白永強(qiáng),李 娜,楊 旭,張 雁,張 雨
(1.東北石油大學(xué) 電子科學(xué)學(xué)院,黑龍江 大慶 163318; 2.黑龍江省高校校企共建測(cè)試計(jì)量技術(shù)及儀器儀表工程研發(fā)中心,黑龍江 大慶 163318; 3.東北石油大學(xué) 地球科學(xué)學(xué)院,黑龍江 大慶 163318)
儲(chǔ)層巖石微觀孔隙結(jié)構(gòu)決定儲(chǔ)層中流體的儲(chǔ)集和滲流能力[1].儲(chǔ)集能力由孔隙數(shù)量表征,滲流能力由喉道形狀、尺寸和孔喉比表征.微觀孔隙結(jié)構(gòu)特征影響含油儲(chǔ)層的孔隙度、滲透率等宏觀性質(zhì)[2].低滲儲(chǔ)層研究結(jié)果表明,某些含油儲(chǔ)層宏觀性質(zhì)相近,但微觀孔隙結(jié)構(gòu)差別較大,影響流體在儲(chǔ)層內(nèi)部分布[3].研究含油儲(chǔ)層微觀孔隙結(jié)構(gòu)特征,對(duì)精細(xì)描述含油儲(chǔ)層、分析高含水時(shí)期油田剩余油分布規(guī)律[4-6]、制定針對(duì)性開(kāi)發(fā)方案,以及開(kāi)發(fā)利用低滲透油氣田、提高油氣采收率[7]具有重要意義.
研究?jī)?chǔ)層巖石微觀孔隙結(jié)構(gòu)方法包括測(cè)井資料現(xiàn)場(chǎng)評(píng)價(jià)方法、毛管壓力曲線(xiàn)法(Mercury Capillary Pressure Curve)[8]、鑄體薄片法(Casting Thin Sections)[9]、掃描電鏡法(Scanning Electron Microscope,SEM)[10]、X-CT(X-Ray Computed Tomography,X-CT)掃描法[11-12]及核磁共振法(Nuclear Magnetic Resonance,NMR)[13]等,這些方法在表征儲(chǔ)層巖石微觀孔隙結(jié)構(gòu)上具有不同特點(diǎn).測(cè)井資料現(xiàn)場(chǎng)評(píng)價(jià)方法具有縱向上的連續(xù)性,但受到儀器、環(huán)境、流體及人為等因素影響,難以保證微觀孔隙結(jié)構(gòu)數(shù)據(jù)的解釋精度.毛管壓力曲線(xiàn)法基于平行毛管束理論,直觀性差,不適于分析裂縫和孔洞型儲(chǔ)層巖心.鑄體薄片法在制樣時(shí)易損害巖心組織結(jié)構(gòu),通過(guò)對(duì)二維圖像的分析計(jì)算獲得儲(chǔ)層微觀孔隙結(jié)構(gòu)參數(shù),難以認(rèn)識(shí)巖心內(nèi)部空間分布規(guī)律.掃描電鏡法放大倍率高、景深大,可獲得高分辨率三維圖像[10,14],但二次電子、背散射電子、透射電子等與不同物質(zhì)結(jié)構(gòu)相互作用的差異,使圖像中有很多贗象,難以量化空間尺度并帶來(lái)較多誤差.X-CT掃描法和NMR法分辨率較低[15],難以表征儲(chǔ)層巖石微米級(jí)以下微觀孔隙結(jié)構(gòu).目前,無(wú)損傷并可直接準(zhǔn)確定量的儲(chǔ)層巖石微觀孔隙結(jié)構(gòu)表征手段包括亞微米級(jí)分辨率的激光掃描共聚焦顯微鏡(Laser Scanning Confocal Microscope,LSCM)[16]、聚焦離子束和掃描電鏡(Focused Ion Beam-Scanning Electron Microscope,F(xiàn)IB-SEM)聯(lián)合應(yīng)用[14,17],以及納米級(jí)分辨率的原子力顯微鏡(Atom Force Microscope,AFM).原子力顯微鏡[18]利用原子之間的范德瓦爾斯力探測(cè)并獲取樣品表面結(jié)構(gòu)形貌特征,無(wú)需對(duì)材料進(jìn)行預(yù)處理,適用于不同材質(zhì),是重要的掃描探針顯微技術(shù)之一.利用原子力顯微鏡研究?jī)?chǔ)層巖石微觀孔隙結(jié)構(gòu)的文獻(xiàn)較少[19-20],將該技術(shù)進(jìn)行工程應(yīng)用有待深入展開(kāi).
