吳志娟,李 泱
(解放軍總醫(yī)院心內科,北京 100853)
心臟電活動是多種離子流共同作用的結果。維持靜息電位的鈉?鈣交換體電流(sodium-calcium exchanger current,INCX)、內向整流鉀電流(inward rectifier potassium current,IK1)等;參與0相除極的L型鈣電流(L-type calcium current,ICa,L)、快失活鈉電流(rapidly inactivating sodium current,INa,peak);參與復極的快激活延遲整流鉀電流(rapidly activated delayed rectifier potassium current,IKr)、慢激活延遲整流鉀電流(slowly activated delayed rectifier potassium current,IKs)、瞬時外向鉀電流(transient outward potassium current,Ito)、IK1、ICa,L、晚鈉電流(late sodium current,INa,Late);參與4相自動除極的起搏電流(funny current,If)、T型鈣電流(T-type calcium current,ICa,T)、IK1、乙酰膽堿激活鉀電流(acetylcholine activated potassium current,IK,Ach)等。近年發(fā)現(xiàn)諸多離子流存在復雜而動態(tài)的相互影響和相互作用,其中某種離子流的變化,將會影響到其他離子流。心臟鈉離子流(cardiac sodium ion current,INa)參加心肌細胞動作電位(action potential,AP)的除極、復極過程,對AP的傳導有重要作用。鈉通道病變可致多種心律失常的發(fā)生。本文就心臟鈉通道與各離子流間的相互作用及心律失常的關系作一綜述。
心肌細胞的鈉通道是由SCN5A基因編碼的蛋白質Nav1.5構成,正常情況下,心肌細胞除極時,心肌細胞膜上的鈉通道激活開放,鈉離子順離子梯度快速內流形成INa,peak,從而產生可傳播的AP除極0相,該通道激活1~3ms后失活。生理條件下,也有少數(shù)的鈉通道激活后不完全失活,引起鈉通道關閉不全而出現(xiàn)持續(xù)的鈉內流,這種峰鈉電流后的持續(xù)性內向鈉電流稱為INa,Late,特點是幅值較小,約為峰鈉電流的0.1%,持續(xù)時間較長(10~l00ms),生理情況下,對AP的影響不大,但病理狀態(tài)時,鈉通道快速開放后不完全性失活增強,即引起INa,peak的增加,表現(xiàn)為鈉離子不斷內流,使AP過度延長,引起各種心律失常。
無論是IK1或者是IKr均與INa產生相互作用,進而以INa依賴的方式影響心臟傳導,且只有在鈉通道功能沒有減弱的情況下,調控IK1才會起作用[1,2]。類似的現(xiàn)象還表現(xiàn)在三磷酸腺苷(adenosine triphosphate,ATP)敏感性鉀電流(adenosine triphosphate sensitive potassium current,IK,ATP)對傳導的調控上。而IKs減慢心臟傳導的作用,則不依賴于INa[3]。這表明鉀通道對鈉通道調控存在一定的差異性。
將突變型INa通道和野生型IK1通道質粒共轉染至HEK293細胞上,可使AP過度延長,>30s,導致70%的HEK293細胞死亡,而野生型INa通道與IK1通道共轉時,細胞全部存活。進一步,再加入IKr通道的質粒后,AP時程縮短,細胞死亡數(shù)顯著減少,若此時加入IKr阻斷劑,將明顯延長AP時程,并呈現(xiàn)劑量依賴性細胞死亡特征[4],提示三者在對AP的貢獻上存在密切的功能聯(lián)系。
de la Rosa等[5]在使用長QT綜合征(long Q-T syndrome,LQTS)老鼠模型研究中發(fā)現(xiàn),IKs阻滯之后出現(xiàn)早期鈉通道重構,并在心室傳導系統(tǒng)和心臟肥大的發(fā)生中導致形態(tài)和功能的異常??赡艿臋C制是通過調控α-subunit和β1-subunit從而上調Na通道,提示Ikr與鈉通道之間的相互作用。
編碼IK1的基因KCNJ2的E299V突變使IK1內向電流減弱,外向電流增強[6]。該文對進一步使用精確的幾何三維模擬心室模型進行預示:將鈉電流下降20%,與IK1的E299V突變具同效性及異效疊加性,均可使心室興奮性下降,增加室性心律失常的發(fā)生,其機制有待進一步探索。
