趙常玉,李 劍,張金林,王鎖民
(草地農(nóng)業(yè)系統(tǒng)國家重點實驗室 蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州 730020)
土壤鹽漬化嚴(yán)重影響作物產(chǎn)量,降低農(nóng)業(yè)生產(chǎn)力[1]。鹽漬生境中,過多的Na+破壞植物體內(nèi)離子平衡、引起生物膜失活、新陳代謝活性下降,最終導(dǎo)致植物生長受到抑制甚至死亡[2]。Na+是土壤溶液中的大量元素,濃度范圍在0.4~150 mmol·L-1,濃度較低時,可以促進(jìn)某些植物的生長,是有益元素[3-6],但濃度較高時,大多數(shù)植物的生長受到嚴(yán)重抑制[7-8]。K+是植物所必需的大量元素之一,與Na+有相似的水合半徑。鹽脅迫時,非選擇性陽離子通道或轉(zhuǎn)運(yùn)蛋白不能將二者區(qū)分,大量Na+的吸收抑制了植物根系對K+的攝入,植物體內(nèi)K+/Na+降低,造成鹽害,因此維持細(xì)胞質(zhì)中高的K+/Na+是植物應(yīng)對脅迫的有效措施[9-10]。高親和性鉀離子轉(zhuǎn)運(yùn)蛋白HKT(High-affinity K+Transporter)能維持植物體內(nèi)離子平衡,增強(qiáng)植物耐鹽性。本研究就HKT蛋白的最新研究進(jìn)展進(jìn)行綜述,以期闡述其與植物耐鹽性的關(guān)系。
Schachtman和Schroeder[11]首次從小麥(Triticumaestivum)中克隆了HKT蛋白基因TaHKT2;1,其開放閱讀框(ORF)編碼534個氨基酸,分子量58.9 KD,具有10~12個跨膜區(qū),位于第7號染色體上,原位雜交顯示TaHKT2;1主要在根皮層和葉維管組織細(xì)胞中表達(dá)。繼小麥TaHKT2;1之后,先后在擬南芥(Arabidopsisthaliana)、桉樹(Eucalyptuscamaldulensis)、水稻(Oryzasativa)、冰葉日中花(Mesembryanthemumcrystallinum)、鹽地堿蓬(Suaedasalsa)等植物中發(fā)現(xiàn)了HKT基因[12-16],與大腸桿菌(Escherichiacoli) TrkH、超嗜熱菌(Aquifexaeolicus)KtrB、粟酒裂殖酵母(Schizosaccharomycespombe)Trk1,2等共同構(gòu)成一個超級K+轉(zhuǎn)運(yùn)蛋白基因家族[17-18]。根據(jù)異源表達(dá)系統(tǒng)上的離子選擇性特征差異和氨基酸序列同源性分析,Platten等[19]將HKT蛋白分為兩類:第1類以擬南芥AtHKT1;1為代表,包括鹽地堿蓬SsHKT1;1、水稻OsHKT1;5和冰葉日中花McHKT1;1等,通常為Na+轉(zhuǎn)運(yùn)蛋白,有的也能轉(zhuǎn)運(yùn)K+[13,15];第2類以小麥TaHKT2;1為代表,包括水稻OsHKT2;1、大麥(Hordeumvulgare)HvHKT2;1等,為K+-Na+共轉(zhuǎn)運(yùn)蛋白,雙子葉植物缺少此類蛋白基因(圖1)。HKT基因通常含有兩個內(nèi)含子,且第1類上的內(nèi)含子明顯比第2類大,而一粒小麥(Triticummonococcum)TmHKT1;4-A2只有一個內(nèi)含子[20]。這種命名法可以分析不同物種相同基因和相同物種不同基因在進(jìn)化和功能上的區(qū)別與聯(lián)系[19]。
高等植物HKT蛋白的氨基酸數(shù)目多在500個左右。有的HKT蛋白基因是單拷貝,或是一個小基因家族,通常受鹽脅迫和K+饑餓誘導(dǎo),可以在根、莖、葉和花等不同組織中表達(dá)[21-23](表1)。拒鹽型鹽生植物小花堿茅(Puccinelliatenuiflora)PutHKT2;1在鹽脅迫時,根中表達(dá)量增加,地上部變化不大[24],而鹽地堿蓬SsHKT1;1葉中表達(dá)量高于根中[16,21]。不同物種基因組中HKT基因數(shù)目差異很大,擬南芥只有1個AtHKT1;1[12],而Garciadeblás等[25]在水稻品種日本晴(Nipponbare)基因組中發(fā)現(xiàn)7個可能編碼Na+轉(zhuǎn)運(yùn)蛋白的HKT基因(另2個為假基因)。