筆者采用原子力顯微鏡研究大慶油田南5-4-檢725井855.0m處巖心在強(qiáng)堿三元復(fù)合驅(qū)替過(guò)程中儲(chǔ)層巖石微觀孔隙結(jié)構(gòu),通過(guò)表征結(jié)果分析強(qiáng)堿三元驅(qū)替前后儲(chǔ)層巖心微觀孔隙結(jié)構(gòu)變化規(guī)律,為完備儲(chǔ)層巖心微觀孔隙結(jié)構(gòu)表征體系提供技術(shù)支持,為強(qiáng)堿三元驅(qū)替和后續(xù)挖潛方案設(shè)計(jì)提供實(shí)驗(yàn)依據(jù).
AJ-Ⅲ型原子力顯微鏡:上海愛(ài)建納米儀器有限公司生產(chǎn),橫向最優(yōu)分辨率為0.2nm、縱向最優(yōu)分辨率為0.1nm,為適應(yīng)儲(chǔ)層巖石微觀孔隙結(jié)構(gòu)表征,對(duì)其進(jìn)行改造[20],擴(kuò)大樣品放置空間并更換掃描頭.為減少針尖對(duì)樣品的損害,使用顯微鏡輕敲模式對(duì)巖石樣品進(jìn)行掃描.
為減少卷積效應(yīng)引起的圖像失真,選用俄羅斯NT-MDT公司生產(chǎn)的NSG03型原子力顯微鏡單臂針尖,懸臂長(zhǎng)為125~145μm,臂寬為25~35μm,臂厚為1~2μm,彈性系數(shù)為0.35~6.06N/m,共振頻率為47~150kHz,針尖長(zhǎng)為14~16μm,尖端最小直徑為10nm.該針尖彈性、粗細(xì)適中,可較好地跟蹤粗糙度較高的巖石樣品、降低卷積效應(yīng)影響,是表征巖石微觀表面三維形貌分辨最適合針尖之一.
Model 260DSyringe Pump驅(qū)油高壓恒速恒壓注入泵:美國(guó)Teledyne Isco公司生產(chǎn),容積為266mL,最大壓力為50MPa,單泵流速為0.001~107.000mL/min.
南5-4-檢725井855.0m處巖心:取自大慶油田有限責(zé)任公司勘探開(kāi)發(fā)研究院巖心庫(kù),為強(qiáng)堿三元復(fù)合試驗(yàn)區(qū)驅(qū)替前樣品,通過(guò)壓汞方法獲得其孔隙度峰值為28.4%,滲透率為959.9×10-3μm2.
驅(qū)替劑配方:聚合物溶液質(zhì)量濃度為1 650mg/L,表面活性劑質(zhì)量分?jǐn)?shù)為0.3%,堿質(zhì)量分?jǐn)?shù)為1.2%.
樣品加工為直徑為25.4mm,厚度小于5.0mm的薄片,并用毛刷清潔由加工產(chǎn)生的附著灰塵.
將加工好的巖心樣品薄片按先后順序?qū)臃湃霂r心夾持器中驅(qū)油,驅(qū)替巖心孔隙體積倍數(shù)分別為10,50,100和500倍后取出,放入原子力顯微鏡下表征和分析.
2.1.1 形貌特征
原子力顯微鏡獲得的儲(chǔ)層巖心樣品形貌見(jiàn)圖1,其中掃描范圍為10μm×10μm.由圖1可見(jiàn),觀察巖心樣品微觀孔隙結(jié)構(gòu),原子力顯微鏡具有特點(diǎn):觀察尺度大,較小和較大孔喉均能被觀測(cè)到;空間分辨高(納米級(jí)),能客觀描述巖心孔喉邊界細(xì)節(jié);獲得的圖像反映樣品真實(shí)空間,將圖像繪制成三維立體圖像,即平面掃描空間和高度,可更好地反映巖心微觀孔喉特征;通過(guò)偽彩色圖(見(jiàn)圖1(b))和立體圖(見(jiàn)圖1(c))可以清晰觀察巖心微觀孔隙結(jié)構(gòu)空間分布特征.