Deschênes等[7]應用蛋白免疫共沉淀在新生大鼠心室肌細胞中Navβ1被Kv4.x抗體沉淀下來,表明Ito和INa亞基結構之間存在結構或功能上的聯(lián)系。在此之前即有發(fā)現(xiàn)[8,9],Navβ1調節(jié)Kv4編碼的鉀通道在野生心肌細胞的功能,另一方面,沉默Navβ1基因也使KChIP2在mRNA和蛋白水平上減少,Kv4.x蛋白也相應地下降,導致Ito密度顯著下調。值得注意的是,KChIPs(Kv channel-interacting proteins)是調節(jié)Kv4編碼電流的主要元件,若使用KChIP2的特定Kv通道相互作用蛋白類小于擾RNA類(siRNAs)對新生大鼠心室肌細胞進行KChIP2的轉錄后基因沉默,則發(fā)現(xiàn)在Ito降低的同時,Na通道表達也顯著下降。進一步研究顯示,KChIP2沉默可在信使RNA(mRNA)水平上抑制鈉通道α和β1單元,使其通道基因和蛋白的水平下降。
INa,peak因其失活緩慢的特點,可增加Na+內流,進而影響平臺期多種離子通道和離子交換體的活動過程[10]。由于鈉通道失活延緩或不完全,導致細胞內Na+濃度增加,將通過Na+/Ca2+反向交換使細胞內鈣超載[11],延長動作電位時程(action potential duration,APD),從而誘發(fā)早后除極(early afterdepolarizations,EADs)和室性心律失常。而各種因素導致胞內Ca2+濃度的升高,或大量Na+內流,使INCX激活,內向電流增加,從而易誘發(fā)晚后除極(delay afterdepolarizations,DADs)[12]。相反,L型鈣電流(ICa,L)的開放,將使細胞內鈣離子增加,后者則通過激活鈣調蛋白(calmodulin,CaM)對INa,peak產生重要影響,其機制可能是通過Ca2+[13?16]或Ca2+/CaM[17,18]的直接作用。另有研究表明[19],鈣通道對鈉通道的調控是由鈣?鈣調蛋白依賴性蛋白激酶2型(Ca2+/calmodulin-dependent protein kinase Ⅱ,CaMKⅡ)通過多個磷酸化位點調節(jié)Nav1.5通道改變其失活曲線所致。
鈉通道的病變,與室性心律失常、心房顫動及心肌缺血、心力衰竭等器質性心臟病所致心律失常[20]、長QT綜合征[21]、Brugada綜合征[22]、Lev-Lengre綜合征[23]等相關;INa,peak與心臟收縮舒張功能[24]、心臟的復極儲備及反向頻率依賴性有關[25,26];與EADs的發(fā)生,以及T波電交替的出現(xiàn),繼而導致心律失常的發(fā)生有直接作用關系[27];INa,peak的非正常變化,可使心臟傳導紊亂,竇房結功能喪失,致嬰兒猝死綜合征(sudden infant death syndrome,SIDS)等。此外有研究表明心房肌細胞的INa,peak密度比心室肌細胞多[28],早發(fā)心房顫動患者的3.2%存在SCN5A基因突變[29],除長QT綜合征外,有些病理情況(如充血性心力衰竭)易發(fā)生心房顫動,可能與心房APD/ERP的延長有關[30]。故選擇性抑制INa,peak有望成為治療先天性及獲得性離子通道性疾病的有效策略[31]。另有人報道[27],在42例日本SIDS中,有1例發(fā)現(xiàn)KCNH2-T895M和SCN5A-G1084S共突變。對此的一種解釋為由于相反的門控異常情況,KCNH2電流存在一種精細的干擾,在有額外因素的作用下,如存在SCN5A-G1084S突變時,增加心律失常的發(fā)生;另一種解釋為該患者同時存在LQTS與Brugada 綜合征,KCNH2-T895M突變致LQT2,SCN5AG1084S致Brugada綜合征。由于這兩種突變有不同的門控性質,它們對該患者可能有同等的引起心律失常的機會。由于心臟電活動是多種離子流共同作用的結果,僅一種或幾種離子流單獨的改變并不能很好地解釋心律失常的復雜機制,在心律失常的藥物治療方面也存有缺陷,現(xiàn)有抗心律失常藥物雖可控制癥狀,但療效不佳,甚至誘發(fā)新的心律失常。根據(jù)鈉通道本身的重要特點、及其與心臟多種離子流通道存在相互作用關系,尋找針對離子流相互作用的藥物可能更符合客觀實際。如抗心絞痛藥物雷諾嗪(ranolazine)同時阻滯INa,L和IKr,長期應用并不延長QT間期,從而減少致心律失常的發(fā)生[32]。
綜上,鈉通道與心臟各疾病及心肌細胞各離子流通道存在重要的相互作用,多種離子流共同作用在心肌細胞電傳導過程中發(fā)揮重要的作用。其作用機制有直接的也有間接的,可能與通道的電壓門控性相關,尚待進一步探求和研究。研究INa與其他電流的相互作用,對于揭示心肌細胞正常電活動以及心律失常發(fā)生的機制提供了新的靶點,為探尋臨床藥物治療心律失常開辟新的方向。
【參考文獻】
[1]Veeraraghavan R,Poelzing S.Mechanisms underlying increased right ventricular conduction sensitivity to flecainide challenge[J].Cardiovasc Res,2008,77(4):749?756.
