☉浙江省湖州市第二中學 徐 君 沈 恒
“微課”這一名詞是經(jīng)翻譯、改造后較為符合我國教師理解的名稱,其本意原來譯為微格教學(英文為Microteaching,也有譯為微型教學或微觀教學,美國教育學博士德瓦埃是創(chuàng)始人之一).微格教學在創(chuàng)立之初被認為是單一簡化教學過程的教學方式,但是隨著時代的發(fā)展,對教師教學水平要求的提高,微格教學的要求也隨之提高.我國引入微格教學是在20世紀80年代中期,而且在1988年10月北京教育學院做過微格教學的實驗對比,對在職教師培訓的效果明顯優(yōu)于傳統(tǒng)方法.[1]
微格教學(下文中統(tǒng)一稱微課)定義為:“微格教學是一個有控制的實踐系統(tǒng),它使教師有可能集中解決某一特定的教學行為,或在有控制的條件下進行學習.它是建筑在教學理論、視聽理論和技術(shù)基礎上,系統(tǒng)培訓教師教學技能的方法.”[2]
參照上述定義,筆者認為微課是一種將時間控制在15分鐘左右的小型課,授課對象沒有學生,教師將原本45分鐘授課內(nèi)容進行重組(在心中有學生的前提下)的情形下進行教學,面對的授課對象是評委.微課教學實施過程中,突出精彩的教學過程,而對一些計算、推導以及學生在課堂中練習的部分可以進行壓縮,它要求一方面教師在微課中精簡用詞,節(jié)奏緊湊,而且要用口語化的語言進行微課教學(這與說課有很大的區(qū)別),另一方面要關(guān)注教師的體態(tài)、表情等,完全等同于上課的要求——所謂雕欄玉砌應猶在,只是朱顏改.因此,筆者饒有興趣的參與了本次活動,課題是人教A版選修2-2的2.3節(jié)《數(shù)學歸納法》第一課時,現(xiàn)將自己不成熟的想法和過程記錄下來,望讀者賜教.
本環(huán)節(jié)希望達成學生對數(shù)學歸納法類比生成的目標,具體來說就是:
(1)在老師的引導下學生體驗、思考,自主生成和品悟出原生態(tài)的數(shù)學歸納法基本思想;
(2)借助實例的辨析、對比,對概念的內(nèi)涵進行深加工,進一步使學生體會數(shù)學歸納法原理,更明確數(shù)學歸納法的核心思想.
從學生的理解角度出發(fā)可能出現(xiàn)的兩方面問題:
(1)對“數(shù)學歸納法”本質(zhì)特征的理解有疑問:究竟是歸納推理還是演繹論證?本章合情推理一節(jié)的歸納推理,與現(xiàn)在的“數(shù)學歸納法”從名稱上不免讓學生產(chǎn)生這個疑惑.此時,需讓學生了解,雖然數(shù)學歸納法的思維模式是:觀察—歸納—猜想—證明,但數(shù)學歸納法的本質(zhì)特征是用有限的步驟論證無限結(jié)論,學習的重心不是猜,而是證.
(2)數(shù)學歸納法的核心思想中,第二步的歸納假設常常會使學生感到疑惑不解:要證明某個命題正確,怎么可以假設這個命題正確呢?命題p(k)與命題p(n)有何關(guān)系?假設命題p(k)正確在證明過程中起什么作用?
要讓學生理解這些問題,就需要讓學生體會:數(shù)學歸納法要證明的命題p(n)是一個命題序列,其中p(k)與p(k+1)是該命題序列中的兩個連續(xù)命題.為了證明這個命題序列整體的正確性,我們首先得證明p(1)為真,k是一個變動的量,假設命題p(k)為真是遞推證明的條件,由p(k)為真推出p(k+1)為真,后繼命題的證明得以循環(huán),因此,歸納假設是條件,歸納遞推才是核心.
(1)學生的知識儲備:學生已學的歸納推理與演繹推理的“三段論”是學生理解推理思想和證明方法的重要基礎.教學時應注意類比、引導學生理解數(shù)學歸納法的本質(zhì).
(2)教學素材的準備:教學環(huán)節(jié)中引入了視頻、游戲等素材來調(diào)動學生進行積極的思考,以確保教學過程中能真正實現(xiàn)以學生為主體的水到渠成的概念生成.