圖1 高等植物HKT蛋白氨基酸序列同源性分析[19]Fig.1 Phylogenetic analysis of HKT proteins of higher plants[19]
Durell等[26]認(rèn)為原核生物含有1個MPM(Membrane-Pore-Membrane),包括2個跨膜螺旋和1個P環(huán),植物HKT蛋白由KcsA類K+通道亞基經(jīng)復(fù)制加倍及融合進(jìn)化而來,所以包含4個MPM,此模型已在小麥、水稻和擬南芥中得到證實[27-28](圖2)。HKT蛋白4個MPM高度保守,并且含有1個甘氨酸-酪氨酸-甘氨酸(GYG)基序,研究表明,HKT蛋白存在與K+和Na+選擇性吸收相關(guān)的多個位點,且多位于P環(huán)或離P環(huán)很近的區(qū)域[27]。第1類HKT蛋白第1個P環(huán)過濾器位置處有1個絲氨酸殘基,其余3個P環(huán)上為甘氨酸殘基,構(gòu)成S-G-G-G類型;第2類HKT蛋白第1個P環(huán)處的絲氨酸殘基被甘氨酸代替,其余3個P環(huán)處仍為甘氨酸殘基,構(gòu)成G-G-G-G類型,水稻OsHKT2;1例外[14,29](圖3)。
表1 部分高等植物HKT蛋白基因分子特性Table 1 Molecular characteristics of HKT of higher plants
圖2 HKT類蛋白拓?fù)浣Y(jié)構(gòu)示意圖[17,27-28,34]Fig.2 Diagrammatic representation of HKT-like protein topological structure[17,27-28,34]
圖3 一些高等植物HKT的4個P環(huán)保守序列[34]Fig.3 Conservative sequences of four P-loop of higher plants[34]
Rubio等[30]認(rèn)為小麥TaHKT2;1中存在1個高親和性K+結(jié)合位點和1個高親和性Na+結(jié)合位點,Km分別為3和175 μmol·L-1。為確定這些位點,Diatloff等[31]采用定點突變和酵母(Saccharomycescerevisiae)突變體(K+吸收缺陷)異源表達(dá)方法,發(fā)現(xiàn)小麥TaHKT2;1一段16個氨基酸保守序列在Na+轉(zhuǎn)運(yùn)方面發(fā)揮著重要作用。Rubio等[32]發(fā)現(xiàn)小麥TaHKT2;1突變體N365S通過緩解對高親和性K+吸收的抑制、減少低親和性Na+吸收,從而降低酵母體內(nèi)Na+/K+,顯著提高鹽敏感型酵母(Na+ATPase缺失)的耐鹽性。Liu等[18]對小麥TaHKT2;1蛋白上可能參與K+、Na+選擇性吸收相關(guān)位點做了進(jìn)一步研究,認(rèn)為跨膜區(qū)3和4之間的高電荷P環(huán)上可能存在這些位點,環(huán)中片段L149-E180缺失后轉(zhuǎn)入酵母中,提高了酵母體內(nèi)K+/Na+,增強(qiáng)了其耐鹽性。M?ser等[29]認(rèn)為植物HKT蛋白存在4個P環(huán),若第1個P環(huán)中過濾器處為甘氨酸殘基,通常為K+-Na+的共轉(zhuǎn)運(yùn)蛋白;若第1個P環(huán)中過濾器處為絲氨酸殘基,通常為Na+轉(zhuǎn)運(yùn)蛋白。擬南芥AtHKT1;1與小麥TaHKT2;1嵌合體試驗表明,在擬南芥AtHKT1;1中將Ser-68突變?yōu)楦拾彼岷蟀l(fā)現(xiàn),增大了K+的通透性;在小麥TaHKT2;1中將Gly-91突變?yōu)榻z氨酸,K+通透性受到抑制。但第2類HKT蛋白的甘氨酸殘基并不是決定K+選擇性吸收的唯一因素,因為一些第1類HKT蛋白同樣具有K+轉(zhuǎn)運(yùn)特性,且賴氨酸和精氨酸殘基對于K+吸收可能也有作用[33]。