[2]Larsen AP,Olesen SP,Grunnet M,et al.Pharmacological activation of IKr impairs conduction in guinea pig hearts[J].J Cardiovasc Electrophysiol,2010,21(8):923?929.
[3]Veeraraghavan R,Larsen AP,Torres NS,et al.Potassium channel activators differentially modulate the effect of sodium channel blockade on cardiac conduction[J].Acta Physiol(Oxf),2013,207(2):280?289.
[4]Fujii M,Ohya S,Yamamura H,et al.Development of recombinant cell line co-expressing mutated Nav1.5,Kir2.1,and hERG for the safety assay of drug candidates[J].J Biomol Screen,2012,17(6):773?784.
[5]de la Rosa AJ,Domínguez JN,Sedmera D,et al.Functional suppression of Kcnq1 leads to early sodium channel remodelling and cardiac conduction system dysmorphogenesis[J].Cardiovasc Res,2013,98(3):504?514.
[6]Deo M,Ruan Y,Pandit SV,et al.KCNJ2 mutation in short QT syndrome 3 results in atrial fibrillation and ventricular proarrhythmia[J].Proc Natl Acad Sci USA,2013,110(11):4291?4296.
[7]Deschênes I,Armoundas AA,Jones SP,et al.Post-transcriptional gene silencing of KChIP2 and Navbeta1 in neonatal rat cardiac myocytes reveals a functional association between Na and Ito currents[J].J Mol Cell Cardiol,2008,45(3):336?346.
[8]Deschênes I,DiSilvestre D,Juang GJ,et al.Regulation of Kv4.3 current by KChIP2 splice variants:a component of native cardiac I(to)[J]? Circulation,2002,106(4):423?429.
[9]Deschênes I,Tomaselli GF.Modulation of Kv4.3 current by accessory subunits[J].FEBS Lett,2002,528(1?3):183?188.
[10]Cheung JY,Zhang XQ,Song J,et al.Coordinated regulation of cardiac Na(+)/Ca(2+)exchanger and Na(+)-K(+)-ATPase by phospholemman(FXYD1)[J].Adv Exp Med Biol,2013,961:175?190.
[11]Burashnikov A,Antzelevitch C.Role of late sodium channel current block in the management of atrial fibrillation[J].Cardiovasc Drugs Ther,2013,27(1):79?89.
[12]Gomis-Tena J,Saiz J.Role of Ca2+-dependent Cl-current on delayed afterdepolarizations.A simulation study[J].Ann Biomed Eng,2008,36(5):752?761.
[13]Wingo TL,Shah VN,Anderson ME,et al.An EF-hand in the sodium channel couples intracellular calcium to cardiac excitability[J].Nat Struct Mol Biol,2004,11(3):219?225.
[14]Shah VN,Wingo TL,Weiss KL,et al.Calcium-dependent regulation of the voltage-gated sodium channel hH1:intrinsic and extrinsic sensors use a common molecularswitch[J].Proc Natl Acad Sci USA,2006,103(10):3592?3597.
