kiwifruit bacterial canker disease[J]. China Fruits,2020(1):9-13.

[13] 李黎,鐘彩虹,李大衛(wèi),張勝菊,黃宏文. 獼猴桃細菌性潰瘍病的研究進展[J]. 華中農(nóng)業(yè)大學學報,2013,32(5):124-133.

LI Li,ZHONG Caihong,LI Dawei,ZHANG Shengju,HUANG Hongwen. Research progress on bacterial canker disease of kiwifruit[J]. Journal of Huazhong Agricultural University,2013,32(5):124-133.

[14] 李亞巍,王小潔,吳群,李士謠,李雙榮,朱立武,劉普. 獼猴桃潰瘍病菌的田間分布及其傳播規(guī)律[J]. 生物學雜志,2019,36(2):46-50.

LI Yawei,WANG Xiaojie,WU Qun,LI Shiyao,LI Shuangrong,ZHU Liwu,LIU Pu. The field distribution and prevalence rules of Pseudomonas syringae pv. actinidiae in kiwifruit[J]. Journal of Biology,2019,36(2):46-50.

[15] VANNESTE J L,YU J,CORNISH D A,TANNER D J,WINDNER R,CHAPMAN J R,TAYLOR R K,MACKAY J F,DOWLUT S. Identification,virulence,and distribution of two biovars of Pseudomonas syringae pv. actinidiae in New Zealand[J]. Plant Disease,2013,97(6):708-719.

[16] 王發(fā)明,齊貝貝,葉開玉,龔弘娟,莫權輝,蔣橋生,劉平平,李潔維. 九個中華類紅肉獼猴桃品種的親緣關系及其潰瘍病抗性分析[J]. 分子植物育種,2021,19(1):193-199.

WANG Faming,QI Beibei,YE Kaiyu,GONG Hongjuan,MO Quanhui,JIANG Qiaosheng,LIU Pingping,LI Jiewei. The genetic relationship of nine red-fleshed kiwifruit cultivars (Actinidia chinensis) and their resistance to Pseudomonas syringae pv. actinidiae[J]. Molecular Plant Breeding,2021,19(1):193-199.

[17] SCORTICHINI M,MARCELLETTI S,F(xiàn)ERRANTE P,PETRICCIONE M,F(xiàn)IRRAO G. Pseudomonas syringae pv. actinidiae:A re-emerging,multi-faceted,pandemic pathogen[J]. Molecular Plant Pathology,2012,13(7):631-640.

[18] DONATI I,MAURI S,BURIANI G,CELLINI A,SPINELLI F. Role of Metcalfa pruinosa as a vector for Pseudomonas syringae pv. actinidiae[J]. Plant Pathology Journal,2017,33(6):554-560.

[19] EMILIO S,DAVIDE G. Dissemination of Pseudomonas syringae pv. actinidiae through pollen and its epiphytic life on leaves and fruits[J]. Phytopathologia Mediterranea,2011,50(3):489-496.

[20] LIU P,XUE S Z,HE R,HU J Y,WANG X J,JIA B,GALLIPOLI L,MAZZAGLIA A,BALESTRA G M,ZHU L W. Pseudomonas syringae pv. actinidiae isolated from non-kiwifruit plant species in China[J]. European Journal of Plant Pathology,2016,145(4):743-754.

[21] JAYARAMAN J,YOON M,HEMARA L M,BOHNE D,TAHIR J,CHEN R K Y,BRENDOLISE C,RIKKERINK E H A,TEMPLETON M D. Contrasting effector profiles between bacterial colonisers of kiwifruit reveal redundant roles converging on PTI-suppression and RIN4[J]. New Phytologist,2023,238(4):1605-1619.

[22] COLOMBI E,BERTELS F,DOULCIER G,MCCONNELL E,PICHUGINA T,SOHN K H,STRAUB C,MCCANN H C,RAINEY P B. Rapid dissemination of host metabolism-manipulating genes via integrative and conjugative elements[J]. Proceedings of the National Academy of Sciences of the United States of America,2024,121(11):e2309263121.

