蘇州大學(xué)附屬第三醫(yī)院病理科,江蘇 常州,213003
多柔比星誘導(dǎo)乳腺癌細(xì)胞PARP-1活性上調(diào)依賴于Kif4A蛋白低表達(dá)
王輝 魯常青 田波 李青 陳銅兵
蘇州大學(xué)附屬第三醫(yī)院病理科,江蘇 常州,213003
背景與目的:化療作為乳腺癌術(shù)后治療的重要手段,由其引發(fā)的耐藥現(xiàn)象備受關(guān)注,而耐藥的出現(xiàn)與DNA損傷修復(fù)異常增強(qiáng)密切相關(guān)。驅(qū)動(dòng)蛋白家族成員4A(kinesin family member 4A,Kif4A)和聚腺苷酸二磷酸核糖聚合酶-1[poly(ADP-ribose)polymerase,PARP-1]是重要的DNA損傷修復(fù)分子。本研究探討Kif4A在多柔比星誘導(dǎo)乳腺癌細(xì)胞PARP-1活性上調(diào)中的作用及意義。方法:蛋白質(zhì)印跡法檢測多柔比星處理后乳腺癌MDA-MB-231和MCF-7細(xì)胞Kif4A蛋白表達(dá)及PARP-1活性的變化;并檢測高表達(dá)Kif4A蛋白后,乳腺癌細(xì)胞PARP-1蛋白表達(dá)及其活性變化;流式細(xì)胞技術(shù)檢測多柔比星聯(lián)合PARP-1抑制劑3-氨基苯酰胺(3-Aminobenzamide,3-ABA)干預(yù)后乳腺癌細(xì)胞的凋亡情況。結(jié)果:多柔比星能上調(diào)PARP-1活性并誘導(dǎo)乳腺癌細(xì)胞Kif4A蛋白低表達(dá),兩者都呈濃度和時(shí)間依賴性;高表達(dá)Kif4A后,PARP-1活性被明顯抑制,細(xì)胞凋亡數(shù)增加,而多柔比星能部分逆轉(zhuǎn)由Kif4A高表達(dá)而引起的PARP-1活性抑制。多柔比星和3-ABA都誘導(dǎo)乳腺癌細(xì)胞凋亡,聯(lián)合使用能增加細(xì)胞凋亡,與單獨(dú)使用比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)果還顯示,多柔比星、PARP-1抑制劑3-ABA及高表達(dá)的Kif4A誘導(dǎo)的MDA-MB-231細(xì)胞凋亡數(shù)高于MCF-7細(xì)胞,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)論:多柔比星誘導(dǎo)乳腺癌細(xì)胞PARP-1活性上調(diào)依賴于細(xì)胞Kif4A蛋白低表達(dá),Kif4A有望成為逆轉(zhuǎn)多柔比星耐藥的新靶點(diǎn)。
驅(qū)動(dòng)蛋白家族成員4A;聚腺苷酸二磷酸核糖聚合酶-1;多柔比星;MCF-7細(xì)胞;MDA-MB-231細(xì)胞
多柔比星是臨床上常用的化療藥物,能與DNA發(fā)生交聯(lián),抑制DNA復(fù)制,阻斷細(xì)胞分裂,達(dá)到殺傷腫瘤細(xì)胞的目的。然而最近臨床用藥顯示,多柔比星的化療特別是對(duì)乳腺癌的化療耐藥現(xiàn)象常見,而化療耐藥原因可能與腫瘤細(xì)胞DNA損傷修復(fù)能力異常增強(qiáng)有關(guān)。聚腺苷酸二磷酸核糖聚合酶-1[poly(ADP-ribose) polymerase,PARP-1]在DNA損傷修復(fù)中起著重要作用。研究發(fā)現(xiàn)多柔比星能上調(diào)多種乳腺癌細(xì)胞PARP-1的活性[1-2]。本研究通過實(shí)驗(yàn)證明驅(qū)動(dòng)蛋白家族成員4A(kinesin family member 4A,Kif4A)在多柔比星誘導(dǎo)乳腺癌細(xì)胞PARP-1活性上調(diào)中起著重要作用,為乳腺癌耐藥研究提供線索。
1.1 細(xì)胞及試劑
1.1.1 細(xì)胞株
乳腺癌細(xì)胞MCF-7購于中國科學(xué)院典型培養(yǎng)物保藏委員會(huì)細(xì)胞庫,乳腺癌細(xì)胞MDAMB-231購于南京凱基生物技術(shù)有限公司。
1.1.2 試劑