3.1小麥HKT與其耐鹽性 Epstein等[35]認(rèn)為高等植物中存在兩個K+吸收系統(tǒng):1)當(dāng)K+濃度較低時,主要由K+載體起作用的高親和性吸收系統(tǒng);2)當(dāng)K+濃度較高時,主要由K+通道起作用的低親和性吸收系統(tǒng)。小麥TaHKT2;1的發(fā)現(xiàn)為此假說提供了直接證據(jù)[11]。Schachtman和Schroeder[11]采用功能互補(bǔ)法,從小麥幼根cDNA文庫中篩選到能互補(bǔ)酵母K+吸收缺陷的TaHKT2;1,其編碼蛋白對幾種單價陽離子的選擇性順序為K+>Cs+>Rb+>Na+>NH4+。Gassmann等[36]證明TaHKT2;1屬于K+-Na+同向轉(zhuǎn)運(yùn)蛋白。當(dāng)Na+濃度較低時,介導(dǎo)兩種離子吸收;當(dāng)Na+濃度較高、K+濃度較低時,介導(dǎo)低親和性Na+吸收,K+吸收受到抑制。因此小麥TaHKT2;1的轉(zhuǎn)運(yùn)特性與外界離子情況密切相關(guān)。
Laurie等[37]將反義的TaHKT2;1轉(zhuǎn)入小麥后發(fā)現(xiàn),轉(zhuǎn)基因植株內(nèi)源TaHKT2;1強(qiáng)烈下調(diào),在100 mmol·L-1NaCl濃度下,轉(zhuǎn)基因植株22Na+內(nèi)流明顯低于對照組;在200 mmol·L-1NaCl濃度下,轉(zhuǎn)基因株系根部的Na+濃度更低,轉(zhuǎn)基因株系耐鹽性提高,由此認(rèn)為小麥TaHKT2;1在整株水平上的生理功能是介導(dǎo)Na+吸收。
小麥含有A、B和D三個基因組,硬粒小麥(T.turgidum)含有A和B兩個基因組,前者比后者具有更高的耐鹽性,因此推測小麥基因組D中可能含有耐鹽性位點[38-39]。Dubcovsky等[39]從小麥4D染色體中分離到的Kna1能控制K+和Na+向地上部選擇性運(yùn)輸,維持體內(nèi)高的K+/Na+,提高其耐鹽性。Munns等[40]從硬粒小麥耐鹽品系149中分離到兩個與Na+外排相關(guān)的位點,Nax1和Nax2。James等[41]研究表明,Nax1能夠從根木質(zhì)部和葉鞘中卸載Na+,防止Na+在葉片中過度積累,Nax2僅在根部發(fā)揮作用。Huang等[20]采用圖位克隆法從一粒小麥(T.monococcum)中分離到兩個可能的Na+轉(zhuǎn)運(yùn)蛋白基因TmHKT1;4-A1(TmHKT7-A1) 和TmHKT1;4-A2 (TmHKT7-A2),TmHKT1;4-A2主要在根部和葉鞘中表達(dá),參與Na+在根部和葉鞘木質(zhì)部中的卸載,被認(rèn)為是Nax1的候選基因。Byrt等[42]發(fā)現(xiàn)TmHKT1;5-A是Nax2的候選基因。
3.2擬南芥AtHKT1;1與其耐鹽性 Uozumi等[12]從擬南芥(A.thaliana)中克隆到AtHKT1;1,在非洲爪蟾卵母細(xì)胞(Xenopuslaevisoocytes)中表達(dá)分析表明,AtHKT1;1為專一的Na+轉(zhuǎn)運(yùn)蛋白,外界K+濃度不影響其轉(zhuǎn)運(yùn)特性;擬南芥AtHKT1;1在酵母突變體G19(Na+-extruding ATPase基因缺失)中表達(dá)后,發(fā)現(xiàn)G19對鹽更敏感,但小麥TaHKT2;1在G19中表達(dá)后降低了其鹽敏感性;AtHKT1;1不能互補(bǔ)酵母突變體CY162(缺失Trk1和Trk2)的K+吸收缺陷,但能使大腸桿菌(Escherichiacoli)突變體(無K+吸收功能,KAT1被點突變)LB2003在低K+培養(yǎng)基上生長。
Rus等[43]研究發(fā)現(xiàn),AtHKT1;1的突變(athkt1-1,athkt1-2)能抑制擬南芥sos3-1(salt overly sensitive)的鹽敏感性,HKT1;1的缺失提高了sos3-1的耐鹽性,而且改善了sos3-1的缺K+表型,雙突變體sos3-1hkt1-1幼苗的耐鹽性提高,由此認(rèn)為,AtHKT1;1介導(dǎo)根部Na+吸收。但Berthomieu等[44]認(rèn)為AtHKT1;1不參與根部Na+吸收,因為突變體sas2-1(AtHKT1;1功能缺失)的Na+內(nèi)流比野生型還高20%。
Munns[45]提出假設(shè),地上部過多的Na+隨韌皮部汁液流轉(zhuǎn)運(yùn)至根中,限制過多Na+在地上部積累對于提高植物耐鹽性非常重要。Berthomieu等[44]研究發(fā)現(xiàn),在鹽脅迫下,突變體sas2-1韌皮部汁液中Na+的含量顯著降低,Na+在葉中大量積累,但根中Na+含量降低,定位研究表明,AtHKT1;1主要在各器官的韌皮部組織中表達(dá),由此認(rèn)為AtHKT1;1參與Na+從地上部到根部的長距離運(yùn)輸,將地上部過多的Na+裝載到韌皮部汁液中,防止過多Na+在地上部富集。
