段 莉,林典岳,鄭根建
(海南醫(yī)學(xué)院附屬醫(yī)院口腔科,海南醫(yī)學(xué)院口腔醫(yī)學(xué)院,海南???71101)
骨免疫學(xué)是研究骨骼系統(tǒng)和免疫系統(tǒng)相互作用的一門(mén)學(xué)科。免疫系統(tǒng)與骨骼系統(tǒng)兩者間的相互作用參與調(diào)控骨改建的動(dòng)態(tài)平衡過(guò)程。免疫細(xì)胞活性異常和破骨細(xì)胞過(guò)度活躍是引起炎癥性牙槽骨吸收的病理基礎(chǔ)。Notch信號(hào)通路通過(guò)調(diào)控骨髓、胸腺前體細(xì)胞的分化方向,在破骨細(xì)胞分化和免疫細(xì)胞發(fā)育中發(fā)揮著重要作用。本文在分析Notch信號(hào)通路組成和結(jié)構(gòu)的基礎(chǔ)上,綜合最新進(jìn)展,就Notch信號(hào)通路對(duì)骨免疫的調(diào)控機(jī)制及其在牙周炎發(fā)生中的可能作用作一綜述。
Notch基因于1917年在果蠅(drosophila)體內(nèi)發(fā)現(xiàn),因其部分功能喪失導(dǎo)致果蠅翅緣缺口(notch)而得名。Notch信號(hào)途徑是通過(guò)局部細(xì)胞間的相互作用以控制細(xì)胞命運(yùn)的一種途徑。從線蟲(chóng)到人類的幾乎所有被研究過(guò)的生物中,Notch信號(hào)途徑從結(jié)構(gòu)到功能都是保守的,而且在發(fā)育過(guò)程中發(fā)揮著不可替代的調(diào)控作用[1]。Notch信號(hào)途徑由Notch受體、配體以及下游信號(hào)轉(zhuǎn)導(dǎo)分子和核內(nèi)應(yīng)答因子組成。
哺乳動(dòng)物Notch受體包括4個(gè)同源體(Notch1-4),由胞外區(qū)域(the extracellular domain of Notch,NECD)、跨膜區(qū)域(transmembrane domain,TM)和胞內(nèi)區(qū)域(the intracellular domain of Notch,NICD)組成。Notch配體共有5種,:Jagged家族(Jagged 1,Jagged 2)和Delta-like家族(Delta 1、Delta 3和Delta 4)兩個(gè)家族。新合成的Notch前體需被蛋白質(zhì)水解切割后才具有活性。Notch前體首先被高爾基體內(nèi)的Furin-like蛋白酶進(jìn)行S1位點(diǎn)切割為2個(gè)片段,再通過(guò)鈣依賴性非共價(jià)鍵結(jié)合形成異二聚體,并被轉(zhuǎn)運(yùn)到細(xì)胞膜上,形成跨膜蛋白。當(dāng)配體結(jié)合到 Notch胞外區(qū)(NECD),腫瘤壞死因子-α-轉(zhuǎn)化酶(TNF-α converting enzyme,TACE)在Notch受體的S2位點(diǎn)進(jìn)行切割,釋放出胞外部分,留下與膜粘連的胞內(nèi)部分(Notch-intra T M)。在跨膜區(qū)S3位點(diǎn)被早老蛋白(presenilin,PS)依賴的 γ-分泌酶(γ-secretase)切割釋放Notch胞內(nèi)片段(NICD,Notch的活性形式),NICD不經(jīng)其他信號(hào)轉(zhuǎn)導(dǎo)分子的作用而直接進(jìn)入細(xì)胞核,與 DNA結(jié)合蛋白R(shí)BP-J相互作用。NICD不在核內(nèi)時(shí),RBP-J與其他抑制因子(Co-R)結(jié)合形成為轉(zhuǎn)錄抑制因子復(fù)合體。當(dāng)胞內(nèi)區(qū)和其他活化因子(Co-A)結(jié)合時(shí),RBP-J能促進(jìn)靶基因如HES和HERP的表達(dá)[2]。已有研究表明,Notch信號(hào)不但通過(guò)影響B(tài)和T淋巴細(xì)胞的發(fā)育參與調(diào)控免疫應(yīng)答過(guò)程[3-4],而且還參與調(diào)控骨改建過(guò)程[5]。