[23] BOTELHO J,SCHULENBURG H. The role of integrative and conjugative elements in antibiotic resistance evolution[J]. Trends in Microbiology,2021,29(1):8-18.

[24] MCCANN H C,RIKKERINK E H A,BERTELS F,F(xiàn)IERS M,LU A,REES-GEORGE J,ANDERSEN M T,GLEAVE A P,HAUBOLD B,WOHLERS M W,GUTTMAN D S,WANG P W,STRAUB C,VANNESTE J L,RAINEY P B,TEMPLETON M D. Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease[J]. PLoS Pathogens,2013,9(7):e1003503.

[25] SAWADA H,SUZUKI F,MATSUDA I,SAITOU N. Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster[J]. Journal of Molecular Evolution,1999,49(5):627-644.

[26] HAN H S,KOH Y J,HUR J S,JUNG J S. Identification and characterization of coronatine-producing Pseudomonas syringae pv. actinidiae[J]. Journal of Microbiology and Biotechnology,2003,13(1):110-118.

[27] VANNESTE J L. Pseudomonas syringae pv. actinidiae (Psa):A threat to the New Zealand and global kiwifruit industry[J]. New Zealand Journal of Crop and Horticultural Science,2012,40(4):265-267.

[28] CUNTY A,POLIAKOFF F,RIVOAL C,CESBRON S,SAUX M F,LEMAIRE C,JACQUES M,MANCEAU C,VANNESTE J. Characterization of Pseudomonas syringae pv. actinidiae (Psa) isolated from France and assignment of Psa biovar 4 to a de novo pathovar:Pseudomonas syringae pv. actinidifoliorum pv. nov[J]. Plant Pathology,2015,64:582-596.

[29] FUJIKAWA T,SAWADA H. Genome analysis of the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae biovar 5[J]. Scientific Reports,2016,6:21399.

[30] FUJIKAWA T,SAWADA H. Genome analysis of Pseudomonas syringae pv. actinidiae biovar 6,which produces the phytotoxins,phaseolotoxin and coronatine[J]. Scientific Reports,2019,9(1):3836.

[31] COLOMBI E,STRAUB C,KüNZEL S,TEMPLETON M D,MCCANN H C,RAINEY P B. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids[J]. Environmental Microbiology,2017,19(2):819-832.

[32] 石志軍,張慧琴,肖金平,楊魯瓊,孫志偉,謝鳴,馬遠. 不同獼猴桃品種對潰瘍病抗性的評價[J]. 浙江農(nóng)業(yè)學報,2014,26(3):752-759.

SHI Zhijun,ZHANG Huiqin,XIAO Jinping,YANG Luqiong,SUN Zhiwei,XIE Ming,MA Yuan. The resistance evaluation of different kiwifruit varieties to canker[J]. Acta Agriculturae Zhejiangensis,2014,26(3):752-759.

[33] 宋雅林,林苗苗,鐘云鵬,陳錦永,齊秀娟,孫雷明,方金豹. 獼猴桃品種(系)潰瘍病抗性鑒定及不同評價指標的相關性分析[J]. 果樹學報,2020,37(6):900-908.

SONG Yalin,LIN Miaomiao,ZHONG Yunpeng,CHEN Jinyong,QI Xiujuan,SUN Leiming,F(xiàn)ANG Jinbao. Evaluation of resistance of kiwifruit varieties (line) against bacterial canker disease and correlation analysis among evaluation indexes[J]. Journal of Fruit Science,2020,37(6):900-908.

[34] 溫欣. 軟棗獼猴桃種質(zhì)資源潰瘍病抗性評價及抗性生理研究[D]. 北京:中國農(nóng)業(yè)科學院,2020.

WEN Xin. Evaluation of resistance to Pseudomonas syringae pv. actinidiae and study on resistance physiology of Actinidia arguta germplasm resources[D]. Beijing:Chinese Academy of Agricultural Sciences,2020.

[35] 裴艷剛,馬利,歲立云,崔永亮,劉曉敏,龔國淑. 不同獼猴桃品種對潰瘍病菌的抗性評價及其利用[J]. 果樹學報,2021,38(7):1153-1162.

