李旭忠,胡 承,張學(xué)利
?
胃轉(zhuǎn)流手術(shù)治療2型糖尿病機(jī)制的研究進(jìn)展
李旭忠1,胡 承2,張學(xué)利3*
(1蘇州大學(xué)醫(yī)學(xué)院,蘇州 215000;2上海交通大學(xué)附屬第六人民醫(yī)院內(nèi)分泌與代謝科,上海市糖尿病研究所,上海 200233;3上海市奉賢區(qū)中心醫(yī)院普外科,201400)
外科手術(shù)已被認(rèn)可為治療2型糖尿?。═2DM)的一種新型方式,其中胃轉(zhuǎn)流術(shù)是目前備受關(guān)注的手術(shù)方式,并逐漸進(jìn)入臨床。胃轉(zhuǎn)流術(shù)治療T2DM效果顯著,尤其適用于伴肥胖的T2DM患者,甚至可以達(dá)到有效控制血糖及緩解糖尿病并發(fā)癥的目的。然而,其潛在作用機(jī)制復(fù)雜,主要包括胃腸激素分泌的變化、脂肪因子的作用、膽汁酸代謝等。
胃轉(zhuǎn)流術(shù);糖尿病,2型
2型糖尿?。╰ype 2 diabetes mellitus,T2DM)是主要以胰島素分泌不足和(或)胰島素抵抗為主的代謝性疾病,其發(fā)病機(jī)制復(fù)雜。據(jù)統(tǒng)計(jì),2011年全球約有3.66億糖尿病患者[1]。其中,T2DM占85%~90%,其傳統(tǒng)治療方式如飲食控制、體育鍛煉、口服降糖藥以及注射胰島素等,雖然在短期內(nèi)能降低血糖、促進(jìn)胰島素分泌、改善胰島素敏感性,但無法持久控制血糖和阻止胰島β細(xì)胞功能衰退,也不能避免心血管病、腎病、視網(wǎng)膜病、糖尿病足等慢性并發(fā)癥的發(fā)生發(fā)展。
減重手術(shù)包括胃轉(zhuǎn)流術(shù)(gastric bypass,GBP)、膽胰轉(zhuǎn)流術(shù)、回腸轉(zhuǎn)位術(shù)等手術(shù)方式。近十多年國外學(xué)者對接受減重手術(shù)的患者長期研究發(fā)現(xiàn),對伴T2DM的肥胖患者行GBP術(shù)后,在減重的同時(shí),能有效緩解糖尿病,還能減少并發(fā)癥的發(fā)生,并證明不伴肥胖的T2DM患者GBP術(shù)后也有一定療效?;跍p重手術(shù)對T2DM的療效,2011年3月,國際糖尿病聯(lián)合會(huì)(International Diabetes Federation,IDF)正式發(fā)表聲明,認(rèn)為以GBP為代表的減重手術(shù)可用于治療T2DM,但是其作用機(jī)制仍不明確。本文就GBP治療T2DM手術(shù)方式、治療效果、術(shù)后并發(fā)癥及可能機(jī)制做一綜述。
GBP的基本術(shù)式:首先用直線型切割閉合器將胃切成兩部分,近端小囊狀的胃(5%~20%)和遠(yuǎn)端的殘胃;于Trietz韌帶下50~100cm處切斷空腸,遠(yuǎn)端空腸與近端胃端側(cè)吻合;近端空腸與距胃空腸吻合口遠(yuǎn)端75~100cm處空腸行端側(cè)吻合。