生理學(xué)研究表明,無機(jī)離子(如K+和Na+)被裝載到根木質(zhì)部中,在蒸騰拉力作用下向上運(yùn)輸,之后被轉(zhuǎn)移到葉木質(zhì)部薄壁細(xì)胞中,接著離子在薄壁細(xì)胞中卸載,經(jīng)共質(zhì)體途徑進(jìn)入韌皮部,重新返回根中[46-49]。Sunarpi等[50]采用GUS染色和免疫定位技術(shù)證明,AtHKT1;1主要在木質(zhì)部薄壁細(xì)胞中表達(dá),在韌皮部組織中僅有少量表達(dá),因而提出AtHKT1;1從根木質(zhì)部汁液中卸載Na+到周圍薄壁細(xì)胞中,防止過多Na+上運(yùn)至地上部。Davenport等[51]采用22Na同位素示蹤法進(jìn)行驗證表明,AtHKT1;1主要介導(dǎo)Na+從木質(zhì)部中的卸載。M?ller等[52]將AtHKT1;1在擬南芥根中柱區(qū)域超表達(dá)后發(fā)現(xiàn),與對照相比,轉(zhuǎn)基因植株地上部Na+含量下降37%~64%,因為AtHKT1;1將更多的Na+卸載到木質(zhì)部薄壁細(xì)胞中,提高了擬南芥的耐鹽性。
AtHKT1;1對木質(zhì)部K+沒有直接調(diào)控作用。一種假設(shè)認(rèn)為,AtHKT1;1將Na+卸載到木質(zhì)部周圍薄壁細(xì)胞中,隨著Na+不斷積累,引起薄壁細(xì)胞質(zhì)膜去極化,激活外整流K+通道蛋白(KOR)或非選擇性離子外整流通道蛋白(NOR)活性,K+被裝載到木質(zhì)部向地上部運(yùn)輸[34,46,48]。Gaymard等[53]從擬南芥中分離到K+外整流通道蛋白基因AtSKOR,異源表達(dá)系統(tǒng)結(jié)果和突變體atskor試驗顯示,AtSKOR介導(dǎo)K+從木質(zhì)部薄壁細(xì)胞向木質(zhì)部的裝載。
Zhang等[54]研究表明,枯草芽孢桿菌(Bacillussubtilis)GB03能調(diào)節(jié)AtHKT1;1在組織中的特異性表達(dá),提高擬南芥的耐鹽性,在100 mmol·L-1鹽脅迫下,GB03上調(diào)AtHKT1;1在地上部的表達(dá)量,而根中表達(dá)量降低。認(rèn)為AtHKT1;1在鹽脅迫時根中表達(dá)量下調(diào),可以減少Na+進(jìn)入根中,地上部表達(dá)量增加,可以使更多的Na+裝載到韌皮部中,隨韌皮部汁液運(yùn)輸?shù)礁?,降低Na+在地上部的積累,從而提高了耐鹽性。
綜上所述,當(dāng)AtHKT1;1基因被敲除后,突變體植株會隨著Na+含量的不斷升高出現(xiàn)生長緩慢,地上部嚴(yán)重萎黃[29,44,50,55-57],說明AtHKT1;1在維持?jǐn)M南芥體內(nèi)K+和Na+穩(wěn)態(tài)平衡中發(fā)揮重要作用。
3.3水稻OsHKT與其耐鹽性 Horie等[14]在水稻中克隆到OsHKT2;1,在爪蟾卵母細(xì)胞和酵母中表達(dá)分析表明,OsHKT2;1對Na+有強(qiáng)選擇性[14,24-25],但也介導(dǎo)K+的轉(zhuǎn)運(yùn)[58-59],不能互補(bǔ)低K+條件下酵母突變體的K+吸收功能缺陷。
Horie等[4]研究發(fā)現(xiàn),在缺鉀和低鹽條件下,突變體oshkt2;1與野生型相比,oshkt2;1大大降低了根部Na+內(nèi)流。進(jìn)一步研究發(fā)現(xiàn),OsHKT2;1主要在根部皮層和內(nèi)皮層表達(dá),因此認(rèn)為OsHKT2;1可以介導(dǎo)根部有益Na+吸收,部分行使K+功能,減緩缺K+對植株的傷害。
Horie等[14]在耐鹽品種Pokkali中分離到OsHKT2;2,其與小麥和大麥HKT2;1親緣關(guān)系相近[19],為Na+-K+共轉(zhuǎn)運(yùn)蛋白,能互補(bǔ)低K+條件下酵母突變體的K+吸收功能缺陷,表達(dá)模式與OsHKT2;1相似,其表達(dá)受K+饑餓誘導(dǎo)。Kader等[60]研究表明,在150 mmol·L-1鹽處理下,OsHKT2;2轉(zhuǎn)錄水平上調(diào),且在葉韌皮部中表達(dá)。但Garciadeblás等[25]認(rèn)為,在水稻品種日本晴和Pokkali中,OsHKT2;2都是假基因。
