劉佳佳 張亦婷 彭航 劉鵬霞
1978年,Schofield首次提出了干細(xì)胞壁龕(niche)的概念[1]。壁龕是一個(gè)生態(tài)學(xué)術(shù)語(yǔ),有機(jī)體的壁龕是指有機(jī)體生存的地方、有機(jī)體所從事的行為,以及有機(jī)體與環(huán)境相互作用的方式的總稱(chēng)。干細(xì)胞的增殖分化行為一方面由自身的遺傳特征決定;另一方面受其所處的微環(huán)境(壁龕)的影響。所謂造血微環(huán)境是指造血干細(xì)胞(hematopoietic stem cell,HSC)存在于其中的一群組織細(xì)胞和細(xì)胞外基質(zhì),它們分泌多種信號(hào)分子,控制著HSC的自我更新和祖細(xì)胞的產(chǎn)生[2]。已經(jīng)證實(shí),造血微環(huán)境失調(diào)會(huì)引起多種疾病的發(fā)生,包括再生障礙性貧血、骨髓增生異常綜合征和原發(fā)性骨髓纖維化等[3-5]。另外,有報(bào)道顯示,異體HSC移植后會(huì)引起供體細(xì)胞白血病,顯示造血微環(huán)境在血液腫瘤發(fā)生中有重要作用[6]。因此,闡明造血微環(huán)境的細(xì)胞組成和分子機(jī)制對(duì)于了解白血病發(fā)病機(jī)理和更好地將HSC用于臨床治療有重要意義。
骨髓是HSC在成體中定居的主要部位,也是造血微環(huán)境所在的部位。在骨髓中,HSC進(jìn)行自我更新和分化,一方面保持一定數(shù)目的HSC存在;另一方面則不斷補(bǔ)充人體循環(huán)血液中的血細(xì)胞。已有數(shù)據(jù)顯示,骨髓造血微環(huán)境可以分成兩部分:骨內(nèi)膜微環(huán)境(鄰近成骨細(xì)胞)和血管微環(huán)境(鄰近血竇)。目前已知參與構(gòu)成造血微環(huán)境的細(xì)胞有:成骨細(xì)胞、內(nèi)皮細(xì)胞、CAR細(xì)胞、nestin+細(xì)胞、破骨細(xì)胞、巨噬細(xì)胞和施萬(wàn)細(xì)胞。
成骨細(xì)胞是構(gòu)成骨內(nèi)膜微環(huán)境的主要組成細(xì)胞[7]。早期的研究顯示純化的成骨細(xì)胞能支持粒細(xì)胞生成以及HSC的存活和增殖[8,9]。之后,研究者證實(shí)成骨細(xì)胞參與HSC的功能調(diào)節(jié)[9-11]。Zhang 等[10]的研究指出,排列在骨表面的N-鈣黏素陽(yáng)性CD45陰性的梭形成骨細(xì)胞(spindle-shaped N-cadherin+CD45-osteoblastic cells,SNO細(xì)胞)是造血微環(huán)境的組成細(xì)胞,SNO細(xì)胞數(shù)目的增加與HSC數(shù)目的增加直接相關(guān)。Calvi 等[11]的研究中應(yīng)用甲狀旁腺激素相關(guān)肽(parathyroid hormone related peptide,PTHrP)增加了成骨細(xì)胞的數(shù)目,繼而使造血增加。此外,體內(nèi)試驗(yàn)中發(fā)現(xiàn)表達(dá)皰疹病毒胸腺嘧啶基因的成骨細(xì)胞缺陷的轉(zhuǎn)基因鼠中,造血抑制嚴(yán)重[12]。以上研究說(shuō)明一部分成骨細(xì)胞亞群是造血微環(huán)境的組成細(xì)胞。但是,后續(xù)研究發(fā)現(xiàn)純化的CD150+CD48-CD41-Lin-HSC不表達(dá)N-鈣黏素,而N-鈣黏素被認(rèn)為是HSC與成骨細(xì)胞相互作用的信號(hào)分子[13,14]。這些數(shù)據(jù)顯示,SNO細(xì)胞可能是通過(guò)調(diào)節(jié)其他微環(huán)境成分的功能間接影響HSC。
