袁 帥,王 普,何軍邀
(浙江工業(yè)大學(xué) 藥學(xué)院,浙江 杭州 310032)
α-乙基-2-氧-1-吡咯烷乙酸乙酯水解酶產(chǎn)生菌發(fā)酵培養(yǎng)基的響應(yīng)面優(yōu)化
袁 帥,王 普,何軍邀
(浙江工業(yè)大學(xué) 藥學(xué)院,浙江 杭州 310032)
對耐酪氨酸冢村氏菌(Tsukamurellatyrosinosolvens)E105菌株生物拆分外消旋體α-乙基-2-氧-1-吡咯烷乙酸乙酯制備左乙拉西坦關(guān)鍵手性中間體(S)-α-乙基-2-氧-1-吡咯烷乙酸的發(fā)酵培養(yǎng)基進(jìn)行優(yōu)化,以提高其產(chǎn)酶活力.首先考察了碳源和氮源對菌種產(chǎn)酶活力的影響,并通過Plackett-Burman實(shí)驗(yàn)得出影響該菌株產(chǎn)水解酶的最主要因素為酵母粉質(zhì)量濃度和初始pH值.繼而采用中心組合實(shí)驗(yàn)并結(jié)合響應(yīng)面分析優(yōu)化發(fā)酵培養(yǎng)基組成,確定了最佳的酵母粉質(zhì)量濃度為12.1 g/L,最佳的初始pH值為7.06.在優(yōu)化的條件下酶活力可達(dá)1 024.6 U/mL,較優(yōu)化前提高了67%,表明采用響應(yīng)面法優(yōu)化發(fā)酵培養(yǎng)基組成是提高該菌株產(chǎn)酶活力的有效途徑之一.
α-乙基-2-氧-1-吡咯烷乙酸乙酯;冢村氏菌;水解酶;響應(yīng)面優(yōu)化
左乙拉西坦(Levetiracetam,LEV,商品名Keppra?)是比利時聯(lián)合化學(xué)公司(UCB)研發(fā)的新一代抗癲癇藥物(AEDs)[1],化學(xué)名為(S)-α-乙基-2-氧-1-吡咯烷乙酰胺[2],為具有吡咯烷酮結(jié)構(gòu)的促智藥[3].由于其獨(dú)特的抗癲癇機(jī)制,較理想的藥代動力學(xué)、高效安全的臨床效果,不與其他AEDs發(fā)生作用以及較少的副作用等特點(diǎn)[4-7],1999年FDA正式批準(zhǔn)將其用于16歲以上成人部分性癲癇發(fā)作的添加治療,2005年又將適應(yīng)癥擴(kuò)大到4歲以上兒童[8-9].目前,LEV已在歐美廣泛使用[10],2006年獲準(zhǔn)在我國上市.目前報(bào)道的LEV制備方法主要采用化學(xué)合成,包括手性源法,手性拆分和不對稱合成[3,11].但上述方法在制備LEV的過程中存在原料成本高、反應(yīng)步驟繁瑣、環(huán)境污染大等問題.近年來,生物催化手性合成技術(shù)的發(fā)展為LEV的制備提供了新的途徑.國內(nèi)外關(guān)于生物催化制備LEV的報(bào)道很少,僅見Tucker等[12]通過構(gòu)建產(chǎn)腈水合酶NH33的大腸桿菌基因工程菌,利用其細(xì)胞裂解液拆分外消旋α-乙基-2-氧-1-吡咯烷乙腈制備 LEV,產(chǎn)率和e.e.值分別為46.1%和92%.(S)-α-乙基-2-氧-1-吡咯烷乙酸是合成 LEV 的關(guān)鍵手性中間體[13-14].本課題組前期已篩選得到一株可拆分外消旋α-乙基-2-氧-1-吡咯烷乙酸乙酯制備高光學(xué)活性(S)-α-乙基-2-氧-1-吡咯烷乙酸的微生物菌株——耐酪氨酸冢村氏菌(Tsukamurellatyrosinosolvens)E105.利用該菌株進(jìn)行生物催化拆分時,當(dāng)產(chǎn)物(S)-α-乙基-2-氧-1-吡咯烷乙酸的e.e.值為99%時,產(chǎn)率可達(dá)到48%以上.有關(guān)利用Placktte-Burman設(shè)計(jì)和響應(yīng)面法優(yōu)化發(fā)酵培養(yǎng)基組成以提高菌種產(chǎn)酶活力已有一些文獻(xiàn)報(bào)道[15-18].筆者在課題組菌種篩選的基礎(chǔ)上,通過對耐酪氨酸冢村氏菌(Tsukamurellatyrosinosolvens)E105菌株發(fā)酵培養(yǎng)基中碳源和氮源種類的單因素考察,繼而利用Placktte-Burman設(shè)計(jì)和響應(yīng)面法優(yōu)化得到最佳產(chǎn)酶培養(yǎng)基組成,旨在提高該新篩選所得菌株的產(chǎn)酶活力.
