◆栗孝琴
(河北省張家口市高新區(qū)東辛莊中學)
在中學數(shù)學教學中要注重滲透數(shù)學思想和方法
◆栗孝琴
(河北省張家口市高新區(qū)東辛莊中學)
數(shù)學思想和方法是數(shù)學知識的精髓,又是知識轉(zhuǎn)化為能力的橋梁。目前初中階段,主要數(shù)學思想方法有:數(shù)形結(jié)合的思想、分類討論的思想、整體思想、化歸的思想、轉(zhuǎn)化思想、歸納思想、類比的思想、函數(shù)的思想、方程與函數(shù)的思想方法等。提高學生的數(shù)學素質(zhì)、指導學生學習數(shù)學方法,毋庸置疑,必須指導學生緊緊抓住掌握數(shù)學思想方法是這一數(shù)學鏈條中最重要的一環(huán)。
新課程把數(shù)學思想、方法作為基礎(chǔ)知識的重要組成部分,在數(shù)學《新課程標準》中明確提出來,這不僅是課標體現(xiàn)義務教育性質(zhì)的重要表現(xiàn),也是對學生實施創(chuàng)新教育、培訓創(chuàng)新思維的重要保證。
數(shù)學思想是數(shù)學的靈魂,數(shù)學方法是數(shù)學的行為。運用數(shù)學方法解決問題的過程就是感性認識不斷積累的過程,當這種量的積累達到一定程序時就產(chǎn)生了質(zhì)的飛躍,從而上升為數(shù)學思想。
1.新課標要求,滲透“層次”教學?!稊?shù)學新課標》對初中數(shù)學中滲透的數(shù)學思想、方法劃分為三個層次,即“了解”、“理解”和“會應用”。在教學中,要求學生“了解”數(shù)學思想有:數(shù)形結(jié)合的思想、分類的思想、化歸的思想、類比的思想和函數(shù)的思想等。這里需要說明的是,有些數(shù)學思想在{數(shù)學新課標》中并沒有明確提出來,比如,化歸思想是滲透在學習新知識和運用新知識解決問題的過程中的,在分式方程的解法中,就體現(xiàn)了“分式方程”向“整式方程”轉(zhuǎn)化的思想方法。
教師在整個教學過程中,不僅應該使學生能夠領(lǐng)悟到這些數(shù)學思想的應用,而且要激發(fā)學生學習數(shù)學思想的好奇心和求知欲,通過獨立思考,不斷追求新知,發(fā)現(xiàn)、提出、分析并創(chuàng)造性地解決問題。在《數(shù)學新課標》中要求“了解”的方法有:分類法、類比法、反證法等。要求“理解”的或“會應用”的方法有:待定系數(shù)法、消元法、降次法、配方法、換元法、圖,象法等。在教學中,要認真把握好“了解”、“理解”、“會應用”這三個層次。不能隨意將“了解”的層次提高到“理解”的層次,把“理解”的層次提高到“會應用”的層次,不然的話,學生初次接觸就會感到數(shù)學思想、方法抽象難懂,高深莫測,從而導致他們失去信心。
2.從“方法”了解“思想”,用“思想”指導“方法”。在初中數(shù)學中,許多數(shù)學思想和方法是——致的,兩者之間很難分割。它們既相輔相成,又相互蘊含。因此,在教學中,加強學生對數(shù)學方法的理解和應用,以達到對數(shù)學思想的了解,使數(shù)學思想與方法得到交融的有效方法。如化歸思想,可以說是貫穿于整個初中階段的教學,具體表現(xiàn)為從未知到已知的轉(zhuǎn)化、一般到特殊的轉(zhuǎn)化、局部與整體的轉(zhuǎn)化,課本引入了許多數(shù)學方法,比如,換元法,消元降次法、圖象法、待定系數(shù)法、配方法等。在數(shù)學教學中,通過對具體數(shù)學方法的學習,使學生逐步領(lǐng)略內(nèi)含于方法的數(shù)學思想;同時,數(shù)學思想的指導,又深化了數(shù)學方法的運用。這樣處置,使“方法”與“思想”珠聯(lián)璧合,將創(chuàng)新思維和創(chuàng)新精神寓于教學之中,教學才能卓有成效。
要達到《數(shù)學新課標》的基本要求,教學中應遵循以下幾項原則:
1.滲透“方法”,了解“思想”。由于初中學生數(shù)學知識比較貧乏,抽象思維能力也較為薄弱,把數(shù)學思想、方法作為一門獨立的課程還缺乏應有的基礎(chǔ)。因而只能將數(shù)學知識作為載體,把數(shù)學思想和方法的教學滲透到數(shù)學知識的教學中。教師要把握好滲透的契機,重視數(shù)學概念、公式、定理、法則的提出過程,知識的形成、發(fā)展過程,解決問題和規(guī)律的概括過程,使學生在這些過程中展開思維,從而發(fā)展他們的科學精神和創(chuàng)新意識,形成獲取、發(fā)展新知識,運用新知識解決問題。忽視或壓縮這些過程,一味灌輸知識的結(jié)論,就必然失去滲透數(shù)學思想、方法的一次次良機。在滲透數(shù)學思想、方法的過程中,教師要精心設(shè)計、有機結(jié)合,要有意識地潛移默化地啟發(fā)學生領(lǐng)悟蘊含于數(shù)學之中的種種數(shù)學思想方法,比如,在學習一元二次方程的解法時,啟發(fā)學生把一元二次方程轉(zhuǎn)化為一元一次方程,在這個過程中體現(xiàn)了“轉(zhuǎn)化降次”的數(shù)學思想。
2.訓練“方法”,理解“思想”。數(shù)學思想的內(nèi)容是相當豐富的,方法也有難有易。因此,必須分層次地進行滲透和教學。這就需要教師全面地熟悉初中三個年級的教材,鉆研教材,努力挖掘教材中進行數(shù)學思想、方法滲透的各種因素,對這些知識從思想方法的角度作認真分析,按照初中三個年級不同的年齡特征、知識掌握的程度、認知能力、理解能力和可接受性能力由淺入深,由易到難分層次地貫徹數(shù)學思想、方法的教學。如在教學同底數(shù)冪的乘法時,引導學生先研究底數(shù)、指數(shù)為具體數(shù)的同底數(shù)冪的運算方法和運算結(jié)果,從而歸納出一般方法,在得出用 a表示底數(shù),用m、n表示指數(shù)的一般法則以后,再要求學生應用一般法則來指導具體的運算。在整個教學中,教師分層次地滲透了歸納和演繹的數(shù)學方法,對學生養(yǎng)成良好的思維習慣起重要作用。
3.掌握“方法”,運用“思想”。數(shù)學知識的學習要經(jīng)過聽講、復習、做習題等才能掌握和鞏固。數(shù)學思想、方法的形成同樣有一個循序漸進的過程。只有經(jīng)過反復訓練才能使學生真正領(lǐng)會。另外,使學生形成自覺運用數(shù)學思想方法的意識,必須建立起學生自我的“數(shù)學思想方法系統(tǒng)”,這更需要一個反復訓練、不斷完善的過程。比如,運用類比的數(shù)學方法,在新概念提出、新知識點的講授過程中,可以使學生易于理解和掌握。學習分式計算的時候,可以和分數(shù)計算類比;在學習二次函數(shù)有關(guān)性質(zhì)時,我們可以和一元二次方程的根與系數(shù)性質(zhì)類比。通過多次重復性的演示,使學生真正理解、掌握類比的數(shù)學方法。
4.提煉“方法”,完善“思想”。教學中要適時恰當?shù)貙?shù)學方法給予提煉和概括,讓學生有明確的印象。由于數(shù)學思想、方法分散在各個不同部分,而同一問題又可以用不同的數(shù)學思想、方法來解決。因此,教師的概括、分析是十分重要的。教師還要有意識地培養(yǎng)學生自我提煉、揣摩概括數(shù)學思想方法的能力,這樣才能把數(shù)學思想、方法的教學落在實處。
教學中那種只重視講授表層知識,而不注重滲透數(shù)學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調(diào)數(shù)學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源水,無本之木,學生也難以領(lǐng)略深層知識的真諦。因此,數(shù)學思想的教學應與整個表層知識的講授融為一體。只要我們執(zhí)教者課前精心設(shè)計,課上精心組織,充分發(fā)揮學生的主體作用,多創(chuàng)設(shè)情景,多提供機會,堅持不懈,就能達到我們的教學育人目標。