GBP在治療T2DM方面臨床效果顯著。長期臨床研究[2]顯示,T2DM患者GBP術(shù)后血糖能持久保持穩(wěn)定,>78%的肥胖型T2DM患者能達(dá)到基本控制癥狀的目的,術(shù)后14年病情緩解率仍高達(dá)83%。Schauer等[3]通過150例肥胖型T2DM患者隨機(jī)化對照研究及術(shù)后隨訪,發(fā)現(xiàn)GBP術(shù)后3年T2DM患者血糖得到有效控制,整體生活質(zhì)量明顯改善。盡管GBP是侵襲性的治療方式,術(shù)后并發(fā)癥不容忽視,如吻合口漏、腸扭轉(zhuǎn)、腸梗阻、切口感染和營養(yǎng)不良等。但外科手術(shù)能大幅降低糖尿病及其并發(fā)癥引起的病死率。Morino等[4]報(bào)道近14 000例患者GBP術(shù)后60d以內(nèi)的死亡率為0.25%,出現(xiàn)并發(fā)癥的患者中有95%是可以治愈的,并不留后遺癥。腹腔鏡下GBP術(shù)后死亡率為0.1%,術(shù)后并發(fā)癥也進(jìn)一步減少[5]。
GBP治療T2DM的作用機(jī)制說法不一,包括術(shù)后熱量攝入的減少及體質(zhì)量下降、腸-胰島軸機(jī)制、脂肪-胰島軸學(xué)說、膽汁酸代謝等。其中,多項(xiàng)研究均已證實(shí)熱量攝入減少及體質(zhì)量下降并不是GBP術(shù)后血糖得以控制的根本原因,而術(shù)后胃腸解剖結(jié)構(gòu)變化引起胃腸激素的變化,在緩解或控制T2DM中起到了重要作用。
2.1.1 腸促胰島素(incretin) 腸促胰島素主要包括腸抑胃多肽(gastric inhibitory polypeptide,GIP)和胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)。GIP是由十二指腸和上段空腸的上皮K細(xì)胞分泌,可促進(jìn)胰島β細(xì)胞葡萄糖依賴性地釋放胰島素。Zhang等[6]研究證實(shí),GIP可與GIP受體結(jié)合,通過cAMP依賴的蛋白激酶A(protein kinase A,PKA)等信號通路促進(jìn)胰島素的分泌,進(jìn)而調(diào)節(jié)血糖。而T2DM患者由于存在腸-胰島軸的異?;罨?,導(dǎo)致GIP水平增高,產(chǎn)生過多的胰島素,形成胰島素抵抗。Rubino[7]則通過GK大鼠實(shí)驗(yàn)提出了“前腸學(xué)說”,認(rèn)為近端小腸分布大量K細(xì)胞,食物可刺激其釋放大量GIP,造成胰島素抵抗,從而導(dǎo)致T2DM。而GBP術(shù)后,食物避開了對近端小腸的刺激,GIP分泌明顯減少,從而使胰島素抵抗減輕,血糖水平也得到控制。但近來研究發(fā)現(xiàn)GBP術(shù)后T2DM患者的GIP基因表達(dá)水平比術(shù)前增加4.36倍,而非糖尿病患者才增加2.21倍[8]。伴肥胖的T2DM患者GBP術(shù)后GIP的分泌有增加、減少或不變,而這些差異可能與轉(zhuǎn)流臂的長度、術(shù)后測量時(shí)間及檢測方式不同有關(guān)[9]。
GLP-1主要是由末段回腸L細(xì)胞合成分泌,有促進(jìn)胰島素分泌和胰腺β細(xì)胞增生并抑制其凋亡、加強(qiáng)組織攝取和利用葡萄糖、抑制胃排空和小腸運(yùn)動(dòng)、減慢小腸對營養(yǎng)物質(zhì)的吸收、抑制胰高血糖素分泌、增加胰島素的基因表達(dá)等作用。相關(guān)動(dòng)物實(shí)驗(yàn)[10]發(fā)現(xiàn)腦干和下丘腦可合成GLP-1及其受體,末端回腸L細(xì)胞產(chǎn)生的GLP-1可通過血液循環(huán)直接或間接地刺激腦干或下丘腦GLP-1受體,產(chǎn)生相應(yīng)信號,并通過自主神經(jīng)傳遞,作用胰腺β細(xì)胞分泌胰島素,進(jìn)而調(diào)節(jié)血糖。