PEI Yangang,MA Li,SUI Liyun,CUI Yongliang,LIU Xiaomin,GONG Guoshu. Resistance evaluation and utilization of different kiwifruit cultivars to Pseudomonas syringae pv. actinidiae[J]. Journal of Fruit Science,2021,38(7):1153-1162.

[36] 鄭麗,夏文娟,陳奇,袁炎良,陳沙,尹海軍,柳威. 抗?jié)儾~J猴桃新品種“先沃五號” 的選育[J]. 中國南方果樹,2023,52(1):160-162.

ZHENG Li,XIA Wenjuan,CHEN Qi,YUAN Yanliang,CHEN Sha,YIN Haijun,LIU Wei. Selecting of canker resistant kiwifruit variety “Xianwo No. 5”[J]. South China Fruits,2023,52(1):160-162.

[37] 廖慧蘋,謝玥,周英丹,劉瑤,胥偉秋,李明章. 抗?jié)儾?yōu)質(zhì)獼猴桃新品種‘華金3號’[J]. 園藝學報,2024,51(增刊1):51-52.

LIAO Huiping,XIE Yue,ZHOU Yingdan,LIU Yao,XU Weiqiu,LI Mingzhang. A new yellow-fleshed kiwifruit cultivar ‘Huajin 3’[J]. Acta Horticulturae Sinica,2024,51(Suppl. 1):51-52.

[38] 羅雙,韓倩容,陳言,戢小梅,劉杰,米緒凱,程運江,鄧秀新,蔡禮鴻,張雅娟,曾云流. 豐產(chǎn)、抗病加工型獼猴桃新品種‘金塘一號’[J]. 園藝學報,2023,50(增刊2):23-24.

LUO Shuang,HAN Qianrong,CHEN Yan,JI Xiaomei,LIU Jie,MI Xukai,CHENG Yunjiang,DENG Xiuxin,CAI Lihong,ZHANG Yajuan,ZENG Yunliu. Breeding of a new processed kiwifruit cultivar ‘Jintang 1’ with high yield and high disease resistance[J]. Acta Horticulturae Sinica,2023,50(Suppl. 2):23-24.

[39] 張小桐. 獼猴桃對潰瘍病抗性評價指標的研究[D]. 合肥:安徽農(nóng)業(yè)大學,2007.

ZHANG Xiaotong. Study on the resistance indexes of kiwifruit to Pseudomonas syringae pv. actinidiae[D]. Hefei:Anhui Agricultural University,2007.

[40] 賀占雪,李欣,朱太富,蘇效蘭,王連春. 野生獼猴桃枝葉組織結構與抗?jié)儾〉年P系分析[J]. 中國植保導刊,2023,43(10):9-14.

HE Zhanxue,LI Xin,ZHU Taifu,SU Xiaolan,WANG Lianchun. Analysis of the relationship between the resistance of wild kiwifruit to canker and the tissue structure of its branches and leaves[J]. China Plant Protection,2023,43(10):9-14.

[41] 李淼,檀根甲,李瑤,承河元,周子燕. 獼猴桃品種中糖分及木質(zhì)素含量與抗?jié)儾〉年P系[J]. 植物保護學報,2005,32(2):138-142.

LI Miao,TAN Genjia,LI Yao,CHENG Heyuan,ZHOU Ziyan. Relationship between contents of lignin and soluble sugar in plants of kiwifruit cultivars and their resistance to kiwifruit bacterial canker infected by Pseudomonas syringae pv. actinidiae[J]. Journal of Plant Protection,2005,32(2):138-142.

[42] 李聰. 獼猴桃枝葉組織結構及內(nèi)含物與潰瘍病的相關性研究[D]. 楊凌:西北農(nóng)林科技大學,2016.

LI Cong. Correlation of the relationship between resistance of branch leaves structure and inclusion and kiwifruit canker[D]. Yangling:Northwest A amp; F University,2016.

[43] WANG Y,TAN Z C,ZHEN X,LIANG Y Y,GAO J Y,ZHAO Y H,LIU S B,ZHA M R. Contribution of sucrose metabolism in phloem to kiwifruit bacterial canker resistance[J]. Plants,2023,12(4):918.