骨免疫學(xué)是研究骨骼系統(tǒng)和免疫系統(tǒng)相互作用的一門(mén)學(xué)科[6]。骨形成和骨吸收之間的平衡調(diào)節(jié)著骨內(nèi)環(huán)境的穩(wěn)定,主要通過(guò)成骨細(xì)胞(Osteoblasts,OB)和破骨細(xì)胞(Osteclasts,OC)間的相互協(xié)調(diào)作用。盡管破骨細(xì)胞是骨吸收的主要功能細(xì)胞,但其本身又受到局部微環(huán)境調(diào)節(jié)[7]。免疫功能異常將影響骨內(nèi)環(huán)境穩(wěn)定,T細(xì)胞異?;罨瘯?huì)導(dǎo)致破骨細(xì)胞過(guò)度活躍,從而使骨吸收速度遠(yuǎn)遠(yuǎn)超過(guò)骨形成速度,是牙周炎(periodontitis)發(fā)生的病理學(xué)基礎(chǔ)[8-9]。此外,免疫系統(tǒng)異常亦與骨質(zhì)疏松的發(fā)生有著緊密聯(lián)系[10]。因此,免疫系統(tǒng)與骨骼系統(tǒng)兩者間的相互作用受到密切關(guān)注。
破骨細(xì)胞來(lái)源于骨髓造血干細(xì)胞,是高度分化的多核巨細(xì)胞,直接參與骨吸收。一方面,破骨細(xì)胞過(guò)度活躍是類風(fēng)濕性關(guān)節(jié)炎(rheumatoid arthritis,RA)和牙周炎發(fā)生的病理學(xué)基礎(chǔ)[9,11];另一方面,破骨細(xì)胞活性低下又可引發(fā)骨質(zhì)硬化癥(osteopetrosis)[12]。因此,如何調(diào)節(jié)破骨細(xì)胞活性是骨免疫研究領(lǐng)域的熱點(diǎn)之一。免疫細(xì)胞、骨髓微環(huán)境中的成骨細(xì)胞和骨髓基質(zhì)細(xì)胞均參與調(diào)控破骨細(xì)胞的分化及其骨吸收功能[13-14]。核因子-κB受體活化因子(receptor activator of NF-κB,RANK)及其配體 RANKL和誘餌受體骨保護(hù)素(Osteoprotegerin,OPG)是破骨細(xì)胞發(fā)育和功能活化的關(guān)鍵調(diào)節(jié)因子[15]。RANKL-RANK信號(hào)傳導(dǎo)可以激活破骨細(xì)胞發(fā)育所需的一系列下游信號(hào)途徑,但OPG能競(jìng)爭(zhēng)性地與 RANKL結(jié)合,阻斷 RANK與RANKL間的相互作用,從而抑制破骨細(xì)胞的形成和活化[16]。
B細(xì)胞和T細(xì)胞是適應(yīng)性免疫應(yīng)答(adaptive immune system)中參與識(shí)別和抵御外來(lái)病原物的主要成員。有研究發(fā)現(xiàn),缺乏B細(xì)胞的老鼠會(huì)發(fā)生骨質(zhì)疏松,提示免疫細(xì)胞參與維持基礎(chǔ)水平的骨代謝平衡[17];成熟B細(xì)胞分泌的OPG量占整個(gè)骨髓來(lái)源的50%以上,因此對(duì)生理狀態(tài)下的破骨細(xì)胞活性起到明顯的抑制作用[18]。從牙周病變部位分離培養(yǎng)的包括T細(xì)胞和B細(xì)胞在內(nèi)的單核細(xì)胞能誘導(dǎo)體外的破骨細(xì)胞分化[19]。上述研究結(jié)果提示,T細(xì)胞和B細(xì)胞主要是通過(guò)調(diào)控RANKL的表達(dá)水平,從而影響破骨細(xì)胞分化及其骨吸收能力。
T細(xì)胞對(duì)破骨細(xì)胞的誘導(dǎo)效應(yīng)取決于T細(xì)胞分泌的促進(jìn)和抑制因子。一方面,活化的T細(xì)胞所產(chǎn)生的RANKL通過(guò)與破骨前體細(xì)胞的RANK直接結(jié)合,而誘導(dǎo)其向破骨細(xì)胞分化[20-21]。另一方面,由T細(xì)胞分泌的γ-干擾素(IFN-γ)能在極其微量的濃度時(shí)通過(guò)激活泛素/蛋白酶(ubiquitin/ proteasome)降解腫瘤壞死因子受體相關(guān)因子-6 (tumor necrosis factor receptor-associated factor-6,TRAF-6),從而抑制RANKL誘導(dǎo)的破骨細(xì)胞分化效應(yīng)[22-23]。此外,CD4+輔助性T細(xì)胞(T helper,Th)按其所產(chǎn)生細(xì)胞因子的不同分為T(mén)h 1和Th 2,Th 1主要產(chǎn)生IFN-γ,而Th 2主要產(chǎn)生白介素-4, 5和10(interleukin,IL)[24]。