(3)教學理念的準備:波利亞曾指出“學習最好的途徑是自己去發(fā)現(xiàn)”!常規(guī)教學中,往往教師對數(shù)學歸納法的原理形成過程的教學重視不夠,急于向?qū)W生展示一種思維模式和套路,結(jié)果是學生陷入題海,生搬硬套,只知步驟而不知本質(zhì),學習起來,枯燥乏味.本次微課設計將留給學生充分的時間探究、體驗、反思、整合,使學生品味其中真諦,令數(shù)學歸納法扎根在學生心中.然教學理念的形成非一朝一夕之功,故蘇霍姆林斯基說過“教師用一輩子備一節(jié)課”,一輩子、一節(jié)課,這是一種追求,也是一種信仰!
本次教學過程設計的依據(jù)是:人類認識數(shù)學具有“漸進性”,個體對數(shù)學概念的認識要在不斷地重復之中細化、深化、以致內(nèi)化.因此整體設計思路是圍繞數(shù)學歸納法的核心思想,在不同媒介的不斷重演中,由淺入深將問題串拋給學生,層層推進學生對數(shù)學歸納法的理解,以期達到螺旋上升的教學效果.
具體環(huán)節(jié)如下:
(1)情境激活拋磚引玉.借助一段汽車的創(chuàng)意廣告視頻(內(nèi)容是汽車的各關(guān)鍵零件在合理排列的連鎖反應下最終啟動了一輛整車:http://video.sina.com.cn/v/b/46050368-1099337171.html),激發(fā)學生思考:廣告成功大概需要拍多少次?為什么要不斷嘗試?廣告的目的是什么?不難想象這個廣告的拍攝難度,事實上達到了605次之多,問題2的可能回答(每個環(huán)節(jié)的銜接不易、有銜接才有連鎖反應、初始環(huán)節(jié)力量控制需得當)初步形成數(shù)學歸納法的原生態(tài)理解,問題3是引導學生理解廣告的目的是以復雜、震撼的效果激發(fā)購買欲,而數(shù)學則是追求簡單美的,以此引出多米諾骨牌這個簡化模型.
(2)簡化模型類比抽象.分組進行多米諾骨牌游戲(如圖1).
游戲1:
圖1
問1:多米諾骨牌與汽車廣告呈現(xiàn)的連鎖反應有何異同?
目的:使學生初步留下多米諾骨牌是“等距遞推”的印象.
問2:如何用程序語言描述多米諾骨牌倒下的條件?
目的:借助必修3程序框圖(如圖2)進一步使學生意識到遞推關(guān)系的可重復性,也無形中化解了學生對歸納假設的疑惑,自然而然地使學生理解了假設命題p(k)為真是遞推證明的條件,是遞推的接力棒.無限結(jié)論的證明巧妙地被濃縮了.同時也體現(xiàn)了新課程螺旋上升的要求.
圖2
問3:能否類比歸納一個與正整數(shù)有關(guān)的命題的證明步驟?
目的:順水推舟引導學生自主思考,類比抽象出數(shù)學歸納法的原理雛形.
問4:環(huán)節(jié)2的作用是什么?
目的:希望學生通過類比程序框圖的循環(huán)體,體悟步驟2的歸納遞推作用.
游戲2:
圖3
游戲3:
圖4
分組游戲結(jié)束后,由各組代表發(fā)言總結(jié)游戲的寓意,最后師生共同提煉總結(jié)數(shù)歸原理,至此,完成了“原理的生成”部分的教學.
本次微課活動給出的是一節(jié)概念型課,對概念型課筆者要求自然簡約、返璞歸真,追求基礎知識的生成過程,但在簡約中透露著教學者對諸如數(shù)學歸納法的自主探求,讓學生領悟概念的層層深入,以及數(shù)學文化和數(shù)學史等新課程理念的追求.筆者以為,一堂優(yōu)秀的微課不必面面俱到,但它必須是有“閃光點”!關(guān)于本次微課活動,筆者獲得以下一些啟示:
通過首次微課的嘗試,筆者悟出微課教學的一些基本要求:
(1)迅速入題:微課時間較短,教師必須較短的時間進入教學環(huán)節(jié).對引入部分一般不需要向公開課一樣的情境化.本次活動中,有些教師在引入部分滔滔不絕,勢必影響了其教學環(huán)節(jié)的展示.