[44] 賀占雪,朱太富,李欣,蘇效蘭,劉惠民,王連春. 不同砧穗組合對獼猴桃潰瘍病的抗性差異及機制分析[J]. 河南農(nóng)業(yè)科學,2023,52(1):95-107.

HE Zhanxue,ZHU Taifu,LI Xin,SU Xiaolan,LIU Huimin,WANG Lianchun. Analysis of differences and mechanism of resistance to canker among different kiwifruit rootstock-scion combinations[J]. Journal of Henan Agricultural Sciences,2023,52(1):95-107.

[45] 劉明,王繼華,王同昌. DNA分子標記技術[J]. 東北林業(yè)大學學報,2003,31(6):65-67.

LIU Ming,WANG Jihua,WANG Tongchang. DNA molecular markers[J]. Journal of Northeast Forestry University,2003,31(6):65-67.

[46] 董曉莉,湯浩茹,甘玲,李明章. DNA分子標記在獼猴桃上的應用[J]. 果樹學報,2005,22(6):682-686.

DONG Xiaoli,TANG Haoru,GAN Ling,LI Mingzhang. Advances in research on application of DNA molecular markers in Actinidia[J]. Journal of Fruit Science,2005,22(6):682-686.

[47] 王玉杰,冷春旭,孫中義,王珣,趙曦,李曉娟,趙偉,吳立成. 分子標記技術在農(nóng)作物種子檢測中的應用[J]. 中國種業(yè),2022(3):38-40.

WANG Yujie,LENG Chunxu,SUN Zhongyi,WANG Xun,ZHAO Xi,LI Xiaojuan,ZHAO Wei,WU Licheng. Application of molecular marker technology in crop seed detection[J]. China Seed Industry,2022(3):38-40.

[48] 劉念析,陳亮,厲志,劉寶泉,劉佳,衣志剛,董志敏,王曙明. 大豆抗病分子標記的研究進展[J]. 作物雜志,2019(4):10-16.

LIU Nianxi,CHEN Liang,LI Zhi,LIU Baoquan,LIU Jia,YI Zhigang,DONG Zhimin,WANG Shuming. Advances in molecular markers of soybean disease resistance[J]. Crops,2019(4):10-16.

[49] 鄧世峰,王先如,張安存,陳次娥,吳明. 分子標記輔助選擇在我國水稻抗病育種中的研究進展[J]. 江西農(nóng)業(yè),2019(22):40.

DENG Shifeng,WANG Xianru,ZHANG Ancun,CHEN Cie,WU Ming. Research progress of molecular marker-assisted selection in rice disease resistance breeding in China[J]. Jiangxi Agriculture,2019(22):40.

[50] 楊再俊,鄭家瑞,潘鵬程,潘寅濤,高彬,李云洲. 番茄抗病種質(zhì)資源分子標記篩選[J]. 山地農(nóng)業(yè)生物學報,2021,40(6):30-36.

YANG Zaijun,ZHENG Jiarui,PAN Pengcheng,PAN Yintao,GAO Bin,LI Yunzhou. Molecular marker detection of resistance genes in tomato germplasm[J]. Journal of Mountain Agriculture and Biology,2021,40(6):30-36.

[51] 張桂華,韓毅科,孫小紅,李淑菊,魏愛民,杜勝利. 與黃瓜抗黑星病基因連鎖的分子標記研究[J]. 中國農(nóng)業(yè)科學,2006,39(11):2250-2254.

ZHANG Guihua,HAN Yike,SUN Xiaohong,LI Shuju,WEI Aimin,DU Shengli. Molecular marker linked to the resistant gene of cucumber scab[J]. Scientia Agricultura Sinica,2006,39(11):2250-2254.

[52] 劉娟. 獼猴桃潰瘍病抗性材料評價及其親緣關系的ISSR聚類分析[D]. 雅安:四川農(nóng)業(yè)大學,2015.

LIU Juan. Evaluation of resistant varieties on kiwifruit bacterial canker and cluster analysis of genetic relations by ISSR markers[D]. Yaan:Sichuan Agricultural University,2015.