除上述IFN-γ能抑制RANKL誘導(dǎo)的破骨細(xì)胞分化外,IL-10也能通過(guò)降低活化T細(xì)胞核因子(nuclear factor of activated T cells,NFAT-c1)的表達(dá)水平及核轉(zhuǎn)位能力而抑制破骨細(xì)胞分化[25-26]。在上述負(fù)性調(diào)控因子存在的關(guān)節(jié)炎癥病變部位,活化的CD4+T細(xì)胞是如何誘導(dǎo)破骨細(xì)胞分化的呢?有學(xué)者推測(cè),可能存在一類非常微量但對(duì)病理性骨吸收起著極其重要作用的Th細(xì)胞,稱為破骨細(xì)胞源性輔助T細(xì)胞(osteoclastogenic Th,ThOc)[27]。目前,已經(jīng)明確 ThOc是一類能產(chǎn)生IL-17的CD4+T細(xì)胞,其中Th 1和Th 2具有抑制破骨細(xì)胞分化的效應(yīng)[28]。進(jìn)一步研究表明,IL-17A對(duì)生理性骨改建過(guò)程沒(méi)有影響,但在炎癥狀態(tài)下,能通過(guò)上調(diào)破骨前體細(xì)胞RANK表達(dá)水平,提高RANK對(duì)RANKL的敏感性,促進(jìn)破骨細(xì)胞分化及其骨吸收,從而在病理性骨改建過(guò)程中發(fā)揮重要作用[29]。
目前有關(guān)破骨細(xì)胞對(duì)免疫細(xì)胞的調(diào)控效應(yīng)尚不明確。破骨細(xì)胞作為抗原呈遞細(xì)胞(antigen-presenting cells,APCs)為活化T細(xì)胞。與樹(shù)突狀細(xì)胞(dendritic cells,DCs)類似,破骨細(xì)胞主要表達(dá)組織相容性抗原Ⅰ和Ⅱ(major histocompatibility complex,MHC)、CD80、CD86和CD40;并能吸收攝取可溶性抗原。同時(shí),破骨細(xì)胞還能分泌IL-10、IL-6、轉(zhuǎn)化生長(zhǎng)因子-β (transforming growth factor-beta,TGF-β)和腫瘤壞死因子-α(tumor necrosis factor-alpha,TNF-α),并以MHC受限的方式呈遞外來(lái)抗原而活化CD4+和CD8+同種異體反應(yīng)性 T細(xì)胞 (alloreactive Tcells)[30]。
定向敲除小鼠成骨細(xì)胞的早老素-1(presenilin-1)和早老素-2,可導(dǎo)致OPG水平降低、破骨細(xì)胞活性增高從而降低小鼠的骨質(zhì)密度[31],提示Notch信號(hào)可通過(guò)降低OPG的表達(dá)水平,以非細(xì)胞自主方式(a non-cell autonomous manner)調(diào)控破骨細(xì)胞的形成。體外實(shí)驗(yàn)表明,Notch 1信號(hào)和Notch 2信號(hào)亦均以細(xì)胞自主方式(a cell autonomous manner)調(diào)控破骨細(xì)胞的分化過(guò)程,抑制破骨前體細(xì)胞Notch 1信號(hào)能促進(jìn)其向破骨細(xì)胞分化[32]。利用γ-分泌酶抑制劑阻斷 Notch信號(hào)或通過(guò)shRNA干擾阻斷Notch 2信號(hào)均能抑制RANKL誘導(dǎo)的破骨細(xì)胞分化過(guò)程;而活化Notch 2信號(hào)則能促進(jìn)RANKL誘導(dǎo)的破骨細(xì)胞分化過(guò)程[33]。因此,兩種細(xì)胞方式(自主或非自主)均參與Notch信號(hào)對(duì)破骨細(xì)胞分化的調(diào)控過(guò)程。由于破骨前體細(xì)胞主要表達(dá)Notch 2受體[34],提示Notch信號(hào)的綜合效應(yīng)可能是一種正向調(diào)控破骨細(xì)胞分化過(guò)程。