T2DM患者中腸促胰島素效應(yīng)受損,導(dǎo)致進(jìn)餐后GLP-1分泌減少,而GBP術(shù)后食物快速到達(dá)末端回腸,刺激L細(xì)胞分泌GLP-1,促進(jìn)胰島素分泌,并改善胰島素抵抗等,從而引起血糖降低,即所謂的“后腸假說”[11]。Meirelles等[12]對肥胖伴胰島素抵抗的GK大鼠實(shí)施GBP術(shù)后發(fā)現(xiàn),血糖下降的同時(shí),伴隨著GLP-1水平的升高,胰島素抵抗也得到明顯改善,該實(shí)驗(yàn)結(jié)果肯定了GLP-1在GBP治療T2DM機(jī)制中的重要性。臨床研究也顯示GBP術(shù)后的T2DM患者餐后GLP-1的分泌成倍增加[13]。因此,GLP-1被認(rèn)為是胃腸激素中調(diào)節(jié)糖代謝的最核心的介導(dǎo)因子,以期待從中尋求治療糖尿病的靶點(diǎn)。
2.1.2 Peptide-YY(PYY) 主要由末段回腸L細(xì)胞經(jīng)餐后食物刺激分泌,PYY是一種能產(chǎn)生厭食效應(yīng)的信號肽,作用于下丘腦弓狀核抑制神經(jīng)肽Y的釋放,能產(chǎn)生飽脹感,抑制胃的排空及胃腸蠕動(dòng),進(jìn)而影響食欲,減少營養(yǎng)物質(zhì)攝入,增加糖耐量,參與血糖的調(diào)節(jié)。相關(guān)研究表明,GBP術(shù)后的T2DM患者餐后PYY分泌明顯增加[14],其可能是源于術(shù)后完全未消化的食物提前刺激末端回腸促進(jìn)其大量分泌,持續(xù)的厭食效應(yīng)導(dǎo)致的食欲減退和攝入減少,從而達(dá)到控制血糖的目的。而伴肥胖的T2DM患者GBP術(shù)后PYY水平明顯增加,胰島β細(xì)胞及胰島素的敏感性也得到了長期改善[15]。Hansen等[16]近期通過大鼠實(shí)驗(yàn)發(fā)現(xiàn),GBP術(shù)后小腸黏膜肥大伴L細(xì)胞數(shù)量成倍增加(而密度不變),并且整個(gè)腸道PYY基因表達(dá)水平增加近200%,這可能解釋GBP術(shù)后腸道激素的改變。
2.1.3 生長激素釋放肽(ghrelin) 生長激素釋放肽是一種由胃分泌的腦腸肽,約90%由位于胃幽門的D1細(xì)胞和P細(xì)胞分泌,胰腺、小腸、腦垂體及下丘腦也可少量分泌。餐前血液循環(huán)中生長激素釋放肽水平增加并將饑餓信號傳遞給表達(dá)生長激素釋放肽受體的下丘腦攝食中樞,進(jìn)而刺激進(jìn)食欲[17]。因生長激素釋放肽受體在胰腺β細(xì)胞也有表達(dá),而β細(xì)胞是糖代謝的關(guān)鍵,因此,認(rèn)為生長激素釋放肽對血糖調(diào)節(jié)也發(fā)揮重要作用。研究發(fā)現(xiàn),當(dāng)給正常人體注入外源性生長激素釋放肽后,會(huì)導(dǎo)致內(nèi)源性胰島素分泌減少,最終影響血糖調(diào)節(jié)[18]。食源性減肥的肥胖患者在減重的同時(shí),血漿生長激素釋放肽水平升高,而肥胖和正常體質(zhì)量者GBP術(shù)后血漿生長激素釋放肽水平與術(shù)前相比減低[19]。但也有研究發(fā)現(xiàn)術(shù)后血漿生長激素釋放肽的水平反而增加或無明顯變化[20]。研究結(jié)論的多向性并未得到很好的闡明。有理論認(rèn)為GBP術(shù)后循環(huán)中生長激素釋放肽的減少與胃及胃迷走神經(jīng)的離斷有關(guān)[21];而另一種理論認(rèn)為術(shù)后殘胃形態(tài)不同也參與其中,并且生長激素釋放肽水平與肥胖患者的高胰島素血癥和胰島素抵抗有關(guān)[22]。因此,生長激素釋放肽是否在GBP治療T2DM患者中發(fā)揮重要作用,還需進(jìn)一步研究。