2.1.2 孔喉寬度
通過(guò)原子力顯微鏡獲得的圖像定量分析巖心樣品數(shù)據(jù),研究?jī)?chǔ)層巖石微觀孔隙結(jié)構(gòu)的孔喉寬度分布規(guī)律(見(jiàn)圖2).以0.5μm為計(jì)量單位統(tǒng)計(jì)不小于0.5μm的巖石微觀孔喉寬度分布特征(見(jiàn)圖2(a)).由圖2(a)可見(jiàn),孔喉寬度分布呈∽型分布,不同巖心樣品的分布特征不同,將其定義為巖心的類(lèi)指紋分布特征[19],即每類(lèi)巖心有其特有的微觀孔隙結(jié)構(gòu)分布特點(diǎn).以0.02μm為計(jì)量單位統(tǒng)計(jì)小于0.5μm的巖石微觀孔喉寬度分布特征(見(jiàn)圖2(b)).由圖2(b)可見(jiàn),孔喉寬度分布在120nm處出現(xiàn)峰值,該峰值對(duì)儲(chǔ)層巖石孔隙中流體流動(dòng)有較大影響[19].
圖1 原子力顯微鏡獲得的巖心樣品形貌(南5-4-檢725井,855.0m)Fig.1 Typical AFM pictures of the cores(855.0m)from the well of Nan 5-4-J725in Daqing oilfield
圖2 巖心樣品孔喉寬度分布特征(南5-4檢725井,855.0m)Fig.2 Statistical distribution of micro pores of the cores(855.0m)from the well of Nan 5-4-J725in Daqing oilfield represented by AFM
2.1.3 孔喉深度
通過(guò)原子力顯微鏡獲得的圖像研究?jī)?chǔ)層巖石微觀孔隙結(jié)構(gòu)的孔喉深度特征(見(jiàn)圖3),巖石微觀孔喉深度與寬度分布規(guī)律不同,數(shù)據(jù)峰值不唯一、位置不固定,難以表現(xiàn)明顯規(guī)律(見(jiàn)圖3(a)).對(duì)數(shù)據(jù)進(jìn)行變換,統(tǒng)計(jì)小于某深度L的孔喉深度個(gè)數(shù)之和N(L)并繪制L和N(L)的雙對(duì)數(shù)分布曲線(xiàn),可見(jiàn)lg(L)和lg(N(L))成線(xiàn)性分布,表現(xiàn)出較好規(guī)律性,即為儲(chǔ)層巖石微觀孔隙結(jié)構(gòu)的分形(Fractal)特征[21-22],曲線(xiàn)為基于巖心樣品孔喉深度分布的分形特征曲線(xiàn).南5-4檢725井巖心樣品孔喉深度分布分形特征曲線(xiàn)見(jiàn)圖3(b).由圖3(b)可見(jiàn),分形特征曲線(xiàn)呈兩段式分布,線(xiàn)段斜率為孔隙結(jié)構(gòu)的分維數(shù),定義小孔隙的分維數(shù)為D1,較大孔隙的為D2.此分形特征反映儲(chǔ)層巖石中形態(tài)不規(guī)則、隨機(jī)分布的微孔隙[23-24].