成熟的外周B細(xì)胞主要包括濾泡B細(xì)胞(Follicular B)和邊緣帶B細(xì)胞(marginal zone B,MZB)兩個(gè)亞類。MZB細(xì)胞主要啟動(dòng)體液免疫以清除外來(lái)抗原[34]。初始B細(xì)胞(naive B cell)主要表達(dá)Notch 2受體35-36],Notch 2或Dll 1基因敲除鼠體內(nèi)的 MZB細(xì)胞數(shù)量明顯減少[35,37],提示Notch 2信號(hào)途徑在MZB細(xì)胞的發(fā)育中起決定作用。敲除 Notch信號(hào)通路的關(guān)鍵核轉(zhuǎn)錄因子RBP-J[38]或MAML 1(mastermind-like 1)[39]基因后,小鼠亦不能產(chǎn)生MZB細(xì)胞,進(jìn)一步表明Notch信號(hào)途徑在MZB細(xì)胞發(fā)育中的關(guān)鍵作用。交互實(shí)驗(yàn)(reciprocal experiment)結(jié)果顯示,敲除 MINT (Notch/RBP-J信號(hào)通路的抑制因子)基因后,小鼠MZB細(xì)胞數(shù)量劇增,同時(shí)伴隨濾泡B細(xì)胞數(shù)量下降[40]。上述基因功能喪失實(shí)驗(yàn)表明,Notch 2與Dll 1的相互作用參與調(diào)控MZB的發(fā)育過(guò)程。
Th 1細(xì)胞主要分泌IFN-γ,參與細(xì)胞免疫和遲發(fā)型超敏性炎癥的形成[41]。DC細(xì)胞通過(guò)表達(dá)Notch的不同配體與T細(xì)胞發(fā)生互相作用而影響Th向Th 1或Th2分化;其中Delta誘導(dǎo)Th向Th1分化,而Jagged誘導(dǎo)其向Th 2分化[42]。即Delta配體高表達(dá)時(shí)促進(jìn)Th向Th 1分化,而被抑制時(shí)則向Th 2細(xì)胞分化[43]。此外,使用γ-分泌酶抑制劑能阻斷Th 1發(fā)育過(guò)程,表明Notch信號(hào)對(duì)Th 1細(xì)胞發(fā)育具有重要的調(diào)控作用[44]。轉(zhuǎn)錄因子T-bet(Notch靶基因之一)參與Dll誘導(dǎo)Th 1細(xì)胞分化過(guò)程,但不參與Dll對(duì)Th 2細(xì)胞分化的抑制過(guò)程[45]。阻斷Dll 4-Notch途徑后,CD4+Foxp3+調(diào)節(jié)性T細(xì)胞(Treg)數(shù)量增加,Th 2/Th 1–Th 17比值升高,能減輕實(shí)驗(yàn)性自身免疫性腦脊髓炎(experimental autoimmune encephalomyelitis,EAE)的臨床癥狀和中樞系統(tǒng)炎癥反應(yīng)[46]。
目前,有關(guān)參與Dll誘導(dǎo)Th 1極化的Notch受體尚不清楚。CD4+T細(xì)胞主要表達(dá) Notch 1和 Notch 3受體[43],過(guò)表達(dá)N3-ICD激活Notch 3信號(hào)能促進(jìn)Th向Th 1細(xì)胞分化,同時(shí)提高IFN-γ表達(dá)水平;但過(guò)表達(dá)N1-ICD激活的Notch 1信號(hào)通路并不影響IFN-γ的表達(dá)。交互試驗(yàn)發(fā)現(xiàn),即使Delta 1-Fc存在,一旦失活Notch 3受體阻斷Notch 3信號(hào)通路,Th1細(xì)胞分化過(guò)程仍然受阻,表明Notch 3-Delta的相互作用在Th 1極化中發(fā)揮重要作用[43]。以上實(shí)驗(yàn)結(jié)果提示,通過(guò)阻斷Notch 3信號(hào)途徑能抑制Th 1細(xì)胞免疫反應(yīng)[47]。另一方面,有證據(jù)表明Notch經(jīng)典信號(hào)途徑(通過(guò) RBP-J或MAML)并不參與Delta在Th 1細(xì)胞分化的調(diào)控過(guò)程[48]。
APCs表達(dá)Jagged配體誘導(dǎo)體外Th向Th 2細(xì)胞分化[43];但Jagged2配體不足以誘導(dǎo)體內(nèi)Th向Th 2細(xì)胞分化[48];甚至有研究表明Jagged 2不是體內(nèi)Th 2細(xì)胞分化的必需條件[49]。在氣道高反應(yīng)性(airway hyperresponsiveness)模型中,DCs表面Jagged1配體通過(guò)誘導(dǎo)IL-4參與調(diào)控Th細(xì)胞的起始分化過(guò)程[50]。上述研究結(jié)果提示Jagged 1配體參與Th 2細(xì)胞免疫反應(yīng)。