耐酪氨酸冢村氏菌(Tsukamurellatyrosinosolvens)E105,本實(shí)驗(yàn)室自行篩選獲得.
斜面培養(yǎng)基:葡萄糖10.0 g/L,蛋白胨5.0 g/L,酵母粉2.0 g/L,(NH4)2SO42.0 g/L,K2HPO42.0 g/L,KH2PO41.0 g/L,NaCl 0.6 g/L,MgSO4·7H2O 0.6 g/L,瓊脂15.0 g/L,pH 7.0,30℃培養(yǎng)48 h.
種子培養(yǎng)基:葡萄糖10.0 g/L,蛋白胨5.0 g/L,酵母粉2.0 g/L,(NH4)2SO42.0 g/L,K2HPO42.0 g/L,KH2PO41.0 g/L,NaCl 0.6 g/L,MgSO4·7H2O 0.6 g/L,pH7.0.種子培養(yǎng)條件為30℃,200 r/min培養(yǎng)24 h.
初始發(fā)酵培養(yǎng)基組成同種子培養(yǎng)基.接種量體積分?jǐn)?shù)為4%,250 mL搖瓶的裝液量為70 mL,30℃,200 r/min培養(yǎng)36 h.
菌體培養(yǎng)36 h后,發(fā)酵液于4 500 r/min離心10 min,收集菌體,并用0.1 mol/L的磷酸緩沖液(pH 8.0)洗滌,離心,收集濕菌體.取細(xì)胞干重(DCW)為0.2 g的濕菌體,將其重新懸浮于10 mL磷酸緩沖液(0.1 mol/L,pH 8.0)中,加入100μL外消旋的α-乙基-2-氧-1-吡咯烷乙酸乙酯,置旋轉(zhuǎn)式搖床200 r/min,30℃進(jìn)行生物轉(zhuǎn)化反應(yīng),其生物拆分原理為
細(xì)胞干重法.
按1.3方法進(jìn)行生物轉(zhuǎn)化1 h后,反應(yīng)液于8 000 r/min離心10 min,取上清液,0.45μm微濾,采用 HPLC法檢測轉(zhuǎn)化液中α-乙基-2-氧-1-吡咯烷乙酸濃度.HPLC色譜條件:采用Agilent1200高效液相色譜儀,色譜柱為 Agilent-C18柱(5μm,4.6×250 nm),檢測波長210 nm,V(甲醇)∶V(醋酸銨緩沖液)=20∶80(醋酸銨濃度20 mmol/L,pH 5.5),流速0.7 mL/min,室溫檢測,進(jìn)樣量10μL.
酶活力單位定義:在上述反應(yīng)條件下每小時生成1μgα-乙基-2-氧-1-吡咯烷乙酸所需的酶量定義為一個酶活力單位(U).
以初始發(fā)酵培養(yǎng)基組成為對照,分別以質(zhì)量濃度為20 g/L的可溶性淀粉、糊精、葡萄糖、麥芽糖和蔗糖為惟一碳源,考察其對產(chǎn)酶活力和菌體生長的影響.圖1結(jié)果表明:采用葡萄糖為惟一碳源時酶活力較高,此時細(xì)胞干重(DCW)達(dá)2.74 g/L.故選擇葡萄糖作為發(fā)酵培養(yǎng)基的碳源.繼而考察葡萄糖質(zhì)量濃度分別為10,15,20,25,30,35 g/L時對產(chǎn)酶的影響,確定較佳的葡萄糖質(zhì)量濃度為15 g/L.