Ren等[28]從水稻中分離出與耐鹽相關(guān)的遺傳位點SKC1(Shoot K+Content),候選基因為OsHKT1;5。在爪蟾卵母細(xì)胞中表達(dá)分析表明,OsHKT1;5為Na+轉(zhuǎn)運(yùn)蛋白,主要在木質(zhì)部薄壁細(xì)胞中表達(dá)。在鹽處理條件下,根中表達(dá)量顯著高于地上部,且隨著脅迫時間的延長,根中OsHKT1;5表達(dá)量上調(diào),而地上部變化不大。OsHKT1;5可以將過多的Na+從木質(zhì)部中卸載到周圍薄壁細(xì)胞中,降低木質(zhì)部汁液中Na+含量,防止向地上部轉(zhuǎn)運(yùn),間接使得K+向地上部運(yùn)輸,從而提高地上部的K+/Na+,在Na+長距離運(yùn)輸過程中發(fā)揮重要作用[61-62]。
3.4其他植物HKT與其耐鹽性 Fairbairn等[13]從桉樹中分離到EcHKT1;1和EcHKT1;2,它們編碼的蛋白都能互補(bǔ)大腸桿菌突變體TK2463在缺K+條件下的K+吸收功能缺陷,在爪蟾卵母細(xì)胞中介導(dǎo)K+和Na+共轉(zhuǎn)運(yùn)。由于HKT蛋白對TEA+和Cs+不敏感,但對Ba2+非常敏感[13,25,63],Wang等[64]研究發(fā)現(xiàn),在25 mmol·L-1NaCl處理下,Ba2+顯著降低海濱堿蓬(S.maritima)根部Na+凈吸收和22Na+內(nèi)流,而TEA+和Cs+對其沒有影響,因此推測HKT蛋白可能介導(dǎo)海濱堿蓬在低鹽濃度下低親和性Na+吸收。Shao等[16]從鹽地堿蓬中克隆到SsHKT1;1,其表達(dá)受K+饑餓和鹽脅迫誘導(dǎo),主要在葉中表達(dá),根中表達(dá)量相對較少,可能參與鹽地堿蓬體內(nèi)離子穩(wěn)態(tài)平衡,對其耐鹽性有重要作用。Chen等[65]將大豆(Glycinemax)GmHKT1;1在煙草(Nicotianatabacum)中超表達(dá)后發(fā)現(xiàn),GmHKT1;1可以調(diào)節(jié)轉(zhuǎn)基因植株根和葉的K+、Na+轉(zhuǎn)運(yùn),對離子穩(wěn)態(tài)平衡有重要影響,提高了煙草的耐鹽性。Su等[15]從冰葉日中花中克隆到McHKT1;1,其編碼蛋白在酵母中為K+轉(zhuǎn)運(yùn)蛋白,在爪蟾卵母細(xì)胞中對離子的選擇性為Rb+>Cs+>(K+=Na+=Li+)。大麥HvHKT2;1與HvHKT2;2都參與植株體內(nèi)離子穩(wěn)態(tài)平衡,與其耐鹽性也有重要關(guān)系[66-68]。耐鹽型蘆葦(Phragmitesaustralis)與鹽敏感型蘆葦相比,能維持體內(nèi)更低的Na+和更高的K+含量[69]。Takahashi等[70]從蘆葦中克隆到PhaHKT2;1-n,PhaHKT2;1-e和PhaHKT2;1-u,它們可能對維持蘆葦體內(nèi)離子穩(wěn)態(tài)平衡有重要影響。
土壤鹽漬化危害作物生長,影響糧食產(chǎn)量。基因工程技術(shù)和分子育種對解決這一難題有重要幫助。HKT蛋白是一種與植物耐鹽性密切相關(guān)的Na+或K+-Na+轉(zhuǎn)運(yùn)蛋白,能將植物木質(zhì)部中過多的Na+卸載到其周圍薄壁細(xì)胞中,降低地上部Na+含量,并維持體內(nèi)K+穩(wěn)態(tài)平衡?;谀壳暗难芯楷F(xiàn)狀,今后對HKT蛋白的研究應(yīng)放在以下幾點:1)通過比較甜土植物和鹽生植物的差異,探求鹽生植物耐鹽的分子機(jī)理,發(fā)掘更多的HKT基因;2)利用分子生物學(xué)技術(shù),進(jìn)一步確認(rèn)HKT蛋白參與耐鹽的分子機(jī)制;3)采用基因工程手段,將篩選得到的HKT基因轉(zhuǎn)入到作物中,培育新的轉(zhuǎn)基因耐鹽品種,對于增強(qiáng)鹽漬生境下的糧食產(chǎn)量將具有重要的促進(jìn)作用。
[1] Horie T,Hauser F,Schroeder J I.HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants[J].Trends in Plant Science,2009,14(12):660-668.