DMEM細(xì)胞培養(yǎng)液購于Invitrogen公司;胎牛血清購于美國Hyclone公司;一抗Kif4A多克隆抗體和PAR多克隆抗體購于SAB公司,PARP多克隆抗體和α-tubulin多克隆抗體購于Cell Signaling公司;二抗HRP標(biāo)記的羊抗鼠二抗及羊抗兔二抗購于Amersham公司;多柔比星購于美國Sigma公司;PARP-1抑制劑3-氨基苯酰胺(3-Aminobenzamide,3-ABA)購于Amresco公司;AnnexinⅤ-FITC細(xì)胞凋亡檢測試劑盒購于南京凱基生物有限公司。
1.2 細(xì)胞培養(yǎng)
MCF-7細(xì)胞和MDA-MB-231細(xì)胞均用含10%滅活胎牛血清、100 U/mL青霉素、100 U/mL鏈霉素和2 mmol/L谷氨酰胺的高糖DMEM完全培養(yǎng)液,于37 ℃、CO2體積分?jǐn)?shù)為5%培養(yǎng)箱中培養(yǎng),每2~3天用0.25%胰蛋白酶和0.5% EDTA混合液傳代。
1.3 實(shí)驗(yàn)分組及細(xì)胞處理
接種MCF-7和MDA-MB-231細(xì)胞(MCF-7細(xì)胞接種密度為3×105個(gè)細(xì)胞/孔,MDA-MB-231細(xì)胞接種密度為5×105個(gè)細(xì)胞/孔,下面實(shí)驗(yàn)細(xì)胞接種密度與此相同)于6孔板中,次日換新鮮的含10%胎牛血清的DMEM培養(yǎng)液2 mL,分別用0.05、0.1、0.5、1、2 μmol/L的多柔比星處理MCF-7細(xì)胞24 h,恢復(fù)12 h,裂解細(xì)胞,收集蛋白,備用與蛋白印跡法檢測。以不加多柔比星細(xì)胞為對(duì)照組(0 μmol/L)。每組設(shè)3個(gè)重復(fù)孔。
1 μmol/L濃度多柔比星處理MCF-7/MDAMB-231細(xì)胞24 h,分別在恢復(fù)6、12、24和48 h后,用PBS洗細(xì)胞2次,裂解細(xì)胞,收集蛋白,并進(jìn)行蛋白定量,備用與蛋白印跡法檢測。以不給予恢復(fù)時(shí)間細(xì)胞組為對(duì)照組。每組設(shè)3個(gè)重復(fù)孔。
構(gòu)建并轉(zhuǎn)染HA-Kif4A質(zhì)粒至MCF-7和MDA-MB-231細(xì)胞中,1 μmol/L濃度的多柔比星處理24 h,恢復(fù)12 h,裂解細(xì)胞,收集蛋白,并進(jìn)行蛋白定量,備用與蛋白印跡法檢測。以轉(zhuǎn)染空載質(zhì)粒和未加多柔比星細(xì)胞組為對(duì)照組。每組設(shè)3個(gè)重復(fù)孔。
接種MCF-7/MDA-MB-231細(xì)胞,用1 μmol/L濃度的多柔比星聯(lián)合5 μmol/L濃度的3-ABA分別處理MCF-7和MDA-MB-231細(xì)胞24 h,恢復(fù)12 h,收取上清液及培養(yǎng)皿底部貼壁細(xì)胞,用PBS洗滌2次,用FCM法檢測細(xì)胞凋亡。以不加多柔比星和3-ABA的MCF-7細(xì)胞組為對(duì)照組。每組設(shè)3個(gè)重復(fù)孔。
1.4 蛋白質(zhì)印跡法(Western blot)
Western blot檢測Kif4A、PARP-1的表達(dá)及PARP-1的活性,用細(xì)胞裂解液提取各組總蛋白;考馬斯亮藍(lán)比色法測定蛋白含量,取等量蛋白進(jìn)行8%的SDS-PAGE凝膠電泳,PVDF轉(zhuǎn)膜,非特異性封閉;加入抗Kif4A多克隆抗體、抗PARP-1多克隆抗體、抗PAR多克隆抗體及抗α微管蛋白多克隆抗體,4 ℃過夜;加入辣根過氧化物酶標(biāo)記的相應(yīng)的二抗進(jìn)行雜交2 h。ECL發(fā)光劑溫浴5 min,曝光、顯影、定影。用α微管蛋白作為內(nèi)參。數(shù)碼成像分析系統(tǒng)軟件對(duì)結(jié)果進(jìn)行分析,用Image-Pro Plus 6.0軟件對(duì)蛋白條帶進(jìn)行光密度分析,目的蛋白的相對(duì)表達(dá)量=(待檢測蛋白光密度/α微管蛋白光密度。實(shí)驗(yàn)重復(fù)3次。
1.4 RT-PCR檢測
提取HEK293(購于中國科學(xué)院典型培養(yǎng)物保藏委員會(huì)細(xì)胞庫)細(xì)胞總RNA,并以其為模板,擴(kuò)增Kif4A;Kif4A引物序列:上游5’-TGAAGC TTACATGAAGGAAGAGGTGAAG-3’;下游5’-AGATGTCGACTCCAACTTCAGTGGG-3’,反應(yīng)條件94 ℃ 2 min;98 ℃ 10 s,55 ℃ 10 s,72 ℃4.5 min,30個(gè)循環(huán);72 ℃ 5 min 。