內(nèi)皮細(xì)胞是血管微環(huán)境的主要組成細(xì)胞。研究發(fā)現(xiàn)HSC動(dòng)員時(shí),靜止的HSC會(huì)離開(kāi)骨內(nèi)膜造血微環(huán)境,向骨髓中央遷移,到達(dá)血管區(qū),在那里重建造血[15-17]。因此,研究者提出骨髓中存在第二個(gè)特化的造血微環(huán)境,即血管微環(huán)境。
骨髓切片的組織化學(xué)檢測(cè)顯示,骨髓血竇的有孔內(nèi)皮處存在具有長(zhǎng)期增殖能力的CD150+HSC[18]。單獨(dú)輸注內(nèi)皮祖細(xì)胞能夠促進(jìn)全身輻照小鼠的HSC重建、增強(qiáng)其造血功能,顯示微血管的修復(fù)與造血重建相關(guān)[19,20]。此外,有人發(fā)現(xiàn)特異性敲除血管內(nèi)皮生長(zhǎng)因子受體2(vascular endothelial growth factor receptor 2,VEGFR-2)的成年小鼠,在接受致死劑量輻照后不能重建造血[21]。而選擇性的激活成年小鼠內(nèi)皮細(xì)胞中的Akt1,會(huì)增加HSC數(shù)目、加速輻照后的造血重建[22]。說(shuō)明內(nèi)皮細(xì)胞是造血微環(huán)境的組成細(xì)胞。但是,迄今為止的研究并不能排除內(nèi)皮細(xì)胞通過(guò)調(diào)節(jié)造血微環(huán)境中其他的組成成分來(lái)間接地增強(qiáng)HSC的增殖能力的可能。
骨髓血竇內(nèi)皮細(xì)胞周?chē)鼑弑磉_(dá)CXCL12的網(wǎng)狀細(xì)胞,即富含CXCL12的網(wǎng)狀細(xì)胞(CXCL12 abundant reticular cell,CAR細(xì)胞),研究者發(fā)現(xiàn)這群細(xì)胞也參與了血管微環(huán)境的組成[23-28]。CAR細(xì)胞高表達(dá)血管細(xì)胞黏附分子-1(Vascular cell adhesion molecule-1,VCAM-1),CD44,CD51和血小板衍生生長(zhǎng)因子(platelet derived growth factor,PDGF)受體,是一群性質(zhì)相對(duì)均一的細(xì)胞;HSC、淋巴系祖細(xì)胞和紅系祖細(xì)胞增殖需要CAR細(xì)胞,CAR細(xì)胞敲除小鼠的HSC數(shù)目減少[26,27]。這些證據(jù)都說(shuō)明CAR細(xì)胞是造血微環(huán)境的組成細(xì)胞。
Méndez-Ferrer等[29]的研究發(fā)現(xiàn),在骨髓中nestin+細(xì)胞分布于血管周?chē)?,在體內(nèi)許多HSC和腎上腺素能神經(jīng)元緊鄰nestin+細(xì)胞生長(zhǎng);nestin+細(xì)胞敲除的小鼠中,HSC數(shù)目顯著減少;將HSC移植給致死劑量輻照的小鼠后,可見(jiàn)HSC歸巢到了nestin+細(xì)胞處,而將HSC移植給nestin+細(xì)胞敲除并接受致死劑量輻照的小鼠后發(fā)現(xiàn),HSC骨髓歸巢減少;顯示nestin+細(xì)胞是血管微環(huán)境的組成細(xì)胞。這一研究還發(fā)現(xiàn)nestin+細(xì)胞中包含間充質(zhì)干細(xì)胞和CAR細(xì)胞,說(shuō)明間充質(zhì)干細(xì)胞也是構(gòu)成血管微環(huán)境的組成細(xì)胞。侯瑞琴等[30]將間充質(zhì)干細(xì)胞聯(lián)合HSC移植到患者體內(nèi)發(fā)現(xiàn),聯(lián)合間充質(zhì)干細(xì)胞移植能明顯改善單倍體相合異基因HSC移植患者骨髓微環(huán)境的損傷狀態(tài)。這一研究進(jìn)一步證實(shí)了間充質(zhì)干細(xì)胞是造血微環(huán)境的組成細(xì)胞。