[2] Hasegawa P M,Bressan R A,Zhu J K,etal.Plant cellular and molecular responses to high salinity[J].Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463-499.
[3] 張宏飛,王鎖民.高等植物Na+吸收、轉(zhuǎn)運(yùn)及細(xì)胞內(nèi)Na+穩(wěn)態(tài)平衡研究進(jìn)展[J].植物學(xué)通報,2007,24(5):561-571.
[4] Horie T,Costa A,Kim T H,etal.Rice OsHKT2;1 transporter mediates large Na+influx component into K+-starved roots for growth[J].EMBO Journal,2007,26:3003-3014.
[5] 李三相,周向睿,王鎖民.Na+在植物中的有益作用[J].中國沙漠,2008,28(3):485-490.
[6] 馬清,樓潔瓊,王鎖民.Na+對滲透脅迫下霸王幼苗光合特性的影響[J].草業(yè)學(xué)報,2010,19(3):198-203.
[7] Rains D W,Epstein E.Sodium absorption by barley roots,its mediation by mechanism 2 of alkali cation transport[J].Plant Physiology,1967,42(3):319-323.
[8] Flowers T J,L?uchli A.Sodium versus potassium,substitution and compartmentation[A].In: L?uchli A,Bieleski R L.Inorganic Plant Nutrition[M].Berlin:Springer-Verlag,1983:651-681.
[9] 陳敏,彭建云,王寶山.整株水平上Na+轉(zhuǎn)運(yùn)體與植物的抗鹽性[J].植物學(xué)通報,2008,25(4):381-391.
[10] Tyerman S D,Skerrett M,Garrill A,etal.Pathways for the permeation of Na+and Cl-into protoplasts derived from the cortex of wheat root[J].Journal of Experimental Botany,1997,48:459-480.
[11] Schachtman D P,Schroeder J I.Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants[J].Nature,1994,370:655-658.
[12] Uozumi N,Kim E J,Rubio F,etal.TheArabidopsisHKT1 gene homolog mediates inward Na+currents inXenopuslaevisoocytes and Na+uptake inSaccharomycescerevisiae[J].Plant Physiology,2000,122(4):1249-1260.
[13] Fairbairn D J,Liu W,Schachtman D P,etal.Characterisation of two distinct HKT1-like potassium transporters fromEucalyptuscamaldulensis[J].Plant Molecular Biology,2000,43(4):515-525.
[14] Horie T,Yoshida K,Nakayama H,etal.Two types of HKT transporters with different properties of Na+and K+transport inOryzasativa[J].Plant Journal,2001,27(2):129-138.
[15] Su H,Balderas E,Vera-Estrella R,etal.Expression of the cation transporter McHKT1 in a halophyte[J].Plant Molecular Biology,2003,52(5):967-980.
[16] Shao Q,Zhao C,Han N,etal.Cloning and expression pattern ofSsHKT1 encoding a putative cation transporter from halophyteSuaedasalsa[J].DNA Sequence,2008,19(2):106-114.
[17] Durell S R,Guy H R.Structural models of the KtrB,TrkH,and Trk1,2 symporters based on the structure of the KcsA K+channel[J].Biophysical Journal,1999,77(2):789-807.
[18] Liu W,Schachtman D P,Zhang W.Partial deletion of a loop region in the high affinity K+transporter HKT1 changes ionic permeability leading to increased salt tolerance[J].Journal of Biological Chemistry,2000,275(36):27924-27932.
[19] Platten J D,Cotsaftis O,Berthomieu P,etal.Nomenclature for HKT transporter,key determinants of plant salinity tolerance[J].Trends in Plant Science,2006,11(8):372-374.
[20] Huang S,Spielmeyer W,Lagudah E S,etal.A sodium transporter (HKT7) is a candidate forNax1,a gene for salt tolerance in durum wheat[J].Plant Physiology,2006,142:1718-1727.
[21] 邵群,丁同樓,韓寧,等.高親和K+轉(zhuǎn)運(yùn)蛋白(HKT)與植物抗鹽性[J].植物生理學(xué)通訊,2006,42(2):175-181.
[22] 林嬋娟,許海霞,趙一丹,等.植物HKT轉(zhuǎn)運(yùn)蛋白研究進(jìn)展[J].分子植物育種,2008,6(6):1153-1159.
[23] Zhang J L,F(xiàn)lowers T J,Wang S M.Mechanisms of sodium uptake by roots of higher plant[J].Plant and Soil,2010,326:45-60.