經(jīng)Toll受體(toll-like receptors,TLR)刺激后的DC細(xì)胞表達(dá)Delta 1和Delta 4配體,抑制輔助性T細(xì)胞向Th 2發(fā)育。Gata 3是Notch信號(hào)抑制Th 1細(xì)胞發(fā)育,誘導(dǎo)Th 2細(xì)胞發(fā)育過(guò)程中的關(guān)鍵因子[51],當(dāng)阻斷IL-4對(duì)Gata 3的誘導(dǎo)作用時(shí),在降低DCs細(xì)胞表面Delta配體表達(dá)量的情況下,Th 2細(xì)胞發(fā)育過(guò)程仍然被抑制[52]。抑制EAE實(shí)驗(yàn)動(dòng)物體內(nèi)的Dll配體后,能增強(qiáng)髓磷脂-特異性(myelin-specific)Th 2/Treg免疫反應(yīng),同時(shí)抑制Th 1/Th 17細(xì)胞活性[46]。敲除Notch信號(hào)通路的其他組分(如MAML或RBP-J)能抑制小鼠體內(nèi)Th 2細(xì)胞免疫反應(yīng)[50,53]。
牙周炎(periodontitis)是由牙菌斑生物膜的細(xì)菌及其產(chǎn)物引起的結(jié)締組織附著喪失和牙槽骨破壞的一類疾病。細(xì)菌感染宿主激發(fā)T細(xì)胞介導(dǎo)的間接免疫反應(yīng)是牙周病進(jìn)程的主要環(huán)節(jié)[54]。Th 17細(xì)胞產(chǎn)生IL-17是引發(fā)牙周病發(fā)生的主要致病因子[55],通過(guò)牙周基礎(chǔ)治療,IL-17和IFN-γ水平降低,而IL-4水平升高,牙周局部組織炎癥明顯減輕,提示在牙周病的發(fā)展和轉(zhuǎn)歸中,Th 2主要起保護(hù)作用,而Th 17細(xì)胞通過(guò)破壞牙周組織局部免疫機(jī)制起損害作用。
多種因子參與調(diào)控Th 17細(xì)胞分化[55-58]。在小鼠和人類Th 17分化過(guò)程中,Notch 1信號(hào)被活化[59],阻斷Notch信號(hào)能明顯降低Th 17相關(guān)炎性因子水平,提示Notch信號(hào)在Th17分化中起關(guān)鍵作用。利用染色質(zhì)免疫沉淀方法研究發(fā)現(xiàn),Th 17細(xì)胞中的IL-17和維甲酸相關(guān)孤兒受體γt(retinoic acid-related orphan receptor γt,RORγt)受到Notch信號(hào)的直接轉(zhuǎn)錄調(diào)控;阻斷Notch信號(hào)能降低IL-17表達(dá)量,延緩EAE動(dòng)物體內(nèi)Th17激發(fā)的免疫疾病的進(jìn)程。進(jìn)一步表明Notch信號(hào)在Th 17細(xì)胞分化中的重要作用。
另一方面,牙周膜細(xì)胞表達(dá)Notch信號(hào)配體Jagged 1,體外實(shí)驗(yàn)發(fā)現(xiàn),甲狀旁腺素相關(guān)肽(parathyroid hormone-related peptide,PTHrP)能刺激牙周膜細(xì)胞高表達(dá)Jagged 1,從而參與調(diào)控RANKL誘導(dǎo)的破骨細(xì)胞形成分化過(guò)程[60];而骨形成因子能提高牙周膜細(xì)胞Notch信號(hào)配體Dll 1的表達(dá)水平[61]。Jagged 1通過(guò)與Notch 1受體結(jié)合抑制破骨細(xì)胞分化;而Dll 1通過(guò)與Notch 2受體結(jié)合促進(jìn)破骨細(xì)胞分化,并且在破骨前體細(xì)胞向破骨細(xì)胞分化過(guò)程中,相對(duì)于Jagged/Notch 1的負(fù)向調(diào)控作用,Dll 1/Notch 2間的正向調(diào)控效應(yīng)為主導(dǎo)作用[62]。上述研究結(jié)果提示Notch信號(hào)可能成為治療牙周炎的新靶點(diǎn)。
盡管Notch信號(hào)非Th1細(xì)胞分化的必須通路,但Notch信號(hào)對(duì)Th 2、Th 17、MZB細(xì)胞和破骨細(xì)胞的分化起到重要的正向調(diào)控作用。在破骨細(xì)胞分化過(guò)程中,Th 1和Th 2細(xì)胞為負(fù)向調(diào)控因子,而Th 17為正向調(diào)控因子。抑制Notch信號(hào)通路不但可直接抑制破骨細(xì)胞分化,并且可通過(guò)抑制Th 17細(xì)胞發(fā)育間接抑制破骨細(xì)胞分化。因此,Notch信號(hào)通路有望成為臨床治療牙周炎新的靶點(diǎn)。