1.5 FCM法檢測細(xì)胞凋亡
按實(shí)驗(yàn)要求處理MCF-7和MDA-MB-231細(xì)胞,用不含EDTA胰酶消化收集細(xì)胞,合并上清液和細(xì)胞,用PBS再洗滌2次,然后用500 mL結(jié)合緩沖液懸浮細(xì)胞,加入5 mL的AnnevinⅤ-FITC混勻,加入5 mL的PI混勻,室溫避光反應(yīng)5~15min,流式細(xì)胞儀檢測(1 h內(nèi)完成細(xì)胞檢測)。計(jì)算細(xì)胞凋亡率。實(shí)驗(yàn)重復(fù)3次。
1.6 統(tǒng)計(jì)學(xué)處理
應(yīng)用SPSS 17.0統(tǒng)計(jì)分析軟件進(jìn)行實(shí)驗(yàn)結(jié)果數(shù)據(jù)處理,計(jì)量資料以x±s 表示,兩組間均數(shù)的比較采用t檢驗(yàn),多組均數(shù)間的比較采用單因素方差分析,再用Tukey post hoc進(jìn)行兩兩比較。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 多柔比星對(duì)乳腺癌細(xì)胞MCF-7和MDAMB-231表達(dá)Kif4A和PARP-1的影響
分別用0.05、0.1、0.5、1和2 μmol/L濃度多柔比星干預(yù)MCF-7和MDA-MB-231細(xì)胞24 h,恢復(fù)12 h,以不加多柔比星細(xì)胞為對(duì)照組(0 μmol/L),蛋白質(zhì)印跡法檢測結(jié)果顯示,隨著多柔比星濃度的升高,MCF-7和MDA-MB-231細(xì)胞PARP-1活性即多聚核糖基化修飾[poly(ADP-ribose),PAR]在整個(gè)過程中逐漸增強(qiáng),在1 μmol/L時(shí),其活性是對(duì)照組(0 μmol/L)的2倍以上,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);相反Kif4A蛋白卻呈現(xiàn)出逐漸低表達(dá),在多柔比星濃度為1 μmol/L時(shí),Kif4A蛋白基本不表達(dá),差異有統(tǒng)計(jì)學(xué)意義(P<0.05);而全長PARP-1(113×103)蛋白表達(dá)在整個(gè)過程中變化不大,其斷裂(89×103)略有減少(圖1)。
1 μmol/L濃度多柔比星處理MCF-7細(xì)胞24 h,分別恢復(fù)6、12、24、48 h,以未處理組和不予恢復(fù)時(shí)間作為對(duì)照組,蛋白質(zhì)印跡法檢測結(jié)果顯示,多柔比星處理后隨著恢復(fù)時(shí)間的延長,兩種細(xì)胞的PARP-1活性PAR都呈現(xiàn)出逐漸增加的趨勢,在多柔比星處理后不予恢復(fù)時(shí)間組中PAR被抑制,與對(duì)照組相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);相反Kif4A蛋白卻呈現(xiàn)出逐漸低表達(dá),差異有統(tǒng)計(jì)學(xué)意義(P<0.05);而全長PARP-1蛋白表達(dá)在整個(gè)過程中變化不大,隨著恢復(fù)時(shí)間的延長,斷裂PARP-1略有減少,與加入多柔比星但不予恢復(fù)時(shí)間組相比較,給予恢復(fù)時(shí)間組PARP-1斷裂減少,差異有統(tǒng)計(jì)學(xué)意義(P<0.05,圖2)。
2.2 Kif4A高表達(dá)對(duì)MCF-7和MDA-MB-231細(xì)胞表達(dá)PARP-1及其活性的影響
圖 1 蛋白質(zhì)印跡法檢測不同濃度多柔比星處理MCF-7和MDA-MB-231細(xì)胞24 h且恢復(fù)12 h后Kif4A及PARP-1的表達(dá)情況Fig. 1 The expressions of Kif4A and PARP-1 after treatment with epirubicin for 24 h, and recovery for 12 h were detected by Western blot in MCF-7 and MDA-MB-231 cells.