圖1 不同種類碳源對酶活力和細(xì)胞生長的影響Fig.1 Effect of different carbon sources on enzyme activity and cell growth
分別考察了酵母粉、牛肉膏、蛋白胨、(NH4)2SO4和NH4Cl為單一氮源對產(chǎn)酶活力和菌體生長的影響,添加酵母粉、牛肉膏、蛋白胨的質(zhì)量濃度均為20 g/L.為保證無機(jī)氮源和有機(jī)氮源相近的含氮量,(NH4)2SO4和 NH4Cl分別以9.4 g/L和7.6 g/L的質(zhì)量濃度添加.圖2結(jié)果表明:無機(jī)氮源中NH4Cl對菌體產(chǎn)酶更有利,有機(jī)氮源中酵母粉對菌體產(chǎn)酶更有利.NH4Cl一方面能夠促進(jìn)水解酶的形成,另一方面可能減輕過多的代謝產(chǎn)物對產(chǎn)酶的抑制作用.酵母粉能夠提供更多產(chǎn)酶所需的維生素和微量元素,從而提高菌體產(chǎn)酶活力.采用有機(jī)氮源和無機(jī)氮源組成的復(fù)合氮源時的發(fā)酵結(jié)果將在后續(xù)的響應(yīng)面實(shí)驗(yàn)中進(jìn)一步優(yōu)化.
圖2 不同氮源對產(chǎn)酶活力和細(xì)胞生長的影響Fig.2 Effect of different nitrogen sources on enzyme activity and cell growth
通過Plackett-Burman實(shí)驗(yàn)設(shè)計(jì),對葡萄糖質(zhì)量濃度(X1),酵母粉質(zhì)量濃度(X2),NH4Cl質(zhì)量濃度 (X3),培 養(yǎng) 基 初 始 pH 值 (X4),KH2PO4+K2HPO4質(zhì)量濃度(X5),NaCl質(zhì)量濃度 (X6)和MgSO4·7H2O質(zhì)量濃度(X7)等7個因素進(jìn)行考察,以確定影響產(chǎn)酶活力的主要因素,各因素分別取2個水平,響應(yīng)值Y為酶活力.實(shí)驗(yàn)設(shè)計(jì)和結(jié)果見表1,各因素的水平與分析結(jié)果見表2.
表1 Plackett-Buman實(shí)驗(yàn)設(shè)計(jì)和響應(yīng)值Table 1 Plackett-Buman experimential design and its responding value
表2 酶活主要影響因素的回歸結(jié)果Table 2 The regression results of key factors on enzyme activity
從各因素影響的統(tǒng)計(jì)結(jié)果(表2)可知,酵母粉質(zhì)量濃度(X2)和初始pH值(X4)的顯著性系數(shù)(T)較高,且在95%置信區(qū)間內(nèi)對產(chǎn)酶有顯著影響,而其他因素的影響不大.模型的R2=0.998,表明其擬合度較高.
根據(jù)Plackett-Burman實(shí)驗(yàn)結(jié)果,采用Draper/Lin實(shí)驗(yàn)設(shè)計(jì)進(jìn)一步優(yōu)化酵母粉質(zhì)量濃度(X2)和培養(yǎng)基初始pH(X4),各因素分別取5個水平.實(shí)驗(yàn)設(shè)計(jì)和結(jié)果見表3.
表3 響應(yīng)面優(yōu)化中的變量及其各級中心復(fù)合旋轉(zhuǎn)設(shè)計(jì)Table 3 Variables and their levels for the central composite rotatory design for response surface optimization
Draper/Lin中心組合實(shí)驗(yàn)共包括13個實(shí)驗(yàn)點(diǎn),其中因子實(shí)驗(yàn)8個,中心點(diǎn)實(shí)驗(yàn)5個,所得結(jié)果見表4,以酶活為響應(yīng)值的回歸結(jié)果如表5所示,其中酵母粉質(zhì)量濃度的一次項(xiàng)X2(p=0.000 1)和二次項(xiàng)X22(p=0.000 1)、培養(yǎng)基初始pH 的一次項(xiàng)X4(p=0.001 3)和二次項(xiàng)X42(p=0.000 1)均顯著影響產(chǎn)酶活力,而酵母粉質(zhì)量濃度和培養(yǎng)基初始pH的交互項(xiàng)X4X2(p=0.466 6)對產(chǎn)酶活力的影響并不顯著.二次回歸模型的R2=0.986 4,擬合度較好.以酶活力為響應(yīng)值(Y1)的二次回歸方程為
表4 Draper/Lin中心組合實(shí)驗(yàn)設(shè)計(jì)及結(jié)果Table 4 Draper/Lin central composite experimental design and the corresponding results
表5 酶活力回歸分析結(jié)果Table 5 The regression analysis results for enzyme activity
根據(jù)模型預(yù)測,當(dāng)酵母粉質(zhì)量濃度和培養(yǎng)基初始pH分別為12.1 g/L和7.06時,酶活力達(dá)最大值,為1 013.9 U/mL.實(shí)驗(yàn)結(jié)果表明:由質(zhì)量濃度為9.5 g/L的NH4Cl和12.1 g/L的酵母粉組成的復(fù)合氮源較單一氮源更加促進(jìn)菌體的產(chǎn)酶活力.