Kollet等[31]的報(bào)道指出破骨細(xì)胞可以通過(guò)降解骨內(nèi)膜的成分,從而促進(jìn)HSC的動(dòng)員。Adams等[32]則發(fā)現(xiàn)破骨細(xì)胞釋放大量羥基磷灰石鈣,這些羥基磷灰石鈣與HSC上表達(dá)的鈣離子受體相互作用,調(diào)控HSC功能。用二磷酸鹽處理小鼠破壞其破骨細(xì)胞功能后,與對(duì)照組相比,試驗(yàn)組小鼠造血功能恢復(fù)較緩慢,說(shuō)明破骨細(xì)胞影響了HSC的功能[33]。以上證據(jù)顯示破骨細(xì)胞是造血微環(huán)境的組成細(xì)胞。
研究表明,骨組織中的巨噬細(xì)胞對(duì)骨內(nèi)膜處的成骨細(xì)胞的功能具有調(diào)節(jié)作用[34]。在研究粒細(xì)胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF)對(duì)HSC動(dòng)員作用的試驗(yàn)中發(fā)現(xiàn),給予G-CSF減少了支持成骨細(xì)胞功能的骨內(nèi)膜巨噬細(xì)胞的數(shù)量,導(dǎo)致骨內(nèi)膜成骨細(xì)胞減少,抑制了骨內(nèi)膜骨形成,并降低了與HSC滯留在骨內(nèi)膜微環(huán)境中相關(guān)因子及HSC自我更新相關(guān)因子的表達(dá)[35]。后續(xù)試驗(yàn)發(fā)現(xiàn),骨髓單核吞噬細(xì)胞的減少促進(jìn)了造血干/祖細(xì)胞動(dòng)員,主要是由于單核吞噬細(xì)胞的減少會(huì)導(dǎo)致骨髓中CXCL12水平降低,以及那些與HSC滯留在骨內(nèi)膜Nestin+微環(huán)境中相關(guān)的基因選擇性下調(diào)[36]。以上研究表明,巨噬細(xì)胞對(duì)于維持骨內(nèi)膜HSC微環(huán)境起著重要的作用。
Yamazaki等[37]的試驗(yàn)表明,神經(jīng)膠質(zhì)細(xì)胞中的一種細(xì)胞——無(wú)髓鞘施萬(wàn)細(xì)胞也是造血微環(huán)境的組成細(xì)胞,在骨髓中施萬(wàn)細(xì)胞與HSC相鄰,施萬(wàn)細(xì)胞能夠產(chǎn)生轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor-beta,TGF-β), 通 過(guò) 與 HSC 表 面 的 TGF-β 受體作用,調(diào)控HSC滯留在骨內(nèi)膜微環(huán)境和HSC的自我更新。這一研究小組之前的研究工作已經(jīng)發(fā)現(xiàn),細(xì)胞因子誘導(dǎo)的脂筏聚集促進(jìn)HSC進(jìn)入細(xì)胞周期,而TGF-β能夠抑制細(xì)胞因子介導(dǎo)的脂筏聚集,進(jìn)而使HSC處于靜止?fàn)顟B(tài)[38,39]。以上試驗(yàn)證實(shí),神經(jīng)膠質(zhì)細(xì)胞通過(guò)分泌TGF-β調(diào)控HSC在骨髓微環(huán)境中保持休眠狀態(tài)。
在體內(nèi),大部分HSC保持靜止?fàn)顟B(tài)[40]。不同機(jī)體條件下,HSC的自我更新、增殖和分化的相對(duì)平衡由微環(huán)境進(jìn)行調(diào)控。目前已知,HSC和造血微環(huán)境組成細(xì)胞之間存在以下信號(hào)通路。
造血微環(huán)境中的基質(zhì)細(xì)胞能夠分泌趨化因子CXCL12,即基質(zhì)細(xì)胞衍生因子1(stromal derived factor 1,SDF-1),CXCL12能夠與HSC表面的CXCR4結(jié)合。應(yīng)用CXCR4拮抗劑后,外周血中HSC數(shù)目增加,顯示CXCL12/CXCR4信號(hào)通路參與調(diào)控HSC處于靜止?fàn)顟B(tài)[41,42]。此外,應(yīng)用CXCL12抗體和CXCR4抗體能夠顯著降低HSC的歸巢[43]。顯示這一信號(hào)通路與HSC的靜止?fàn)顟B(tài)的維持和歸巢相關(guān)。