圖 2 蛋白質(zhì)印跡法檢測1 μmol/L濃度多柔比星處理MCF-7細(xì)胞24 h,恢復(fù)不同時(shí)間后Kif4A及PARP-1的表達(dá)情況Fig. 2 The expression of Kif4A and PARP-1 after treatment with 1 μmol/L epirubicin for 24 h and recovery for different time were detected by Western blotting in MCF-7 and MDA-MB-231 cells
構(gòu)建HA-Kif4A(結(jié)果未顯示),轉(zhuǎn)染HAKif4A至MCF-7和MDA-MB-231細(xì)胞內(nèi),1 mmol/L濃度多柔比星處理24 h,恢復(fù)12 h,裂解細(xì)胞,蛋白質(zhì)印跡法檢測結(jié)果顯示:Kif4A的高表達(dá)能明顯抑制MCF-7和MDA-MB-231細(xì)胞的PARP-1活性,與未轉(zhuǎn)染組和轉(zhuǎn)染空載體組相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),而多柔比星能部分逆轉(zhuǎn)由外源性Kif4A高表達(dá)引起的PARP-1活性抑制;多柔比星處理組PARP-1活性明顯增強(qiáng),與不加多柔比星相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05,圖3)。
2.3 多柔比星聯(lián)合3-ABA作用對(duì)MCF-7和MDA-MB-231細(xì)胞凋亡的影響
圖 3 蛋白質(zhì)印跡法檢測Kif4A高表達(dá)后1 μmol/L濃度多柔比星處理MCF-7和MDA-MB-231細(xì)胞24 h、恢復(fù)12 h后PARP-1蛋白表達(dá)或活性的情況Fig. 3 The expression of PARP-1 after transfected HA-Kif4A plasmid and treated with 1 μmol/L epirubicin for 24 h and recovery for 12 h by Western blot in MCF-7 and MDA-MB-231 cells
用1 mmol/L濃度多柔比星聯(lián)合5 mmol/L濃度3-ABA處理MCF-7和MDA-MB-231細(xì)胞24 h,恢復(fù)12 h,收取上清液及培養(yǎng)皿底部貼壁細(xì)胞,用PBS洗滌2次,以不加多柔比星和3-ABA為對(duì)照組,F(xiàn)CM法檢測細(xì)胞凋亡,結(jié)果顯示,在MCF-7細(xì)胞,多柔比星及3-ABA都能誘導(dǎo)MCF-7細(xì)胞發(fā)生凋亡,細(xì)胞凋亡率分別為(5.94±0.27)%和(6.90±0.17)%,與對(duì)照組 [(3.85±0.26)%]相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);兩者聯(lián)合使用能進(jìn)一步誘導(dǎo)細(xì)胞凋亡,凋亡率為(10.24±0.81)%,與多柔比星及3-ABA單獨(dú)使用相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05,圖4)。
多柔比星及3-ABA都能誘導(dǎo)MDA-MB-231細(xì)胞發(fā)生凋亡,細(xì)胞凋亡率分別為(6.30±0.48)%和(7.83±0.58)%,與對(duì)照組[(3.14±0.67)%)相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);兩者聯(lián)合使用則進(jìn)一步誘導(dǎo)細(xì)胞凋亡,凋亡率為(11.53±0.45)%,與多柔比星和3-ABA單獨(dú)使用相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05,圖4)。
本研究同時(shí)還比較了多柔比星及3-ABA處理后,MCF-7與MDA-MB-231細(xì)胞的凋亡差異,結(jié)果顯示:多柔比星、3-ABA、多柔比星+3-ABA處理后,MDA-MB-231細(xì)胞凋亡率分別為(6.30±0.48)%、(7.83±0.58)%和 (11.53±0.45)%,顯著高于MCF-7細(xì)胞相對(duì)應(yīng)處理組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05,圖4)。
2.4 Kif4A高表達(dá)對(duì)多柔比星誘導(dǎo)MCF-7和MDA-MB-231細(xì)胞凋亡的影響