[53] 易盼盼,樊紅科,雷玉山,王飛. 獼猴桃抗?jié)儾』蜻B鎖SSR分子標記初步研究[J]. 西北農(nóng)林科技大學學報(自然科學版),2015,43(4):91-98.

YI Panpan,F(xiàn)AN Hongke,LEI Yushan,WANG Fei. Priliminary study on SSR marker of gene linkage against Pseudomonas syringae pv. actinidiae[J]. Journal of Northwest A amp; F University (Natural Science Edition),2015,43(4):91-98.

[54] 李淼,檀根甲,李瑤,丁克堅,產(chǎn)祝龍,承河元. 不同獼猴桃品種RAPD分析及其與抗?jié)儾〉年P系[J]. 植物保護,2009,35(3):41-46.

LI Miao,TAN Genjia,LI Yao,DING Kejian,CHAN Zhulong,CHENG Heyuan. Analysis of the relationships between different kiwifruit cultivars and their resistance to Pseudomonas syringae pv. actinidiae by RAPD[J]. Plant Protection,2009,35(3):41-46.

[55] FRASER L G,DATSON P M,TSANG G K,MANAKO K I,RIKKERINK E H,MCNEILAGE M A. Characterisation,evolutionary trends and mapping of putative resistance and defence genes in Actinidia (kiwifruit)[J]. Tree Genetics amp; Genomes,2015,11(2):21.

[56] 王倩,王斌. DNA分子標記在果樹遺傳學研究上的應用[J]. 遺傳,2000,22(5):339-344.

WANG Qian,WANG Bin. The application of DNA molecular markers in fruit tree genetics[J]. Hereditas(Beijing),2000,22(5):339-344.

[57] 王中堂. 棗高密度遺傳連鎖圖譜構建與農(nóng)藝性狀QTL定位[D]. 楊凌:西北農(nóng)林科技大學,2020.

WANG Zhongtang. High-density genetic map construction and QTL mapping of agronomic traits of Ziziphus jujuba Mill.[D]. Yangling:Northwest A amp; F University,2020.

[58] 李紅蓮,梁英海,王珊珊,趙晨輝,張冰冰,宋宏偉. 蘋果抗病性狀QTL的研究進展[J]. 分子植物育種,2022,20(17):5741-5746.

LI Honglian,LIANG Yinghai,WANG Shanshan,ZHAO Chenhui,ZHANG Bingbing,SONG Hongwei. Research progress on QTL related to apple disease resistance traits[J]. Molecular Plant Breeding,2022,20(17):5741-5746.

[59] LI P,TAN X B,LIU R T,RAHMAN F U,JIANG J F,SUN L,F(xiàn)AN X C,LIU J H,LIU C H,ZHANG Y. QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape (Vitis vinifera L. × Vitis davidii Foex.) crossing[J]. Horticulture Research,2023,10(5):uhad063.

[60] 楊宏賓. 柑橘果面蠟質(zhì)合成關鍵基因挖掘及重要采后性狀的QTL定位[D]. 武漢:華中農(nóng)業(yè)大學,2021.

YANG Hongbin. The mining of key genes involved in cuticular wax synthesis and QTL mapping of the important postharvest traits in citrus fruit[D]. Wuhan:Huazhong Agricultural University,2021.

[61] QI X L,DONG Y X,LIU C L,SONG L L,CHEN L,LI M. A 5.2-kb insertion in the coding sequence of PavSCPL,a serine carboxypeptidase-like enhances fruit firmness in Prunus avium[J]. Plant Biotechnology Journal,2024,22(6):1622-1635.

[62] 王龍,王蘇珂,薛華柏,蘇艷麗,楊健,李秀根. 梨栽培相關性狀的QTL分析[J]. 果樹學報,2018,35(增刊1):61-65.

WANG Long,WANG Suke,XUE Huabai,SU Yanli,YANG Jian,LI Xiugen. QTL analysis for cultivated traits in pears[J]. Journal of Fruit Science,2018,35(Suppl. 1):61-65.