在驅(qū)替過(guò)程中巖心樣品微觀孔隙結(jié)構(gòu)特征變化見(jiàn)圖4.由圖4可見(jiàn),驅(qū)替前巖石顆粒較完整,粒間邊界較清晰,孔隙和喉道展示明顯(見(jiàn)圖4(a)).強(qiáng)堿三元復(fù)合驅(qū)替10PV后,粒間顆粒發(fā)生變化,出現(xiàn)較碎顆粒(見(jiàn)圖4(b)),原因是驅(qū)替過(guò)程使巖石顆粒附著物散落于巖石喉道之間;加大驅(qū)替劑量至50PV后,粒間小顆粒減少,喉道增大(見(jiàn)圖4(c)),表明喉道間物質(zhì)被大量驅(qū)替出;加大驅(qū)替劑量至100PV后,情況更為顯著(見(jiàn)圖4(d));加大驅(qū)替劑量至500PV后,巖心喉道邊界出現(xiàn)凸點(diǎn)狀結(jié)構(gòu)(見(jiàn)圖4(e)),為驅(qū)替劑殘留或垢狀物.在驅(qū)替過(guò)程中,儲(chǔ)層巖心樣品微觀孔隙結(jié)構(gòu)發(fā)生變化有2方面因素:(1)巖石粒間顆粒運(yùn)移;(2)驅(qū)替過(guò)程中強(qiáng)堿三元驅(qū)替劑與巖石相互作用,生成其他產(chǎn)物或驅(qū)替劑殘留.
圖3 巖心樣品孔喉深度分布特征和分形特征曲線(xiàn)(南5-4檢725井,855.0m)Fig.3 Depth statistical distribution of micro pore of the cores(855.0m)from the well of Nan 5-4-J725 in Daqing oilfield represented by AFM (left)and fractal curves(right)
圖4 巖心微觀孔隙結(jié)構(gòu)隨驅(qū)替孔隙體積倍數(shù)變化特征(南5-4檢725井,855.0m)Fig.4 Changes of micro pore of the cores(855.0m)from the well of Nan 5-4-J725in Daqing oilfield with ASP flooding
為定量分析驅(qū)替過(guò)程中儲(chǔ)層巖石微觀孔隙結(jié)構(gòu)特征變化規(guī)律,對(duì)樣品進(jìn)行多點(diǎn)表征,統(tǒng)計(jì)驅(qū)替過(guò)程中儲(chǔ)層巖心樣品面孔率、孔喉寬度、孔喉深度和分形維數(shù)(見(jiàn)表1).由表1可見(jiàn):在驅(qū)替過(guò)程中,樣品面孔率變化較小,為20%左右;孔喉寬度中值和孔喉深度中值變化較大,其變化規(guī)律表現(xiàn)為非線(xiàn)性.當(dāng)驅(qū)替劑量小于10PV時(shí),表現(xiàn)為小孔快速增多,大孔略有減少,總體孔喉半徑減??;當(dāng)驅(qū)替劑量為10~100PV時(shí),表現(xiàn)為小孔略有減少,大孔略有增加,總體孔喉半徑增大;當(dāng)驅(qū)替劑量大于100PV時(shí),表現(xiàn)為小孔開(kāi)始增加,大孔相對(duì)減少,總體孔喉半徑逐漸減小并趨于基本穩(wěn)定.這說(shuō)明驅(qū)替初期和中后期儲(chǔ)層巖石樣品微觀孔隙結(jié)構(gòu)變化機(jī)制不同,驅(qū)替初期孔喉變化主要以顆粒運(yùn)移為主,驅(qū)替中后期以生成其他產(chǎn)物或驅(qū)替劑殘留為主.
分形維數(shù)變化符合非線(xiàn)性規(guī)律.驅(qū)替過(guò)程中第一段分形維數(shù)(代表小孔喉)為1.7~2.1,隨著驅(qū)替劑量的增加而減小,反映小孔喉表面復(fù)雜程度減?。坏诙畏中尉S數(shù)(代表較大孔喉)為0.8~1.0,隨著驅(qū)替劑量的增加先變小后變大,反映大孔喉表面有變粗糙趨勢(shì).總體上,兩段分形維數(shù)差值隨驅(qū)替劑量的增加有減小趨勢(shì),說(shuō)明隨著驅(qū)替劑量的增加巖石的微觀孔隙結(jié)構(gòu)復(fù)雜程度降低.