圖 4 FCM法檢測多柔比星聯(lián)合3-ABA對(duì)MCF-7和MDA-MB-231細(xì)胞凋亡影響Fig. 4 The apoptosis of MCF-7 and MDA-MB-231 cells after treated with PARP-1 inhibitor 3-ABA and epirubicin were detected by FCM
轉(zhuǎn)染HA-Kif4A至MCF-7和MDA-MB-231細(xì)胞內(nèi),1 mmol/L濃度多柔比星處理24 h,恢復(fù)12 h,收集細(xì)胞,F(xiàn)CM法檢測細(xì)胞凋亡,結(jié)果顯示,Kif4A高表達(dá)后,多柔比星能上調(diào)MCF-7細(xì)胞凋亡,凋亡率為(9.23±0.70)%,與HA-pcDNA+多柔比星組[(7.19±0.75)%)和HAKif4A組[(6.80±0.23)%]相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);HA-Kif4A高表達(dá)也能誘導(dǎo)MCF-7細(xì)胞凋亡,凋亡率為(6.80±0.23)%,與HA-pcDNA組[(4.48±0.42)%]和對(duì)照組MCF-7組[(4.10±0.58)%]相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
Kif4A高表達(dá)后,多柔比星能上調(diào)MDAMB-231細(xì)胞凋亡,凋亡率為(11.40±0.63)%,與HA-pcDNA+多柔比星組[(7.10±0.61)%]和HA-Kif4A組[(8.36±0.79)%]相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);HA-Kif4A高表達(dá)也能誘導(dǎo)MDA-MB-231細(xì)胞凋亡,凋亡率為(8.36±0.79)%,與HA-pcDNA組[(4.44±0.36)%]和對(duì)照的MDA-MB-231組[(3.85±0.66)%]相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
本研究同時(shí)還比較在Kif4A高表達(dá)后MCF-7與MDA-MB-231細(xì)胞的凋亡差異,結(jié)果顯示,HA-Kif4A、HA-Kif4A+3-ABA處理后,MDA-MB-231細(xì)胞凋亡率分別為(8.36±0.79)%和(11.40±0.63)%,與相對(duì)照的MCF-7細(xì)胞組相比,差異有統(tǒng)計(jì)學(xué)意義(P<0.05,圖5)。
圖 5 FCM法檢測Kif4A高表達(dá)對(duì)多柔比星誘導(dǎo)MCF-7和MDA-MB-231細(xì)胞凋亡的影響Fig.5 The apoptosis of MCF-7 and MDA-MB-231 cells after transfected with HA-Kif4A plasmid and treated with 1 μmol/L epirubicin were detected by FCM
多柔比星作為一種常用的乳腺癌化療藥物,在乳腺癌的治療中起著重要作用,然而由其引起的化療耐藥也越來越多[3]。研究表明P-糖蛋白(permeability glycoprotein,P-gp)[4]、乳腺癌耐藥蛋白(breast cancerresistance protein,BCRP)、耐藥相關(guān)蛋白(multidrug resistance-associated proteins,MRPs)[5]、乳腺癌易感基因BRCA1(breast cancer associated 1,BRCA1)[6]、PARP-1[7]在癌癥化療耐藥中都起重要作用。Nelson等[8]研究前列腺癌、乳腺癌和卵巢癌患者化療干預(yù)后發(fā)現(xiàn),在腫瘤附近的正常細(xì)胞(成纖維細(xì)胞)的DNA被化療破壞時(shí),也會(huì)向腫瘤微環(huán)境中釋放一種稱為WNT16B的蛋白,這種蛋白的高表達(dá)導(dǎo)致癌細(xì)胞生長、侵入附近組織并減弱了化療藥物在機(jī)體內(nèi)的細(xì)胞毒性,促進(jìn)腫瘤細(xì)胞存活、加速癌癥病理過程。Daemen等[9]和Hiller等[10]研究結(jié)果顯示,BRCA1突變的乳腺癌和(或)三陰性乳腺癌對(duì)PARP-1抑制劑治療較多柔比星敏感,提示多柔比星處理后可能上調(diào)了PARP-1活性,增強(qiáng)了其損傷修復(fù)功能。Munoz-gamez等[2]在研究乳腺癌MDA-MB-231細(xì)胞時(shí)也發(fā)現(xiàn),多柔比星處理后PARP-1活性能迅速上調(diào),增強(qiáng)細(xì)胞損傷修復(fù)功能抑制MDA-MB-231細(xì)胞的凋亡。Midorikawa等[11]在研究大腦神經(jīng)元發(fā)育中發(fā)現(xiàn)Kif4A可通過其羧基末端直接與PARP-1相結(jié)合,抑制PAPR-1的活性,介導(dǎo)神經(jīng)元細(xì)胞的凋亡,提示Kif4A在調(diào)節(jié)PARP-1活性中起著重要作用。