[63] TESTOLIN R,HUANG W G,LAIN O,MESSINA R,VECCHIONE A,CIPRIANI G. A kiwifruit (Actinidia spp.) linkage map based on microsatellites and integrated with AFLP markers[J]. Theoretical and Applied Genetics,2001,103(1):30-36.

[64] TAHIR J,HOYTE S,BASSETT H,BRENDOLISE C,CHATTERJEE A,TEMPLETON K,DENG C,CROWHURST R,MONTEFIORI M,MORGAN E,WOTTON A,F(xiàn)UNNELL K,WIEDOW C,KNAEBEL M,HEDDERLEY D,VANNESTE J,MCCALLUM J,HOEATA K,NATH A,CHAGNé D,GEA L,GARDINER S E. Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit (Actinidia chinensis)[J]. Horticulture Research,2019,6:101.

[65] TAHIR J,BRENDOLISE C,HOYTE S,LUCAS M,THOMSON S,HOEATA K,MCKENZIE C,WOTTON A,F(xiàn)UNNELL K,MORGAN E,HEDDERLEY D,CHAGNé D,BOURKE P M,MCCALLUM J,GARDINER S E,GEA L. QTL mapping for resistance to cankers induced by Pseudomonas syringae pv. actinidiae (Psa) in a tetraploid Actinidia chinensis kiwifruit population[J]. Pathogens,2020,9(11):967.

[66] YOUNG N D. QTL mapping and quantitative disease resistance in plants[J]. Annual Review of Phytopathology,1996,34:479-501.

[67] QUENOUILLE J,PAULHIAC E,MOURY B,PALLOIX A. Quantitative trait loci from the host genetic background modulate the durability of a resistance gene:A rational basis for sustainable resistance breeding in plants[J]. Heredity,2014,112(6):579-587.

[68] FRASER L G,TSANG G K,DATSON P M,DE SILVA H N,HARVEY C F,GILL G P,CROWHURST R N,MCNEILAGE M A. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes[J]. BMC Genomics,2009,10:102.

[69] HUANG S X,DING J,DENG D J,TANG W,SUN H H,LIU D Y,ZHANG L,NIU X L,ZHANG X,MENG M,YU J D,LIU J,HAN Y,SHI W,ZHANG D F,CAO S Q,WEI Z J,CUI Y L,XIA Y H,ZENG H P,BAO K,LIN L,MIN Y,ZHANG H,MIAO M,TANG X F,ZHU Y Y,SUI Y,LI G W,SUN H J,YUE J Y,SUN J Q,LIU F F,ZHOU L Q,LEI L,ZHENG X Q,LIU M,HUANG L,SONG J,XU C H,LI J W,YE K Y,ZHONG S L,LU B R,HE G H,XIAO F M,WANG H L,ZHENG H K,F(xiàn)EI Z J,LIU Y S. Draft genome of the kiwifruit Actinidia chinensis[J]. Nature Communications,2013,4:2640.

[70] SCAGLIONE D,F(xiàn)ORNASIERO A,PINTO C,CATTONARO F,SPADOTTO A,INFANTE R,MENESES C,MESSINA R,LAIN O,CIPRIANI G,TESTOLIN R. A RAD-based linkage map of kiwifruit (Actinidia chinensis Pl.) as a tool to improve the genome assembly and to scan the genomic region of the gender determinant for the marker-assisted breeding[J]. Tree Genetics amp; Genomes,2015,11(6):115.

[71] ZHANG Q,LIU C Y,LIU Y F,VANBUREN R,YAO X H,ZHONG C H,HUANG H W. High-density interspecific genetic maps of kiwifruit and the identification of sex-specific markers[J]. DNA Research,2015,22(5):367-375.

[72] 劉春燕. 獼猴桃種間高密度遺傳圖譜的構建及果實性狀QTLs定位[D]. 武漢:中國科學院研究生院(武漢植物園),2016.

LIU Chunyan. Construction of high-density interspecific genetic maps and identification of QTLs for fruits in kiwifruit[D]. Wuhan:Wuhan Botanical Garden,Chinese Academy of Sciences,2016.