研究顯示,造血微環(huán)境中的成骨細(xì)胞表達(dá)配體Jagged,當(dāng)配體結(jié)合HSC表面的Notch受體后Notch信號(hào)通路激活,Notch發(fā)生蛋白裂解,導(dǎo)致Notch的細(xì)胞內(nèi)結(jié)構(gòu)域轉(zhuǎn)運(yùn)到核內(nèi),在核內(nèi)Notch直接作為轉(zhuǎn)錄激活物起作用,促進(jìn)HSC的自我更新[9,44]。體外和體內(nèi)試驗(yàn)均顯示,在重組活化基因1(recombination activation gene-1,RAG-1)缺陷的Lin-SCA1+祖細(xì)胞中過(guò)表達(dá)Notch1,會(huì)導(dǎo)致HSC和造血祖細(xì)胞數(shù)目增多[45]。但是在失去功能的研究中發(fā)現(xiàn),敲除鼠Notch-1、Notch-2和Jagged-1并不影響HSC和微環(huán)境的功能[46,47]。這提示可能有其他信號(hào)通路發(fā)揮同樣的作用。
已知Wnt信號(hào)通路至少有兩個(gè)路徑:經(jīng)典的Wnt/β-連環(huán)蛋白通路和非經(jīng)典的Wnt/鈣離子通路[48]。經(jīng)典的 Wnt信號(hào)通路促進(jìn) HSC 自我更新[49]。非經(jīng)典的Wnt信號(hào)通路也能夠促進(jìn)HSC自我更新,但是這一作用是通過(guò)抑制經(jīng)典的Wnt信號(hào)通路而完成的,具體機(jī)制還不清楚[50]。此外,研究發(fā)現(xiàn)Wnt信號(hào)通路對(duì)于HSC靜止?fàn)顟B(tài)也有影響,Heather等[51]通過(guò)體內(nèi)試驗(yàn)發(fā)現(xiàn),抑制HSC的Wnt信號(hào)通路會(huì)導(dǎo)致HSC中p21Cip1表達(dá)下降以及移植后造血再生能力下降,這顯示W(wǎng)nt信號(hào)通路也與限制HSC增殖以及維持HSC的造血重建功能相關(guān)。另外,有研究顯示W(wǎng)nt信號(hào)通路與Notch信號(hào)通路之間存在整合,協(xié)同調(diào)控著 HSC 的功能[52,53]。
骨髓中處于細(xì)胞周期靜止期并具有抗凋亡活性的HSC表達(dá)酪氨酸激酶受體2(tyrosine kinase with Ig and EGF homology domains-2,Tie2),與成骨細(xì)胞表面表達(dá)的Tie2的配體血管生成素1 (angiopoietin-1,Ang-1)結(jié)合后,能夠使HSC緊密黏附于微環(huán)境基質(zhì)細(xì)胞,進(jìn)而保持靜止?fàn)顟B(tài)[54]。同源篩查發(fā)現(xiàn)Tie2的另一個(gè)配體Ang-2是Ang-1的拮抗物,Ang-2會(huì)逆轉(zhuǎn)Tie2/Ang-1信號(hào)通路調(diào)控HSC功能的作用[55]。具體機(jī)制還有待進(jìn)一步的研究。
骨形態(tài)發(fā)生蛋白(bone morphogenic protein,BMP) 是 TGF-β家 族 成 員 之 一。BMP-4調(diào) 控 著HSC的數(shù)目和功能[56]。體外培養(yǎng)中發(fā)現(xiàn),高濃度BMP-2、BMP-4和BMP-7能夠維持HSC處于未分化狀態(tài),而低濃度BMP-2、BMP-4和BMP-7促進(jìn)HSC增殖和分化[57]。體內(nèi)試驗(yàn)發(fā)現(xiàn),特異性敲除小鼠的BMP受體ⅠA后,排列在骨表面的成骨細(xì)胞數(shù)目增加,從而導(dǎo)致微環(huán)境中HSC數(shù)目增加[10]。顯示BMP信號(hào)通路通過(guò)調(diào)節(jié)造血微環(huán)境中成骨細(xì)胞的數(shù)目而調(diào)控HSC。