[1] Souilhol C,Cormier S,Tanigaki K,et al.RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development[J].Mol Cell Biol.2006,26(13):4769-4774.
[2] Radtke F,F(xiàn)asnacht N,Macdonald HR.Notch signaling in the immune system[J].Immunity,2010,32(1):14-27.
[3] Billiard F,Kirshner JR,Tait M,et al.Ongoing Dll4-Notch sig-naling is required for T-cell homeostasis in the adult thymus[J].Eur J Immunol,2011,41(8):2207-2216.
[4] Jin G,Zhang F,Chan KM,et al.MT1-MMP cleaves Dll1 to negatively regulate Notch signalling to maintain normal B-cell development[J].EMBO J,2011,30(11):2281-2293.
[5] Zanotti S,Canalis E.Notch regulation of bone development and remodeling and related skeletal disorders[J].Calcif Tissue Int,2012,90(2):69-75.
[6] Arron JR,Choi Y.Bone versus immune system[J].Nature,2000,408(6812):535-536.
[7] Takayanagi H.Interaction between the immune system and bone metabolism:an emerging field of osteoimmunology[J].Proc Japan Academy Series B,2007,83:136-142.
[8] Takayanagi H.Osteoimmunological insight into bone damage in rheumatoid arthritis[J].Mod Rheumatol,2005,15(4):225-231.
[9] Cardoso CR,Garlet GP,Crippa GE,et al.Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease[J].Oral Microbiol Immunol,2009,24 (1):1–6.
[10] Clowes JA,Riggs BL,Khosla S.The role of the immune system in the pathophysiology of osteoporosis[J].Immunol Rev,2005,208:207-227.
[11] Sato K,Takayanagi H.Osteoclasts,rheumatoid arthritis,and osteoimmunology[J].Curr Opin Rheumatol,2006,18(4): 419-426.
[12] Teti A,Migliaccio S,Taranta A,et al.Mechanisms of osteoclast dysfunction in human osteopetrosis:abnormal osteoclastogenesis and lack of osteoclast-specific adhesion structures[J].J Bone Miner Res,1999,14(12):2107-2117.
[13] Reddy SV,Roodman GD.Control of osteoclast differentiation[J].Crit Rev Eukaryot Gene Expr,1998,8(1):1-17.