(2)條理清晰:微課與正式上課的流程應該是一致的,教師同樣需要通過備課整理整堂課的思緒,微課教學前要設計好包括教學引入、語言過度、層層深入、學生反饋等環(huán)節(jié),學生練習與學生回答環(huán)節(jié)不同于正式課堂,可以簡化或省略.
(3)語言得體:微課教學中,由于忽略學生的參與活動,因此教師的語言水平、課堂表現(xiàn)力往往就展示在評委面前.教師的語言需要適當?shù)拇蚰?,并伴有授課的激情,既要邏輯性強又要簡明扼要.
(4)精簡板書:筆者參與的本次微課教學中,部分板書以小黑板的形式直接掛出講解,在微課的過程中恰當?shù)倪M行展示,既節(jié)省時間又條理清晰.筆者認為微課模式下的板書,必須精簡,但要突出重點和亮點!若能有更充分的時間,以多媒體信息技術(shù)展示更佳.
微課教學很多教師都是第一次參與,筆者后來觀摩時發(fā)現(xiàn),許多教師沒有處理好其中三個矛盾的關(guān)系:
(1)“有和無”:微課教學中,實際面對評委,但是施教者必須心中有學生,這就給施教者帶來了一些不適應.如何調(diào)整好心態(tài)?如何調(diào)動自己的節(jié)奏?這是第一次參加微課教學很多教師不適應的地方,要做到“心中有學生”,才能成功的處理一節(jié)微課.
(2)“快和慢”:微課教學的節(jié)奏要求快慢有度,有時快——如學生練習、回答環(huán)節(jié),有時慢——如正常引導環(huán)節(jié)、閃光點處等,需要教師平時多多關(guān)注、多加磨煉.
(3)“多和少”:微課的教學時間以15分鐘較為合適,教師要正確處理好時間的安排.以筆者微課為例,引入部分與小結(jié)部分均1分鐘,用時約10分鐘,而且板書要恰當準備,既節(jié)約時間又大方得體.
像微課這種形式的教學方式,在筆者看來還是比較有特色的,既提高了效率,又全面的考查了教師各方面的綜合能力,但是參加本次比賽的部分教師將微課誤認為是說課,將教學目標、學情分析、心理機制等說了一大通,完全是文不對題,甚為可惜.關(guān)于兩者的區(qū)分之處,本文不再贅述,有興趣的讀者可以參閱文獻[3]、[4].
筆者曾聽過章建躍博士的一個講座,以大量篇幅談了概念教學的問題,并多次在談到了概念教學要注重理解,“一針見血、不惜時不惜力”!筆者想,微課教學的重點正如章建躍博士口中的“概念教學”,只要是閃光之處就要求教師必須“不惜時不惜力”!
對于筆者參與的本次微課活動而言,筆者的整堂微課圍繞著“歸納法”構(gòu)建,以“多米諾骨牌”為探究,因此可以說通過生活中“牌”而產(chǎn)生的數(shù)學認識事物的思想精華,蘊涵著豐富的教育素材,切勿惜時惜力.
將這樣的微課伸展到真正的課堂教學中去,學生一定能在課堂中感知汽車創(chuàng)意廣告、多米諾骨牌這樣的生活情境,其方法遷移能力、類比的思維方式均得到提高,長此積累,學生的數(shù)學素養(yǎng)將提高,教師的教學水平也能與時俱進地得到提高.
1. 微格教學 [EB/OL].http://baike.baidu.com/view/29943.htm,2013-03-12.
2.譚佩貞.微格教學培養(yǎng)師范生數(shù)學教學技能的幾點啟示[J].賀州學院學報,2010(11).
3.潘超.數(shù)學微型課及其教學設計[J].內(nèi)江師范學院學報,2010(2).
4.黃仲桔.微格數(shù)學教學研究[J].數(shù)學教學研究,2006(11).
5.陸學政.“多米諾骨牌實驗”的教學思考[J].中學數(shù)學教學參考,2010(3).