表1 驅(qū)油過(guò)程中儲(chǔ)層巖石樣品微觀孔隙結(jié)構(gòu)特征參數(shù)Table1 Change of fractal dimension of micro pore after ASP flooding
利用原子力顯微鏡研究?jī)?chǔ)層微觀孔隙結(jié)構(gòu),能夠反映巖石三維真實(shí)形貌特征,綜合定量分析圖像的孔喉寬度、孔喉深度、面孔率和分形維數(shù)等參數(shù),研究強(qiáng)堿三元驅(qū)替作用下儲(chǔ)層巖石樣品微觀孔隙結(jié)構(gòu)變化規(guī)律,驅(qū)替初期孔喉變化主要以顆粒運(yùn)移為主,驅(qū)替中后期以生成其他產(chǎn)物或驅(qū)替劑殘留為主.
[1]陳 杰,周改英,趙喜亮,等.儲(chǔ)層巖石孔隙結(jié)構(gòu)特征研究方法綜述[J].特種油氣藏,2005,12(4):11-14.Chen Jie,Zhou Gaiying,Zhao Xiliang,et al.Overview of study methods of reservoir rock pore structure[J].Special Oil and Gas Reservoirs,2005,12(4):11-14.
[2]Cerepi A,Durand C,Brosse E.Pore microgeometry analysis in low-resistivity sandstone reservoirs[J].Journal of Petroleum Science and Engineering,2002,35:205-232.
[3]何文祥,許雅.港東開(kāi)發(fā)區(qū)水淹前后儲(chǔ)層參數(shù)變化規(guī)律及機(jī)理研究[J].斷塊油氣田,2010,17(2):191-193.He Wenxiang,Xu Ya.Law and mechanism of reservoir parameters change both before and after water flooding in Gangdong development area[J].Fault-Block Oil&Gas Field,2010,17(2):191-193.
[4]綦惠麗,李玉春,張雁.低滲透儲(chǔ)層的微觀特征對(duì)其宏觀性質(zhì)的影響規(guī)律——以榆樹(shù)林油田扶楊油層為例[J].東北石油大學(xué)學(xué)報(bào),2012,36(4):30-36.Qi Huili,Li Yuchun,Zhang Yan.Influence of micro-character on macroscopic properties in low permeability reservoir—Take Fuyang reservoir of Yushulin oilfield as example[J].Journal of Northeast Petroleum University,2012,36(4):30-36.
[5]宋考平,楊釗,舒志華,等.聚合物驅(qū)剩余油微觀分布的影響因素[J].大慶石油學(xué)院學(xué)報(bào),2004,28(2):25-27.Song Kaoping,Yang Zhao,Shu Zhihua,et al.Effective factors of microscopic distribution of remaining oil of polymer flooding[J].Journal of Daqing Petroleum Institute,2004,28(2):25-27.
[6]趙佳楠,姜文斌.鄂爾多斯盆地延長(zhǎng)氣田山西組致密砂巖儲(chǔ)層特征[J].東北石油大學(xué)學(xué)報(bào),2012,36(5):22-28.Zhao Jianan,Jiang Wenbin.Characteristics of tight sandstone of Shanxi formation reservoir in the Yanchang gas field,Ordos basin[J].Journal of Northeast Petroleum University,2012,36(5):22-28.
[7]李海燕,徐樟有.新立油田低滲透儲(chǔ)層微觀孔隙結(jié)構(gòu)特征及分類(lèi)評(píng)價(jià)[J].油氣地質(zhì)與采收率,2009,16(1):17-21.Li Haiyan,Xu Zhangyou.Microscopic characteristics of pore structure and classification evaluation of low permeability reservoir in Xinli oilfield[J].Petroleum Geology and Recovery Efficiency,2009,16(1):17-21.
[8]Nabawy B S,Géraud Y,Rochette P,et al.Pore-throat characterization in highly porous and permeable sandstones[J].AAPG Bulletin,2009,93(6):719-739.
[9]Loucks R G.Revisiting the importance of secondary dissolution pores in tertiary sandstones along the Texas gulf coast[J].Gulf Coast Association of Geological Societies Transactions,2005,55:447-455.
[10]Radlinski A P,Ioannidis M A,Hinde A L,et al.Angstrom-to-millimeter characterization of sedimentary rock microstructure[J].Journal of Colloid and Interface Science,2004,274:607-612.