[14] Okamoto K,Takayanagi H.Osteoclasts in arthritis and Th17 cell development[J].Int Immunopharmacol,2011,11(5): 543-548.
[15] Khosla S.Minireview:the OPG/RANKL/RANK system[J].Endocrinology,2001,142(12):5050-5055.
[16] Liu C,Walter TS,Huang P,et al.Structural and functional insights of RANKL-RANK interaction and signaling[J].J Immunol,2010,184(12):6910-6919.
[17] Li Y,Toraldo G,Li A,et al.B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo[J].Blood,2007,109(9):3839-3848.
[18] Raggatt LJ,Partridge NC.Cellular and molecular mechanisms of bone remodeling[J].J Biol Chem,2010,285(33):25103-25108.
[19] Harada Y,Taubman MA,Eastcott JW,et al.Generation of B cells specific for Actinobacillus actinomycetemcomitans[J].J Dent Res,1990,69(Spec.Issue):143(Abstr.279)
[20] Kong YY,F(xiàn)eige U,Sarosi I,et al.Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand[J].Nature,1999,402(6759):304-309.
[21] Horwood NJ,Kartsogiannis V,Quinn JM,et al.Activated T lymphocytes support osteoclast formation in vitro[J].Biochem Biophys Res Commun,1999,265(1):144-150.
[22] Arron JR,Choi Y.Bone versus immune system[J].Nature,2000,408(6812):535-536.
[23] Takayanagi H,Ogasawara K,Hida S,et al.T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma[J].Nature,2000,408(6812):600-605.
[24] Zhu J,Paul WE.Heterogeneity and plasticity of T helper cells[J].Cell Res,2010,20(1):4-12.
[25] Hong MH,Williams H,Jin CH,et al.The inhibitory effect of interleukin-10 on mouse osteoclast formation involves novel tyrosine-phosphorylated proteins[J].J Bone Miner Res,2000,15 (5):911-918.
[26] Mohamed SG,Sugiyama E,Shinoda K,et al.Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells[J].Bone,2007,41(4):592-602.
[27] Takayanagi H.Osteoimmunology:shared mechanisms and crosstalk between the immune and bone systems[J].Nat Rev Immunol,2007,7(4):292-304.
[28] Sato K,Suematsu A,Okamoto K,et al.Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction[J].J Exp Med,2006,203(12):2673-2682.
[29] Adamopoulos IE,Chao CC,Geissler R,et al.Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors[J].Arthritis Res Ther,2010,12(1):R29.
[30] Li H,Hong S,Qian J,et al.Cross talk between the bone and immune systems:osteoclasts function as antigen-presenting cells and activate CD4+and CD8+T cells[J].Blood,2010,116 (2):210-217.
[31] Engin F,Yao Z,Yang T,et al.Dimorphic effects of Notch signaling in bone homeostasis[J].Nat Med,2008,14(3):299-305.
[32] Bai S,Kopan R,Zou W,et al.NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells[J].J Biol Chem,2008,283(10):6509-6518.
[33] Pillai S,Cariappa A,Moran ST.Marginal zone B cells[J].Annu Rev Immunol,2005,23:161-196.
[34] Fukushima H,Nakao A,Okamoto F,et al.The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis[J].Mol Cell Biol,2008,28(20):6402-6412.
[35] Saito T,Chiba S,Ichikawa M,et al.Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development[J].Immunity,2003,18(5):675-685.
[36] Moriyama Y,Sekine C,Koyanagi A,et al.Delta-like 1 is es-sential for the maintenance of marginal zone B cells in normal mice but not in autoimmune mice[J].Int Immunol,2008,20 (6):763-773.
[37] Hozumi K,Negishi N,Suzuki D,et al.Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo[J].Nat Immunol,2004,5(6):638-644.
[38] Tanigaki K,Han H,Yamamoto N,et al.Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells[J].Nat Immunol,2002,3(5):443-450.
[39] Oyama T,Harigaya K,Muradil A,et al.Mastermind-1 is required for Notch signal-dependent steps in lymphocyte development in vivo[J].Proc Natl Acad Sci USA,2007,104(23): 9764-9769.
[40] Kuroda K,Han H,Tani S,et al.Regulation of marginal zone B cell development by MINT,a suppressor of Notch/RBP-J signaling pathway[J].Immunity,2003,18(2):301-312.