Trowbridge等[58]研究發(fā)現(xiàn),激活 hedgehog信號(hào)通路會(huì)導(dǎo)致大量HSC進(jìn)入細(xì)胞周期,持續(xù)激活hedgehog信號(hào)會(huì)導(dǎo)致HSC耗竭,顯示hedgehog信號(hào)通路調(diào)控HSC處于靜止?fàn)顟B(tài)。但是,也有研究者發(fā)現(xiàn)hedgehog信號(hào)通路對(duì)于HSC功能的維持不是必須的[59,60]。具體的機(jī)理還需進(jìn)一步的研究來(lái)證實(shí)。
自從提出造血微環(huán)境的概念以來(lái),對(duì)造血微環(huán)境的研究已經(jīng)取得了許多成就。然而,組成造血微環(huán)境的細(xì)胞種類(lèi)比較多,細(xì)胞間信號(hào)通路比較復(fù)雜,還有許多問(wèn)題有待進(jìn)一步研究。例如:目前還不清楚組成造血微環(huán)境的細(xì)胞的種類(lèi)究竟有多少;不同細(xì)胞之間是否有相互作用。已經(jīng)知道有些細(xì)胞,如巨噬細(xì)胞是通過(guò)作用于成骨細(xì)胞來(lái)影響HSC功能的,對(duì)于這類(lèi)細(xì)胞的研究還比較少。此外,HSC和微環(huán)境之間存在多種信號(hào)通路,這些信號(hào)通路之間是如何整合調(diào)控HSC的也不清楚。闡明這些問(wèn)題是在體外培養(yǎng)、擴(kuò)增HSC,進(jìn)而將HSC用于再生醫(yī)學(xué)的基礎(chǔ)。
[1]Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell[J]. Blood Cells, 1978, 4(1-2):7-25.
[2]Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche[J]. Nature, 2001, 414(6859):98-104.
[3]Brodsky RA, Jones RJ. Aplasfic anemia[J]. Lancet, 2005, 365(9471):1647-1656.
[4]Jamieson CH, Barroga CF, Vainchenker WP. Miscreant myeloproliferative disorder stem cells[J]. Leukemia, 2008, 22(11):2011-2019.
[5]Tripodo C, DiBernardo A, Ternullo MP, et al. CD146+bone marrow osteoprogenitors increase in the advanced stages of primary myelofibrosis[J]. Haematologica, 2009, 94(1):127-130.
[6]Flynn CM, Kaufman DS. Donor cell leukemia:insight into cancer stem cells and the stem cell niche[J]. Blood, 2007, 109(7):2688-2692.
[7]Lemischka IR. Microenvironmental regulation of hematopoietic stem cells[J]. Stem Cells, 1997, 15(suppl 1):63-68.
[8]Taichman RS, Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colonystimulating factor[J]. J Exp Med, 1994, 179(5):1677-1682.
[9]Taichman RS, Reilly MJ, Emerson SG. Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures[J]. Blood, 1996, 87(2):518-524.