[11]孫衛(wèi),史成恩,趙驚蟄,等.X-CT掃描成像技術(shù)在特低滲透儲(chǔ)層微觀孔隙結(jié)構(gòu)及滲流機(jī)理研究中的應(yīng)用—以西峰油田莊19井區(qū)長(zhǎng)8-2儲(chǔ)層為例[J].地質(zhì)學(xué)報(bào),2006,80(5):775-779.Sun Wei,Shi Chengen,Zhao Jingzhe,et al.Application of X-CT scanned image technique in the research of micro-pore texture and percolation mechanism in ultra-permeable oilfield—taking an example from Chang 8-2formation in the Xifeng oilfield[J].Acta Geologica Sinica,2006,80(5):775-779.
[12]佘敏,壽建峰,鄭興平,等.基于CT成像的三維高精度儲(chǔ)集層表征技術(shù)及應(yīng)用[J].新疆石油地質(zhì),2011,32(6):664-666.She Min,Shou Jianfeng,Zheng Xingping,et al.3Dhigh resolution reservoir characterization technique based on CT imaging and application[J].Xinjiang Petroleum Geology,2011,32(6):664-666.
[13]Gao S,Ye L,Xiong W,et al.Nuclear magnetic resonance measurements of original water saturation and mobile water saturation in low permeability sandstone gas[J].Chinese Physics Letters,2010,27(12):128902.
[14]Desbois G,Urai J L,Kukla P A.Morphology of the pore space in claystones-evidence from BIB/FIB ion beam sectioning and cryo-SEM observations[J].eEarth Discuss,2009,4:1-19.
[15]Vergés E,Tost D,Ayala D,et al.3Dpore analysis of sedimentary rocks[J].Sedimentary Geology,2011,234:109-115.
[16]Zoghlami K,Gómez-Gras D.Determination of the distribution of consolidants and interpretation of mercury porosimetry data in a sandstone porous network using LSCM[J].Microscopy Research and Technique,2004,65(6):270-275.
[17]Bera B,MitraS K,Vick D.Understanding the micro structure of Berea sandstone by the simultaneous use of micro-computed tomography(micro-CT)and focused ion beam-scanning electron microscopy(FIB-SEM)[J].Micron,2011,42:412-418.
[18]Binnig G,Quate C F,Gerber Ch.Atomic force microscope[J].Physical Review Letters,1986,56:930-933.
[19]Hirono T,Lin W,Nakashima S.Pore space visualization of rocks using an atomic force microscope[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(2):317-320.
[20]Bai Y Q,Zhu X,Wu J Z,et al.Micropore structure representation of sandstone in petroleum reservoirs using an atomic force microscope[J].Chinese Physics Letters,2011,28(8):080701.
[21]李留仁,趙艷艷,李忠興,等.多孔介質(zhì)微觀孔隙結(jié)構(gòu)分形特征及分形系數(shù)的意義[J].石油大學(xué)學(xué)報(bào):自然科學(xué)版,2004,28(3):105-107.Li Liuren,Zhao Yanyan,Li Zhongxing,et al.Fractal characteristics of micro pore structure of porous media and the meaning of fractal coefficient[J].Journal of the University of Petroleum:Natural Science Edition,2004,28(3):105-107.
[22]Hadizadeh J,Sehhati R,Tullis T.Porosity and particle shape changes leading to shear localizationin small-displacement faults[J].Journal of Structural Geology,2010,32(11):1712-1720.
[23]張婷,徐守余,楊珂.儲(chǔ)層微觀孔隙結(jié)構(gòu)分形維數(shù)應(yīng)用[J].大慶石油學(xué)院學(xué)報(bào),2010,34(3):44-47.Zhang Ting,Xu Shouyu,Yang Ke.Application of fractal dimension of micro-pore structure[J].Journal of Daqing Petroleum Institute,2010,34(3):44-47.
[24]文慧儉,閆林,姜福聰,等.孔低滲儲(chǔ)層孔隙結(jié)構(gòu)分形特征[J].大慶石油學(xué)院學(xué)報(bào),2007,31(1):15-18.Wen Huijian,Yan Lin,Jiang Fucong,et al.The fractal characteristics of the pore texture in low porosity and low permeability reservoir[J].Journal of Daqing Petroleum Institute,2007,31(1):15-18.