[73] LIU C Y,LI D W,ZHOU J H,ZHANG Q,TIAN H,YAO X H. Construction of a SNP-based genetic linkage map for kiwifruit using next-generation restriction-site-associated DNA sequencing (RADseq)[J]. Molecular Breeding,2017,37(11):139.

[74] POPOWSKI E,THOMSON S J,KN?BEL M,TAHIR J,CROWHURST R N,DAVY M,F(xiàn)OSTER T M,SCHAFFER R J,TUSTIN D S,ALLAN A C,MCCALLUM J,CHAGNé D. Construction of a high-density genetic map for hexaploid kiwifruit (Actinidia chinensis var. deliciosa) using genotyping by sequencing[J]. G3,2021,11(7):jkab142.

[75] MACNEE N,HILARIO E,TAHIR J,CURRIE A,WARREN B,REBSTOCK R,HALLETT I C,CHAGNé D,SCHAFFER R J,BULLEY S M. Peridermal fruit skin formation in Actinidia sp. (kiwifruit) is associated with genetic loci controlling russeting and cuticle formation[J]. BMC Plant Biology,2021,21(1):334.

[76] WANG R,XING S Y,BOURKE P M,QI X Q,LIN M M,ESSELINK D,ARENS P,VOORRIPS R E,VISSER R G F,SUN L M,ZHONG Y P,GU H,LI Y K,LI S K,MALIEPAARD C,F(xiàn)ANG J B. Development of a 135K SNP genotyping array for Actinidia arguta and its applications for genetic mapping and QTL analysis in kiwifruit[J]. Plant Biotechnology Journal,2023,21(2):369-380.

[77] JONES J D G,DANGL J L. The plant immune system[J]. Nature,2006,444(7117):323-329.

[78] 汪巧. 植物抗病機理研究進展綜述[J]. 安徽農(nóng)學通報,2015,21(8):24-30.

WANG Qiao. Advances on the mechanism of plant disease resistance[J]. Anhui Agricultural Science Bulletin,2015,21(8):24-30.

[79] NOMURA K,DEBROY S,LEE Y H,PUMPLIN N,JONES J,HE S Y. A bacterial virulence protein suppresses host innate immunity to cuse plant disease[J]. Science,313(5784):220-223.

[80] KOURELIS J,VAN DER HOORN R A L. Defended to the nines:25 years of resistance gene cloning identifies nine mechanisms for R protein function[J]. The Plant Cell,2018,30(2):285-299.

[81] ZHENG X J,ZHOU Z Y,GONG Z,HU M J,AHN Y J,ZHANG X J,ZHAO Y,GONG G S,ZHANG J,ZUO J R,HAN G Z,HOON S K,ZHOU J M. Two plant NLR proteins confer strain-specific resistance conditioned by an effector from Pseudomonas syringae pv. actinidiae[J]. Journal of Genetics and Genomics,2022,49(8):823-832.

[82] YOON M,RIKKERINK E H A. Rpa1 mediates an immune response to avrRpm1Psa and confers resistance against Pseudomonas syringae pv. actinidiae[J]. The Plant Journal,2020,102(4):688-702.

[83] YEH S M,YOON M,SCOTT S,CHATTERJEE A,HEMARA L M,CHEN R K Y,WANG T C,TEMPLETON K,RIKKERINK E H A,JAYARAMAN J,BRENDOLISE C. NbPTR1 confers resistance against Pseudomonas syringae pv. actinidiae in kiwifruit[J]. Plant,Cell amp; Environment,2024,47(11):4101-4115.

[84] D?RMANN P,GOPALAN S,HE S Y,BENNING C. A gene family in Arabidopsis thaliana with sequence similarity to NDR1 and HIN1[J]. Plant Physiology and Biochemistry,2000,38(10):789-796.

[85] VARET A,PARKER J,TORNERO P,NASS N,NüRNBERGER T,DANGL J L,SCHEEL D,LEE J. NHL25 and NHL3 two NDR1/HIN1-1ike genes in Arabidopsis thaliana with potential role(s) in plant defense[J]. Molecular Plant-Microbe Interactions,2002,15(6):608-616.