[15]Young KA,Caldwell JH.Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin[J].J Physiol,2005,565(Pt 2):349?370.
[16]Chagot B,Potet F,Balser JR,et al.Solution NMR structure of the C-terminal EF-hand domain of human cardiac sodium channel NaV1.5[J].J Biol Chem,2009,284(10):6436?6445.
[17]Mori M,Konno T,Morii T,et al.Regulatory interaction of sodium channel IQ-motif with calmodulin C-terminal lobe[J].Biochem Biophys Res Commun,2003,307(2):290?296.
[18]Kim J,Ghosh S,Liu H,et al.Calmodulin mediates Ca2+sensitivity of sodium channels[J].J Biol Chem,2004,279(43):45004?45012.
[19]Ashpole NM,Herren AW,Ginsburg KS,et al.Ca2+/calmodulin-dependent protein kinase Ⅱ(CaMKⅡ)regulates cardiac sodium channel NaV1.5 gating by multiple phosphorylation sites[J].J Biol Chem,2012,287(24):19856?19869.
[20]Gou ZP,Sun YZ,Zhang CT,et al.Role of late sodium current in ventricular arrhythmia in rabbit models of heart failure[J].Acta Med Univ Sci Technol Huazhong,2013,42(2):152?155.[茍志平,孫玉真,張存泰,等,晚鈉電流在兔心力衰竭模型室性心律失常中的作用[J].華中科技大學學報(醫(yī)學版),2013,42(2):152?155.]
[21]Quan XQ,Zhang CT,Lv JG,et al.Effect of antiarrhythmic peptide on ventricular arrhythmia in rabbit long QT syndrome model[J].J Clin Cardiol,2008,24(1):51?54.[全小慶,張存泰,呂家高,等.抗心律失常肽對兔長QT綜合征模型室性心律失常的影響[J].臨床心血管病雜志,2008,24(1):51?54.]
[22]Vatta M,Dumaine R,Varghese G,et al.Genetic and biophysical basis of sudden unexplained nocturnal death syndrome(SUNDS),a disease allelic to Brugada syndrome[J].Hum Mol Genet,2002,11(3):337?345.
[23]Tan HL,Bink-Boelkens MT,Bezzina CR,et al.A sodium-channel mutation causes isolated cardiac conduction disease[J]. Nature, 2001, 409(6823):1043?1047.
[24]Undrovinas AI,Belardinelli L,Undrovinas NA,et al.Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current[J].J Cardiovasc Electrophysiol,2006,17 Suppl 1:169?177.
[25]Wu L,Ma J,Li H,et al.Late sodium current contributes to the reverse rate-dependent effect of IKr inhibition on ventricular repolarization[J].Circulation,2011,123(16):1713?1720.
[26]Wu L,Rajamani S,Li H,et al.Reduction of repolarization reserve unmasks the proarrhythmic role of endogenous late Na(+)current in the heart[J].Am J Physiol Heart Circ Physiol,2009,297(3):1048?1057.
[27]Otagiri T,Kijima K,Osawa M,et al.Cardiac ion channel gene mutations in sudden infant death syndrome[J].Pediatr Res,2008,64(5):482?487.
[28]Burashnikov A,Di Diego JM,Zygmunt AC,et al.Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation:differences in sodium channel inactivation between atria and ventricles and the role of ranolazine[J].Circulation,2007,116(13):1449?1457.
[29]Olesen MS,Yuan L,Liang B,et al.High prevalence of long QT syndrome-associated SCN5A variants in patients with early-onset lone atrial fibrillation[J].Circ Cardiovasc Genet,2012,5(4):450?459.
[30]Li D,Melnyk P,Feng J,et al.Effects of experimental heart failure on atrial cellular and ionic electrophysiology[J]. Circulation, 2000, 101(22):2631?2638.
[31]Antzelevitch C,Nesterenko V,Shryock JC,et al.The role of late I Na in development of cardiac arrhythmias[J].Handb Exp Pharmacol,2014,221:137?168.
[32]Scirica BM,Morrow DA,Hod H,et al.Effect of ranolazine, an antianginal agent with novel electrophysiological properties,on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome:results from the Metabolic Efficiency with Ranolazine for Less Ischemia in Non ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction 36(MERLIN-TIMI 36)randomized controlled trial[J].Circulation,2007,116(15):1647?1652.