Kif4A屬于驅(qū)動(dòng)蛋白(kinesin)超級(jí)家族,是以微管為軌道的分子馬達(dá)(molecular motor)[12]。Kif4A蛋白含有N端保守的馬達(dá)區(qū)(motor domain)、中間的卷曲螺旋頸區(qū)(neck region)和C端的尾區(qū)(tail domain)[13]。其馬達(dá)區(qū)具有ATP酶活性,能通過水解ATP獲得能量,改變構(gòu)型,使Kif4A在以微管構(gòu)成的軌道上進(jìn)行滑行;而在Kif4A頸區(qū),存在核定位信號(hào)(nuclear localization signal,NLS),使Kif4A能分布在細(xì)胞內(nèi)和具有結(jié)合DNA的能力,這為Kif4A參與調(diào)節(jié)DNA損傷修復(fù)途徑提供了可能;而Kif4A的尾區(qū)有一些分布規(guī)律的半胱氨酸,既可結(jié)合貨物(cargo),進(jìn)行細(xì)胞內(nèi)物資運(yùn)輸,又可結(jié)合相關(guān)蛋白,調(diào)節(jié)DNA損傷修復(fù)途徑,參與細(xì)胞有絲分裂過程中染色體的固縮、仿垂體的形成及分離等[14-15]。
PARP-1是存在于真核細(xì)胞中催化聚ADP核糖化的細(xì)胞核酶,其參與的聚ADP核糖化是真核細(xì)胞中蛋白質(zhì)翻譯后的重要修飾方式之一[16]。PARP-1的相對(duì)分子質(zhì)量為113×103,其蛋白由6個(gè)結(jié)構(gòu)域組成:其中Zn1、Zn2結(jié)構(gòu)域中存在核定位信號(hào)(nuclear localization signal,NLS)和KRK-X(11)-KKKSKK序列,使其具有DNA結(jié)合能力,故Zn1、Zn2結(jié)構(gòu)域也稱為DNA結(jié)合結(jié)構(gòu)域(DNA-binding domain,DBD);而BRCT結(jié)構(gòu)域與WGR結(jié)構(gòu)域之間有一個(gè)富含賴氨酸和谷氨酸的高度保守的聚ADP核糖基化[poly(ADP-ribose),PAR]結(jié)合位點(diǎn),這為PARP-1催化結(jié)構(gòu)域CAT介導(dǎo)PAR修飾提供了可能;Zn3是PARP-1中相對(duì)比較保守的結(jié)構(gòu)域,其主要功能是與WGR結(jié)構(gòu)域一同參與調(diào)節(jié)PAR修飾[17]。PARP-1可作為NF-kB和低氧誘導(dǎo)因子(hypoxia inducible factor,HIF1)的協(xié)同刺激因子調(diào)節(jié)基因轉(zhuǎn)錄,并且能與堿基切除修復(fù)因子(base excision repair,BER) 和X線修復(fù)交叉互補(bǔ)基因(X-ray repair cross-complementing,XRCC)結(jié)合,單鏈DNA損傷能誘導(dǎo)PARP-1、XRCC及固縮蛋白Ⅰ表達(dá)增加,上調(diào)PAR修飾,促進(jìn)損傷DNA的修復(fù)[18-19]。
實(shí)驗(yàn)結(jié)果顯示多柔比星作用后,乳腺癌MCF-7和MDA-MB-231細(xì)胞的Kif4A蛋白低表達(dá),PARP-1活性上調(diào)。高表達(dá)Kif4A后,MCF-7和MDA-MB-231細(xì)胞PARP-1活性明顯被抑制,而多柔比星能部分逆轉(zhuǎn)由外源性Kif4A高表達(dá)引起的PARP-1活性抑制。
多柔比星是通過何種機(jī)制誘導(dǎo)Kif4A低表達(dá)目前還不清楚,根據(jù)實(shí)驗(yàn)結(jié)果推測至少有兩種可能情況:①多柔比星抑制乳腺癌細(xì)胞Kif4A蛋白表達(dá);②多柔比星殺死乳腺癌細(xì)胞中Kif4A高表達(dá)的細(xì)胞,使Kif4A呈現(xiàn)出低的檢測水平。此外多柔比星并不影響外源性Kif4A蛋白的表達(dá),提示多柔比星對(duì)Kif4A的影響可能是在翻譯水平(可能是對(duì)啟動(dòng)子的影響)。