[24] Ardie S W,Xie L,Takahashi R,Liu S,etal.Cloning of a high-affinity K+transporter genePutHKT2;1fromPuccinelliatenuifloraand its functional comparison withOsHKT2;1 from rice in yeast andArabidopsis[J].Journal of Experimental Botany,2009,60(12):3491-3502.
[25] Garciadeblás B,Senn M E,Bauelos M A,etal.Sodium transport and HKT transporters: the rice model[J].Plant Journal,2003,34(6):788-801.
[26] Durell S R,Hao Y,Nakamura T,etal.Evolutionary relationship between K+channels and symporters[J].Biophysical Journal,1999,77(2):775-788.
[27] Kato Y,Sakaguchi M,Mori Y,etal.Evidence in support of a four transmembrane-pore-transmembrane topology model for theArabidopsisthalianaNa+/K+translocating AtHKT1 protein,a member of the superfamily of K+transporters[J].Proceedings of the National Academy of Sciences USA,2001,98(11):6488-6493.
[28] Ren Z H,Gao J P,Li L G,etal.A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J].Nature Genetics,2005,37(10):1141-1146.
[29] M?ser P,Hosoo Y,Goshima S,etal.Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants[J].Proceedings of the National Academy of Sciences USA,2002,99(9):6428-6433.
[30] Rubio F,Gassmann W,Schroeder J I.Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J].Science,1995,270(5242):1660-1663.
[31] Diatloff E,Kumar R,Schachtman D P.Site directed mutagenesis reduces the Na+affinity of HKT1,an Na+energized high affinity K+transporter[J].Federation of European Biochemical Societies Letters,1998,432(1):31-36.
[32] Rubio F,Schwarz M,Gassmann W,etal.Genetic selection of mutations in the high affinity K+transporter HKT1 that define functions of a loop site for reduced Na+permeability and increased Na+tolerance[J].Journal of Biological Chemistry,1999,274(11):6839-6847.
[33] Kato N,Akai M,Zulkifli L,etal.Role of positively charged amino acids in the M2D transmembrane helix of ktr/Trk/HKT type cation transporters[J].Channels,2007,1:161-171.
[34] Hauser F,Horie T.A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ratio in leaves during salinity stress[J].Plant Cell and Environment,2010,33(4):552-565.
[35] Epstein E,Rains D W,Elzam O E.Resolution of dual mechanisms of potassium absorption by barley roots[J].Proceedings of the National Academy of Sciences USA,1963,49(5):684-692.
[36] Gassmann W,Rubio F,Schroeder J I.Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1[J].Plant Journal,1996,10(5):869-882.
[37] Laurie S,F(xiàn)eeney K A,Maathuis F J,etal.A role for HKT1 in sodium uptake by wheat roots[J].Plant Journal,2002,32(2):139-149.
[38] Gorham J,Wyn Jones R G,Bristol A.Partial characterization of the trait for enhanced K+-Na+discrimination in the D genome of wheat[J].Planta,1990,180:590-597.
[39] Dubcovsky J,Santa Maria G,Epstein E,etal.Mapping of the K+/Na+discrimination locusKna1 in wheat[J].Theoretical and Applied Genetics,1996,92(3/4):448-454.
[40] Munns R,Rebetzke G J,Husain S,etal.Genetic control of sodium exclusion in durum wheat[J].Australian Journal of Agricultural Research,2003,54(7):627-635.
[41] James R A,Davenport R J,Munns R.Physiological characterisation of two genes for Na+exclusion in durum wheat:Nax1 andNax2[J].Plant Physiology,2006,142:1537-1547.
[42] Byrt C S,Platten J D,Spielmeyer W,etal.HKT1;5-like cation transporters linked to Na+exclusion loci in wheat,Nax2 andKna1[J].Plant Physiology,2007,143:1918-1928.
[43] Rus A,Yokoi S,Sharkhuu A,etal.AtHKT1 is a salt tolerance determinant that controls Na+entry into plant roots[J].Proceedings of the National Academy of Sciences USA,2001,98(24):14150-14155.
[44] Berthomieu P,Conéjéro G,Nublat A,etal.Functional analysis ofAtHKT1 inArabidopsisshows that Na+recirculation by the phloem is crucial for salt tolerance[J].EMBO Journal,2003,22(9):2004-2014.
[45] Munns R.Comparative physiology of salt and water stress[J].Plant Cell and Environment,2002,25(2):239-250.
[46] Wegner L H,Raschke K.Ion channels in the xylem parenchyma of barley roots.A procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels[J].Plant Physiology,1994,105(3):799-813.
[47] Lacan D,Durand M.Na+-K+exchange at the xylem/symplast boundary (Its significance in the salt sensitivity of soybean)[J].Plant Physiology,1996,110(2):705-711.