[86] ZHENG M S,TAKAHASHI H,MIYAZAKI A,HAMAMOTO H,SHAH J,YAMAGUCHI I,KUSANO T. Up-regulation of Arabidopsis thaliana NHL10 in the hypersensitive response to Cucumber mosaic virus infection and in senescing leaves is controlled by signalling pathways that differ in salicylate involvement[J]. Planta,2004,218(5):740-750.

[87] CHEN Q S,TIAN Z D,JIANG R,ZHENG X A,XIE C H,LIU J. StPOTHR1,a NDR1/HIN1-like gene in Solanum tuberosum,enhances resistance against Phytophthora infestans[J]. Biochemical and Biophysical Research Communications,2018,496(4):1155-1161.

[88] WANG T,WANG G,JIA Z H,PAN D L,ZHANG J Y,GUO Z R. Transcriptome analysis of kiwifruit in response to Pseudomonas syringae pv. actinidiae infection[J]. International Journal of Molecular Sciences,2018,19(2):373.

[89] SONG Y L,SUN L M,LIN M M,CHEN J Y,QI X J,HU C G,F(xiàn)ANG J B. Comparative transcriptome analysis of resistant and susceptible kiwifruits in response to Pseudomonas syringae pv. actinidiae during early infection[J]. PLoS One,2019,14(2):e0211913.

[90] 張敏,宋雅林,林苗苗,王然,李玉闊,孫艷香,方金豹,蘇彥蘋,孫雷明,齊秀娟. 獼猴桃病程相關蛋白PR-1基因的克隆和功能分析[J]. 果樹學報,2024,41(8):1524-1533.

ZHANG Min,SONG Yalin,LIN Miaomiao,WANG Ran,LI Yukuo,SUN Yanxiang,F(xiàn)ANG Jinbao,SU Yanping,SUN Leiming,QI Xiujuan. Cloning and function analysis of PR-1 gene in Actinidia[J]. Journal of Fruit Science,2024,41(8):1524-1533.

[91] LIU W,ZHAO C,LIU L,HUANG D,MA C,LI R,HUANG L L. Genome-wide identification of the TGA gene family in kiwifruit (Actinidia chinensis spp.) and revealing its roles in response to Pseudomonas syringae pv. actinidiae (Psa) infection[J]. International Journal of Biological Macromolecules,2022,222:101-113.

[92] SUN L M,F(xiàn)ANG J B,ZHANG M,QI X J,LIN M M,CHEN J Y. Molecular cloning and functional analysis of the NPR1 homolog in kiwifruit (Actinidia eriantha)[J]. Frontiers in Plant Science,2020,11:551201.

[93] BEATRICE C,LINTHORST J M H,CINZIA F,LUCA R. Enhancement of PR1 and PR5 gene expressions by chitosan treatment in kiwifruit plants inoculated with Pseudomonas syringae pv. actinidiae[J]. European Journal of Plant Pathology,2017,148(1):163-179.

猜你喜歡
分子標記潰瘍病獼猴桃
摘獼猴桃
快樂語文(2021年36期)2022-01-18 05:48:38
冬季潰瘍病高發(fā) 防治須加強
提取獼猴桃的DNA
摘獼猴桃
葡萄轉(zhuǎn)色期干梗掉粒 多是潰瘍病
獼猴桃潰瘍病致病根源及防控對策
軟棗獼猴桃性別相關的SRAP分子標記
大白菜種質(zhì)資源抗根腫病基因CRa和CRb的分子標記鑒定與分析
玉米大斑病的研究進展
養(yǎng)個獼猴桃
德惠市| 泗阳县| 香河县| 宜都市| 东安县| 平潭县| 临沧市| 彭泽县| 墨玉县| 浦东新区| 罗甸县| 卓资县| 凤城市| 永春县| 北安市| 侯马市| 怀来县| 漾濞| 繁峙县| 固原市| 英吉沙县| 门头沟区| 宾阳县| 上杭县| 图片| 宁阳县| 青龙| 岳阳县| 泾阳县| 娱乐| 旌德县| 临高县| 左权县| 宝鸡市| 岳普湖县| 屯留县| 全椒县| 辉县市| 新巴尔虎右旗| 大足县| 慈利县|