2.2.1 瘦素(leptin) 瘦素是由白色脂肪細(xì)胞分泌的一種蛋白質(zhì)類激素,它有多個(gè)功能性靶器官,其中皮下脂肪組織表達(dá)最多。瘦素主要通過激活下丘腦的特異性瘦素受體而發(fā)揮以下作用:抑制食欲,減少能量攝入;增加能量消耗;抑制脂肪合成。生理情況下胰島素能夠促進(jìn)脂肪的合成,而脂肪分泌的瘦素能反饋抑制胰島素的分泌,使脂肪組織合成減少,分解增加。而病理狀態(tài)下,瘦素對胰島素分泌抑制減輕,隨之出現(xiàn)高胰島素血癥及胰島素抵抗。T2DM患者的瘦素水平增高,而瘦素水平的變化與體質(zhì)量指數(shù)(body mass index,BMI)并沒有獨(dú)立的關(guān)系[23]。但有研究發(fā)現(xiàn),在肥胖女性人群中瘦素僅與BMI顯著相關(guān)[24]。實(shí)施GBP的肥胖患者術(shù)后瘦素水平(19.8±6.7)比術(shù)前(59.0±5.1)明顯下降[25]。而伴肥胖的T2DM患者GBP術(shù)后12個(gè)月血清瘦素水平相對基線水平顯著下降,術(shù)后空腹血糖、胰島素水平及胰島素抵抗也明顯降低[26]。由此推斷T2DM患者GBP術(shù)后血糖的控制可能與瘦素水平下降解除了胰島素抵抗有關(guān),但并不排除手術(shù)前后體質(zhì)量變化的影響。
2.2.2 脂聯(lián)素(adiponectin) 脂聯(lián)素是一種由脂肪組織表達(dá)和分泌的內(nèi)源性膠原蛋白,其在糖脂代謝中同樣發(fā)揮重要作用。研究已證實(shí)脂聯(lián)素能提高胰島素的敏感性,而脂聯(lián)素水平降低可以加劇胰島素抵抗[27]。給予正常體質(zhì)量及肥胖者注射脂聯(lián)素后發(fā)現(xiàn),血糖下降,而且胰島素敏感性也得到提高[28]。Hindle等[29]研究發(fā)現(xiàn)肥胖及伴肥胖的T2DM患者脂聯(lián)素的表達(dá)較非糖尿病者明顯下調(diào),伴肥胖的T2DM患者下調(diào)更明顯,而GBP術(shù)后脂聯(lián)素的表達(dá)顯著上調(diào),并接近正常對照組水平。而肥胖型T2DM患者GBP術(shù)后7d脂聯(lián)素水平未見明顯變化,術(shù)后90d空腹血糖顯著降低,而餐后脂聯(lián)素水平明顯升高[30],由此認(rèn)為術(shù)后脂聯(lián)素表達(dá)升高可能與T2DM緩解有關(guān)。
2.2.3 nesfatin-1 nesfatin-1是一種來源于核組蛋白2(nucleobindin 2,NUCB2)的新型厭食肽,主要參與抑食行為,但其機(jī)制尚未完全闡明。nesfatin-1最早發(fā)現(xiàn)于下丘腦及腦干,其在胃腸道及胰腺內(nèi)也有廣泛表達(dá)。2010年,Ramanjaneya等[31]研究顯示人類與小鼠皮下脂肪組織也高度表達(dá)nesfatin-1,并與BMI呈正相關(guān)。在對T2DM患者研究中發(fā)現(xiàn),患者的空腹nesfatin-1水平明顯低于正常健康人,而nesfatin-1與糖耐量呈正相關(guān)[32]。因此,nesfatin-1對T2DM患者糖代謝的作用仍存在爭議。