采用優(yōu)化得到的培養(yǎng)基組成進(jìn)行驗(yàn)證實(shí)驗(yàn).三次重復(fù)實(shí)驗(yàn)的平均酶活力為1 024.6 U/mL,較優(yōu)化前提高了67%,且與響應(yīng)面優(yōu)化的模型預(yù)測值1 013.9 U/mL非常接近.
通過對耐酪氨酸冢村氏菌(Tsukamurellatyrosinosolvens)E105菌株發(fā)酵培養(yǎng)基中碳源和氮源的單因素試驗(yàn)考察,確定了較佳的碳源和氮源種類.Plackett-Burman實(shí)驗(yàn)結(jié)果表明:酵母粉質(zhì)量濃度和培養(yǎng)基初始pH值對產(chǎn)酶影響顯著.采用中心組合實(shí)驗(yàn)并結(jié)合響應(yīng)面優(yōu)化,得到最佳的培養(yǎng)基組成為:葡萄糖15 g/L,酵母粉12.1 g/L,NH4Cl 9.5 g/L,NaCl 0.6 g/L,MgSO4·7H2O 0.6 g/L,KH2PO41 g/L,K2HPO42 g/L,初始pH 為7.06.在優(yōu)化的條件下,水解酶活力可達(dá)1 024.8 U/mL,較優(yōu)化前提高了67%,該研究采用了一種生物催化制備左乙拉西坦手性中間體的新方法,具有較好的應(yīng)用前景.
[1]ISOHERRANEN N,ROEDER M,SOBACK S,et al.Enantioselective analysis of levetiracetam and its enantionmer R-αethyl-2-O-1-pyrrolidineacetamide using gas chromatography and ion trap mass spectrometric detection[J].Journal of Chromatography B,2000,745(2):325-332.
[2]WU T,CHEN C C,CHEN T C,et al.Clinical efficacy and cognitive and neuropsychological effects of levetiracetam in epilepsy:an open-label multicenter study[J].Epilepsy &Behavior,2009,16(3):468-474.
[3]BOSCHI F,CAMPS P,F(xiàn)RANCHINI C F,et al.A synthesis of levetiracetam based on(S)-N-phenylpantolactam as a chiral auxiliary[J].Tetrahedron Asymmetry,2005,16(22):3739-3745.
[4]GIDAL B E,BALTèS E,OTOUL C,et al.Effect of levetiracetam on the pharmacokinetics of adjunctive antiepileptic drugs:a pooled analysis of data from randomized clinical trial[J].Epilepsy Research,2005,64(1):1-11.
[5]SNOECK E,JACQMIN P,SARGENTINI-MAIER mL,et al.Modeling and simulation of intravenous levetiracetam pharmacokinetic profiles in children to evaluate dose adaptation rules[J].Epilepsy Research,2007,76(2):140-147.
[6]DUDRA-JASTRZEBSKA M,ADRES-MACH M M,SIELSKI M,et al.Pharmacodynamic and pharmacokinetic interaction profiles of levetiracetam in combination with gabapentin,tiagabine and vigabatrin in the mouse pentylenetetrazole-induced seizure model an isobolographic analysis[J].European Journal of Pharmacology,2009,605(1):87-94.
[7]PATSALOS P N.Pharmacokinetic profile of levetiracetam:toward ideal characteristics[J].Pharmcology &Therapeutics,2000,85(2):77-85.
[8]CALLENBACH P M C,ARTS W F M,HOUTEN R T,et al.Add-on levetiracetam in children and adolescents with refractory epilepsy:result of an open-label multi-centre study[J].Official Journal of the European Paediatric Neurology Society,2008,12(4):321-327.