[10]Zhang J, Niu C, Ye L, et al. Identification of the hematopoietic stem cell niche and control of the niche size[J]. Nature, 2003, 425(6960):836-841.
[11]Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the hematopoietic stem cell niche[J]. Nature, 2003, 425(6960):841-846.
[12]Visnjic D, Kalajzic Z, Rowe DW, et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency[J]. Blood,2004, 103(9):3258-3264.
[13]Kiel MJ, Radice GL, Morrison SJ. Lack of evidence that hematopoietic stem cells depend on N-cadherin- mediated adhesion to osteoblasts for their maintenance[J]. Cell Stem Cell, 2007, 1(2):204-217.
[14]Kiel MJ, Acar M, Radice GL, et al. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance[J]. Cell Stem Cell, 2009, 4(2):170-179.
[15]Kopp HG, Avecilla ST, Hooper AT, et al. The bone marrow vascular niche:home of HSC differentiation[J]. Physiology(Bethesda),2005, 20:349-356.
[16]Avecilla ST, Hattori K, Heissig B, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis[J]. Nature Medicine, 2004, 10(1):64-71.
[17]Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand[J]. Cell, 2002, 109:625-637.
[18]Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells[J]. Cell, 2005, 121(7):1109-1121.
[19]Salter AB, Meadows SK, Muramoto GG, et al. Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo[J]. Blood, 2009, 113(9):2104-2107.
[20]張瀅, 宋國(guó)梁, 潘彬, 等. 內(nèi)皮祖細(xì)胞對(duì)小鼠異基因骨髓移植后骨髓內(nèi)皮細(xì)胞修復(fù)的作用研究[J]. 中華血液學(xué)雜志,2012, 33(8):623-627.
[21]Hooper AT, Butler JM, Nolan DJ, et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells[J]. Cell Stem Cell, 2009, 4(3):263-274.
[22]Kobayashi H, Butler JM, O’Donnell R, et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells[J]. Nature Cell Biology, 2010, 12(11):1046-1056.
[23]Ara T, Tokoyoda K, Sugiyama T, et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny[J]. Immunity, 2003, 19(2):257-267.
[24]Tokoyoda K, Egawa T, Sugiyama T, et al. Cellular niches controlling B lymphocyte behavior within bone marrow during development[J]. Immunity, 2004, 20(6):707-718.
[25]Sugiyama T, Kohara H, Noda M, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches[J]. Immunity, 2006, 25(6):977-988.
[26]Nagasawa T. The chemokine CXCL12 and regulation of HSC and B lymphocyte development in the bone marrow niche[J]. Advances in Experimental Medicine Biology, 2007, 602:69-75.
[27]Omatsu Y, Sugiyama T, Kohara H, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche[J]. Immunity, 2010, 33(3):387-399.
[28]Nagasawa T, Omatsu Y, Sugiyama T. Control of hematopoietic stem cells by the bone marrow stromal niche:the role of reticular cells[J]. Cell, 2011, 32(7):315-320.
[29]Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J].Nature, 2010, 466(7308):829-834.
[30]侯瑞琴, 王婧, 孔圓, 等. 單倍體相合造血干細(xì)胞移植聯(lián)合間充質(zhì)干細(xì)胞輸注對(duì)患者造血微環(huán)境的影響[J]. 中國(guó)實(shí)驗(yàn)血液學(xué)雜志, 2010, 18(1):155-160.
[31]Kollet O, Dar A, Shivtiel S, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells[J]. Nature Medicine, 2006, 12(6):657- 664.
[32]Adams GB, Chabner KT, Alley IR, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor[J]. Nature, 2006, 439(7076):599-603.
[33]Lymperi S, Ersek A, Ferraro F, et al. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo[J].Blood, 2011, 117(5):1540-1549.
[34]Chang MK, Raggatt LJ, Alexander KA, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo[J].Journal Immunology, 2008, 181(2):1232-1244.