多柔比星能誘導(dǎo)乳腺癌細(xì)胞后凋亡,PARP-1抑制劑抑制其活性后,細(xì)胞凋亡進(jìn)一步增加。此外,MDA-MB-231細(xì)胞對(duì)PARP-1抑制劑3-ABA作用較MCF-7敏感,原因可能與MDA-MB-231細(xì)胞存在BRCA1突變(MCF-7細(xì)胞BRCA1野生型)有關(guān)。BRCA1作為乳腺癌中重要的一個(gè)損失修復(fù)蛋白,在同源重組修復(fù)發(fā)揮重要作用。已有報(bào)道證實(shí)Kif4A可通過BRCA1-BRCA2途徑參與DNA損傷修復(fù)[15],BRCA1的突變使該途徑缺失,DNA損傷得不到有效修復(fù),細(xì)胞凋亡增加。Kif4A的高表達(dá)抑制PARP-1的活性后,乳腺癌細(xì)胞凋亡,與MCF-7細(xì)胞相比,MDA-MB-231細(xì)胞凋亡明顯;高表達(dá)Kif4A后,再用多柔比星處理細(xì)胞,細(xì)胞凋亡也進(jìn)一步增加;原因也可能是Kif4A高表達(dá)后,PARP-1活性明顯被抑制,由其介導(dǎo)的損傷修復(fù)途徑失活,細(xì)胞凋亡增加,而多柔比星處理后,內(nèi)源性Kif4A蛋白低表達(dá),由其介導(dǎo)的另一條損傷修復(fù)途徑Kif4A-BRCA1-BRCA1失活,使細(xì)胞進(jìn)一步凋亡。然而PARP-1介導(dǎo)的損傷修復(fù)途徑和BRCA1介導(dǎo)的損傷修復(fù)途徑何者起主要作用有待進(jìn)一步研究。
[1] GANGADHARAN C, THOH M, MANNA S K. Inhibition of constitutive activity of nuclear transcription factor kappaB sensitizes doxorubicin-resistant cells to apoptosis[J]. J Cell Biochem, 2009, 107(2): 203-213.
[2] MUNOZ-GAMEZ J A, MARTIN-OLIVA D, AGUILARQUESADA R, et al. PARP inhibition sensitizes p53-deficient breast cancer cells to doxorubicin-induced apoptosis[J]. Biochem J, 2005, 386(Pt 1): 119-125.
[3] 王世清, 劉武紅. 中、晚期乳腺癌術(shù)前表阿霉素介入治療的臨床觀察[J]. 中國癌癥雜志, 2000, 10(6): 574-574.
[4] TSUJI K, WANG Y H, TAKANASHI M, et al. Overexpression of lung resistance-related protein and P-glycoprotein and response to induction chemotherapy in acute myelogenous leukemia[J]. Hematol Rep, 2012, 4(3): e18.
[5] LAINEY E, SEBERT M, THEPOT S, et al. Erlotinib antagonizes ABC transporters in acute myeloid leukemia. Cell Cycle, 2012, 11(21): 4079-4092.
[6] LE CALVEZ-KELM F, OLIVER J, DAMIOLA F, et al. RAD51 and breast cancer susceptibility: no evidence for rare variant association in the Breast Cancer Family Registry study[J]. PloS One, 2012, 7(12): e52374.
[7] LEE KRAUS W, HOTTIGER M O. PARP-1 and gene regulation: Progress and puzzles[J]. Mol Aspects Med, 2013, 34(6): 1109-1123.
[8] SUN Y, CAMPISI J, HIGANO C, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B[J]. Nat Med, 2012, 18(9): 1359-1368.
[9] DAEMEN A, WOLF D M, KORKOLA J E, et al. Crossplatform pathway-based analysis identifies markers of response to the PARP inhibitor olaparib[J]. Breast Cancer Res Treat, 2012, 135(2): 505-517.