[41] Rutz S,Janke M,Kassner N,et al.Notch regulates IL-10 production by T helper 1 cells[J].Proc Natl Acad Sci USA,2008,105(9):3497-3502.
[42] Amsen D,Blander JM,Lee GR,et al.Instruction of distinct CD4 T helper cell fates by different notch ligands on antigenpresenting cells[J].Cell,2004,117(4):515-526.
[43] Maekawa Y,Tsukumo S,Chiba S,et al.Delta1-Notch3 interactions bias the functional differentiation of activated CD4+T cells[J].Immunity,2003,19(4):549-559.
[44] Minter LM,Turley DM,Das P,et al.Inhibitors of gammasecretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21[J].Nat Immunol,2005,6(7):680-688.
[45] Krawczyk CM,Sun J,Pearce EJ.Th2 differentiation is unaffected by Jagged2 expression on dendritic cells[J].J Immunol,2008,180(12):7931-7937.
[46] Bassil R,Zhu B,Lahoud Y,et al.Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development[J].J Immunol,2011,187(5):2322-2328.
[47] Jurynczyk M,Jurewicz A,Raine CS,et al.Notch3 inhibition in myelin-reactive T cells down-regulates protein kinase C theta and attenuates experimental autoimmune encephalomyelitis[J].J Immunol,2008,180(4):2634-2640.
[48] Tu L,F(xiàn)ang TC,Artis D,et al.Notch signaling is an important regulator of type 2 immunity[J].J Exp Med,2005,202(8): 1037-1042.
[49] Worsley AG,LeibundGut-Landmann S,Slack E,et al.Dendritic cell expression of the Notch ligand jagged2 is not essential for Th2 response induction in vivo[J].Eur J Immunol,2008, 38(4):1043-1049.
[50] Okamoto M,Matsuda H,Joetham A,et al.Jagged1 on dendritic cells and Notch on CD4+T cells initiate lung allergic responsiveness by inducing IL-4 production[J].J Immunol,2009,183(5):2995-3003.
[51] Amsen D,Antov A,Jankovic D,et al.Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch[J].Immunity,2007,27(1):89-99.
[52] Sun J,Krawczyk CJ,Pearce EJ.Suppression of Th2 cell development by Notch ligands Delta1 and Delta4[J].J Immunol,2008,180(3):1655-1661.
[53] Amsen D,Antov A,Jankovic D,et al.Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch[J].Immunity,2007,27(1):89–99.
[54] Yoshie H,Taubman MA,Olson CL,et al.Periodontal bone loss and immune characteristics after adoptive transfer of Actinobacillus-sensitized T cells to rats[J].J Periodontal Res,1987,22 (6):499-505.
[55] Zhao L,Zhou Y,Xu Y,et al.Effect of non-surgical periodontal therapy on the levels of Th17/Th1/Th2 cytokines and their transcription factors in Chinese chronic periodontitis patients[J].J Clin Periodontol,2011,38(6):509-516.
[56] Mukherjee S,Schaller MA,Neupane R,et al.Regulation of T cell activation by Notch ligand,DLL4,promotes IL-17 production and Rorc activation[J].J Immunol,2009,182(12): 7381-7388.
[57] Peters M,Dudziak K,Stiehm M,et al.T-cell polarization depends on concentration of the danger signal used to activate dendritic cells[J].Immunol Cell Biol,2010,88(5):537-544.
[58] Akimzhanov AM,Yang XO,Dong C.Chromatin remodeling of interleukin-17(IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation[J].J Biol Chem,2007,282(9):5969-5972.
[59] Keerthivasan S,Suleiman R,Lawlor R,et al.Notch signaling regulates mouse and human Th17 differentiation[J].J Immunol,2011,187(2):692-701.
[60] Nakao A,Kajiya H,F(xiàn)ukushima H,et al.PTHrP induces Notch signaling in periodontal ligament cells[J].J Dent Res,2009,88 (6):551-556.
[61] Liu L,Ling J,Wei X,et al.Stem cell regulatory gene expression in human adult dental pulp periodontal ligament cells undergoing odontogenic/osteogenic differentiation[J].J Endod,2009,35(10):1368-1376.
[62] Sekine C,Koyanagi A,Koyama N,et al.Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes[J].Arthritis Res Ther,2012,14(2):45.