[35]Winkler IG, Sims NA, Pettit AR, et al. Bone marrow macrophages maintain hematopoietic stem cell(HSC)niches and their depletion mobilizes HSCs[J]. Blood, 2010, 116(23):4815-4828.
[36]Chow A, Lucas D, Hidalgo A, et al. Bone marrow CD169+macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche[J]. The Journal of Experimental Medicine, 2011, 208:261-271.
[37]Yamazaki S, Ema H, Karlsson G, et al. Nonmyelinating schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche[J]. Cell, 2011, 147(5):1146-1158.
[38]Yamazaki S, Iwama A, Takayanagi S, et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells[J]. The EMBO Journal,2006, 25(15):3515-3523.
[39]Yamazaki S, Iwama A, Takayanagi S, et al. TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation[J]. Blood, 2009, 113(6):1250-1256.
[40]Fleming WH, Alpern EJ,Uchida N, et al. Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells[J]. The Journal of Cell Biology, 1993, 122(4):897-902.
[41]Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist[J]. J Exp Med, 2005, 201(8):1307-1318.
[42]Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells[J]. The Journal of Experimental Biology, 2008, 205(4):777-783.
[43]Moll NM, Ransohoff RM. CXCL12 and CXCR4 in bone marrow physiology[J]. Expert Rev Hematol, 2010, 3(3):315-322.
[44]Artavanis TS, Artavanis-Tsakonas S, Rand MD, et al. Notch signaling :cell fate control and signal integration in development[J].Science, 1999, 284(5415):770-776.
[45]Stier S, Cheng T, Dombkowski D, et al. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favours lymphoid over myeloid lineage outcome[J]. Blood, 2002, 99(7):2369-2378.
[46]Mancini SJ, Mantei N, Dumortier A, et al. Jagged1-dependent Notch signalling is dispensable for hematopoietic stem cell self-renewal and differentiation[J]. Blood, 2005, 105(6):2340-2342.
[47]Maillard I, KochU, Dumortier A, et al. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells[J]. Cell Stem Cell, 2008, 2(4):356-366.
[48]Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic[J]. Nature, 2003, 423(6938):409-414.
[49]Luis TC, Weerkamp F, Naber BA, et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation[J]. Blood, 2009, 113(3):546-554.
[50]Murdoch B, Chadwick K, Martin M, et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo[J]. Proc Natl Acad SciUSA,2003, 100(6):3422-3427.
[51]Fleming HE, Janzen V, Lo Celso C, et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo[J]. Cell Stem Cell, 2008, 2(3):274-283.
[52]Duncan AW, Rattis FM, DiMascio LN, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance[J].Nature Immunology, 2005, 6(3):314-322.
[53]Kim JA, Kang YJ, Park G, et al. Identification of a stroma-mediated Wnt/beta-catenin signal promoting self-renewal of hematopoietic stem cells in the stem cell niche[J]. Stem Cells, 2009, 27(6):1318-1329.
[54]Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche[J]. Cell, 2004, 118(2):149-161.
[55]Gomei Y, Nakamura Y, Yoshihara H, et al. Functional differences between two Tie2 ligands, angiopoietin-1 and -2, in regulation of adult bone marrow hematopoietic stem cells[J]. Experimental Hematology, 2010, 38(2):82-89.
[56]Goldman DC, Bailey AS, Pfaffle DL, et al. BMP4 regulates the hematopoietic stem cell niche[J]. Blood, 2009, 114(20):4393-4401.
[57]Bhatia M, Bonnet D, Wu D, et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells[J]. J Exp Med, 1999, 189(7):1139-1148.
[58]Trowbridge JJ, Scott MP, Bhatia M, et al. Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration[J]. Pro Natl Acad SciUSA, 2006, 103(38):14134-14139.
[59]Gao J, Graves S, KochU, et al. Hedgehog signaling is dispensable for adult hematopoietic stem cell function[J]. Cell Stem Cell,2009, 4(6):548-558.
[60]Hofmann I, Stover EH, Cullen DE, et al. Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis[J]. Cell Stem Cell, 2009, 4(6):559-567.