[10] HILLER D J, CHU Q D. Current Status of Poly(ADP-ribose) Polymerase Inhibitors as Novel Therapeutic Agents for Triple-Negative Breast Cancer[J]. Int J Breast Cancer, 2012, 2012: 829315.
[11] MIDORIKAWA R, TAKEI Y, HIROKAWA N. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity[J]. Cell, 2006, 125(2): 371-383.
[12] SAMEJIMA K, SAMEJIMA I, VAGNARELLI P, et al. Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα[J]. J Cell Biol, 2012, 199(5): 755-770.
[13] WU G, CHEN P L. Structural requirements of chromokinesin Kif4A for its proper function in mitosis[J]. Biochem Biophys Res Commun, 2008, 372(3): 454-458.
[14] HU C K, COUGHLIN M, FIELD C M, et al. KIF4 regulates midzone length during cytokinesis[J]. Curr Biol: CB, 2011, 21(10): 815-824.
[15] WU G, ZHOU L, KHIDR L, et al. A novel role of the chromokinesin Kif4A in DNA damage response[J]. Cell Cycle, 2008, 7(13): 2013-2020.
[16] HUAMBACHANO O, HERRERA F, RANCOURT A, et al. Double-stranded DNA binding domain of poly(ADP-ribose) polymerase-1 and molecular insight into the regulation of its activity[J]. J Biol Chem, 2011, 286(9): 7149-7160.
[17] LANGELIER M F, PLANCK J L, ROY S, et al. Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity[J]. J Biol Chem, 2011, 286(12): 10690-10701.
[18] ELSER M, BORSIG L, HASSA P O, et al. Poly(ADP-ribose) polymerase 1 promotes tumor cell survival by coactivating hypoxia-inducible factor-1-dependent gene expression[J]. Mol Cancer Res, 2008, 6(2): 282-290.
[19] KONG X, STEPHENS J, BALL A R Jr, et al. Condensin I recruitment to base damage-enriched DNA lesions is modulated by PARP1[J]. PloS One, 2011, 6(8): e23548.
Epirubicin up-regulates PARP-1 activity dependent on Kif4A low expression in breast cancer cells
WANG Hui, LU Chang-qing, TIAN Bo, LI Qing, CHEN Tong-bing (Department of Pathology, the Third Affiliated Hospital of Suzhou University, Changzhou Jiangsu 213003, China)
LU Chang-qing E-mail: 344575914@qq.com
Background and purpose: Chemotherapy is the important way of breast cancer treatment, but the drug-resistance has attracted special attention. The emergence of drug resistance is closely related to the abnormal enhancement of DNA-damage repair. Both Kif4A and PARP-1 are important molecules of DNA repair. The research investigated the function of Kif4A in epirubicin up-regulating the activity of PARP-1 in breast cancer cells and possible significance. Methods: Western blot was used to detect the expression of Kif4A and PARP-1 after treatment with epirubicin in MDA-MB-231 and MCF-7 cells; the expression of PARP-1 and its activity were detected after high expression of Kif4A and treatment with epirubicin; FCM was used to detect cell apoptosis after treatment with epirubicin combined with PARP-1 inhibitor 3-ABA. Results: Epirubicin up-regulated PARP-1 activity and induced low expression of Kif4A in breast cancer cells, both of them showed dose-dependent and time-dependent. After high expression of Kif4A, the activity of PARP-1 was inhibited and the apoptosis of cells increased, epirubicin partially reversed the activity of PARP-1 inhibited by high Kif4A expression. Both of epirubicin and 3-ABA induced cell apoptosis, combination of them further increased cell apoptosis compared with alone used (P<0.05). The results also showed the apoptosis rate of MDA-MB-231 cells induced by epirubicin, PARP-1 inhibitor 3-ABA and high expressionKif4A was higher than that of MCF-7 cells (P<0.05). Conclusion: Epirubicin increases the activity of PARP-1 dependent on the low expression of Kif4A in breast cancer cells. Kif4A might become a novel target for overcoming resistance of epirubicin.
Kif4A; PARP-1; Epirubicin; MCF-7 cell; MDA-MB-231 cell
10.3969/j.issn.1007-3969.2013.10.005
R737.9
:A
:1007-3639(2013)10-0804-09
2013-08-05
2013-09-30)
魯常青 E-mail:344575914@qq.com