[9]GUO Tie-dong,OSWALD L M,MENDU D R,et al.Determination of levetiracetam in human plasma/serum/saliva by liquid chromatography-electrospray tandem mass spectrometry[J].Clinica Chimica Acta,2007,375(1):115-118.
[10]徐寶財(cái),辛秀蘭,胡燕霞,等.(S)-α-乙基-2-氧代-1-吡咯烷基乙酰胺的合成工藝進(jìn)展[J].精細(xì)與專用化學(xué)品,2004,12(24):15-17.
[11]KOTKAR S P,SUDALAI A.A short enantioselective synthesis of the antiepileptic agent,levetiracetam based on proline-catalyzed asymmetricα-aminooxylation[J].Tetrahedron Letters,2006,47(38):6813-6815.
[12]TUCKER J L,XU Lan,YU Wei-hong,et al.Chemoenzymatic process for preparation of levetiracetam:US,WO 2009/009117 A2[P].2009-01-15.
[13]ATES C,SURTEES J,BUREANU A C,et al.Oxopyrrolidine compounds,preparation of said compounds and their use in the manufacturing of levetircetam and analogues:US,WO 2003/041080[P].2003-02-20.
[14]FORCATO M,MICHIELETTO I,MARAGNI P,et al.Process for preparation of levetiracetam:US,2010/0076204 A1[P].2010-03-25.
[15]王能強(qiáng),吳堅(jiān)平,鄒小明,等.α-氯丙酸脫鹵酶發(fā)酵培養(yǎng)基的響應(yīng)面法優(yōu)化[J].化工學(xué)報(bào),2007,58(1):176-180.
[16]王普,孫立明,何軍邀.響應(yīng)面法優(yōu)化熱帶假絲酵母104菌株產(chǎn)羰基還原酶發(fā)酵培養(yǎng)基[J].生物工程學(xué)報(bào),2009,12(3):863-868.
[17]LüGuo-yin,WANG Pu,HE Jun-yao,et al.Medium optimization for enzymatic production of L-cysteine by Pseudomonas sp.Zjwp-14 using response surface methodology[J].Food Technology & Biotechnology,2008,46(12):395-398.
[18]KAUSHIK R,SARAN S,ISAR,et al.Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production byAspergilluscarneus[J].Journal of Molecular Catalysis B:Enzymatic,2006,40(3):121-126.
Medium optimization forα-ethyl-2-O-1-pyrrolidineacetic acid ethyl ester hydrolase-producing strain using response surface methodology
YUAN Shuai,WANG Pu,HE Jun-yao
(College of Pharmaceutical Science,Zhejiang University of Technology,Hangzhou 310032,China)
Response surface methodology was applied to optimize medium constituents for enzymatic production of (S)-α-ethyl-2-O-1-pyrrolidineacetic acid from racemicα-ethyl-2-O-1-pyrrolidineacetic acid ethyl ester by a novelTsukamurellatyrosinosolvensE105.The influences of carbon and nitrogen resources were investigated.Then the Plackett-Burman design experiment was used to evaluate the effects of different components in the culture medium,yeast extract and initial pH were found to be the most important factors among seven tested variables affecting enzyme activity.Central composite design and response surface analysis were subsequently employed for further optimization,and the optimal concentration of yeast extract was 12.1 g/L,with the optimal initial pH of 7.06.Under the optimum conditions,the maximum enzyme activity of 1024.6 U/mL in the experiment was obtained,corresponding to an increase of 67%in comparison with the original medium components.Medium optimization forTsukamurella tyrosinosolvensE105 could increase obviously its hydrolyase-producing capability of enzymatic preparation of(S)-α-ethyl-2-O-1-pyrrolidineacetic acid.
α-ethyl-2-O-1-pyrrolidineacetic acid ethyl ester;Tsukamurellasp.;hydrolase;response surface optimization
TQ920.1
A
1006-4303(2011)05-0536-05
2010-04-29
浙江省制藥重中之重學(xué)科開放基金資助項(xiàng)目(20100609)
袁 帥(1985—),男,江西新余人,碩士研究生,主要從事生物催化研究,E-mail:brandy101@sina.com.通信作者:王普教授,E-mail:wangpu@zjut.edu.cn.
(
劉 巖)