[48] Wegner L H,De Boer A.Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in K+homeostasis and long-distance signaling[J].Plant Physiology,1997,115(4):1707-1719.
[49] De Boer A,Volkov V.Logistics of water and salt transport through the plant:Structure and functioning of the xylem[J].Plant Cell and Environment,2003,26(1):87-101.
[50] Sunarpi,Horie T,Motoda J,etal.Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+unloading from xylem vessels to xylem parenchyma cells[J].Plant Journal,2005,44(6):928-938.
[51] Davenport R J,Muoz-Mayor A,Jha D,etal.The Na+transporterAtHKT1;1 controls retrieval of Na+from the xylem inArabidopsis[J].Plant Cell and Environment,2007,30(4):497-507.
[52] M?ller I S,Gilliham M,Jha D,etal.Shoot Na+exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+transport inArabidopsis[J].The Plant Cell,2009,21(7):2163-2178.
[53] Gaymard F,Pilot G,Lacombe B,etal.Identification and disruption of a plant shaker-like outward channel involved in K+release into the xylem sap[J].Cell,1998,94(5):647-655.
[54] Zhang H M,Kim M S,Sun Y,etal.Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1[J].Molecular Plant-Microbe Interaction,2008,21(6):737-744.
[55] Gong J M,Waner D A,Horie T,etal.Microarray-based rapid cloning of an ion accumulation deletion mutant inArabidopsisthaliana[J].Proceedings of the National Academy of Sciences USA,2004,101(43):15404-15409.
[56] Horie T,Horie R,Chan W Y,etal.Calcium regulation of sodium hypersensitivities ofsos3 andathkt1 mutants[J].Plant and Cell Physiology,2006,47(5):622-633.
[57] Corratgé-Faillie C,Jabnoune M,Zimmermann S,etal.Potassium and sodium transport in non-animal cell: the Trk/Ktr/HKT transporter family[J].Cellular and Molecular Life Science,2010,67:2511-2532.
[58] Golldack D,Su H,Quigley F,etal.Characterization of a HKT-type transporter in rice as a general alkali cation transporter[J].Plant Journal,2002,31(4):529-542.
[59] Jabnoune M,Espeout S,Mieulet D,etal.Diversity in expression patterns and functional properties in the rice HKT transporter family[J].Plant Physiology,2009,150:1955-1971.
[60] Kader M A,Seidel T,Golldack D,etal.Expression ofOsHKT1,OsHKT2,andOsVHAare differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (OryzasativaL.) cultivars[J].Journal of Experimental Botany,2006,57(15):4257-4268.
[61] Lin H X,Zhu M Z,Yano M,etal.QTLs for Na+and K+uptake of the shoots and roots controlling rice salt tolerance[J].Theoretical and Applied Genetics,2004,108:253-260.
[62] Cotsaftis O,Plett D,Johnson A A,etal.Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress[J].Molecular Plant,2011,4(1):25-41.
[63] Liu W,F(xiàn)airbairn D J,Reid R J,etal.Characterization of two HKT1 homologues fromEucalyptuscamaldulensisthat display intrinsic osmosensing capability[J].Plant Physiology,2001,127:283-294.
[64] Wang S M,Zhang J L,F(xiàn)lowers T J.Low-affinity Na+uptake in the halophyteSuaedamaritime[J].Plant Physiology,2007,145:559-571.
[65] Chen H,He H,Yu D.Overexpression of a novel soybean gene modulating Na+and K+transport enhances salt tolerance in transgenic tobacco plants[J].Physiologia Plantarum,2011,141:11-18.
[66] Wang T B,Gassmann W,Rubio F,etal.Rapid up-regulation ofHKT1,a high-affinity potassium transporter gene,in roots of barley and wheat following withdrawal of potassium[J].Plant Physiology,1998,118:651-659.
[67] Huang S,Spielmeyer W,Lagudah E S,etal.Comparative mapping ofHKTgenes in wheat,barley,and rice,key determinants of Na+transport,and salt tolerance[J].Journal of Experimental Botany,2008,59(4):927-937.
[68] Qiu L,Wu D,Ali S,etal.Evaluation of salinity tolerance and analysis of allelic function ofHvHKT1 andHvHKT2 in Tibetan wild barley[J].Theoretical and Applied Genetics,2011,122:695-703.
[69] Takahashi R,Nishio T,Ichizen N,etal.Salt-tolerant reed plants contain lower Na+and higher K+than salt-sensitive reed plants[J].Acta Physiologiae Plantarum,2007,29(5):431-438.
[70] Takahashi R,Liu S,Takano T.Cloning and functional comparison of a high-affinity K+transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants[J].Journal of Experimental Botany,2007,8(15/16):4387-4395.