Li等[33]進(jìn)一步研究證實(shí)nesfatin-1可促進(jìn)胰島素分泌并增加胰島素敏感性,進(jìn)而調(diào)節(jié)糖代謝。最新研究[34]發(fā)現(xiàn)單純肥胖者和T2DM患者GBP術(shù)后血漿nesfatin-1明顯減少,而其減少與術(shù)后空腹血糖降低有關(guān)。然而,由于缺乏實(shí)驗(yàn)及臨床研究,nesfatin-1是否及如何參與GBP術(shù)后糖代謝的調(diào)節(jié)仍待驗(yàn)證。
膽汁酸是膽固醇的終產(chǎn)物,由肝臟中合成,儲(chǔ)存在膽囊中,進(jìn)食后排入腸道,促進(jìn)食物中脂類的乳化和吸收。同時(shí),肝臟也是糖異生的主要場所。研究表明,膽汁酸不僅可以調(diào)控脂類代謝,還可以作為信號分子參與糖代謝的調(diào)控[35]。膽汁酸的“肝腸循環(huán)“是調(diào)節(jié)膽汁酸合成速率的重要調(diào)節(jié)機(jī)制。相關(guān)研究發(fā)現(xiàn)[36],T2DM患者行GBP術(shù)后,膽汁酸合成增加,血漿膽汁酸水平也隨之升高,并認(rèn)為術(shù)后膽汁酸的變化影響GLP、PYY等胃腸激素的變化。單純性肥胖患者GBP術(shù)后空腹血糖及胰島素抵抗降低,而膽汁酸水平比術(shù)前明顯增加[37]。因此考慮術(shù)后胃腸解剖結(jié)構(gòu)的變化導(dǎo)致膽汁酸合成、轉(zhuǎn)運(yùn)、代謝發(fā)生變化,進(jìn)一步影響肝臟糖異生及腸道激素的變化而調(diào)節(jié)糖代謝。
循環(huán)中的IGF-1來源豐富,主要是由肝細(xì)胞分泌,腎、肌肉、肺、心等器官也可以合成。動(dòng)物實(shí)驗(yàn)研究[38]發(fā)現(xiàn),IGF-1可能通過誘導(dǎo)絲/蘇氨酸、PKA/PKB等途徑,加快胰島β細(xì)胞增生,促進(jìn)胰島素的分泌,進(jìn)而參與血糖的調(diào)節(jié)。T2DM患者IGF-1水平低下也已得到證實(shí),而且隨糖尿病史的延長,其降低的越明顯。研究發(fā)現(xiàn)[39]病態(tài)肥胖患者IGF-1水平比正常人低,但經(jīng)GBP術(shù)后IGF-1水平明顯升高。然而,雖然GBP能顯著提高合并T2DM的病態(tài)肥胖癥患者的IGF-1水平,但不能提高單純性病態(tài)肥胖癥患者的IGF-1水平[40]??梢?,IGF-1在GBP治療T2DM中可能發(fā)揮著重要作用。
減重手術(shù)現(xiàn)已被公認(rèn)為治療T2DM的方式之一,并應(yīng)用于臨床。綜上可知GBP可以調(diào)控部分T2DM患者的血糖及緩解其并發(fā)癥,尤其對伴肥胖的T2DM患者療效更為明顯。然而,迄今為止,GBP的殘胃容量以及吻合口位置的具體標(biāo)準(zhǔn)仍未得到統(tǒng)一。因此,尋找一種最佳的手術(shù)方案已成為使GBP治療T2DM得以廣泛應(yīng)用的前提。近年來,國內(nèi)外相關(guān)實(shí)驗(yàn)及臨床研究層出不窮,GBP治療T2DM的機(jī)制研究方向頗多,但仍未出現(xiàn)確定性的進(jìn)展。這可能與糖尿病多因素的發(fā)病機(jī)制有關(guān),GBP治療T2DM也是綜合效應(yīng)的結(jié)果。相對內(nèi)科治療,手術(shù)是有創(chuàng)治療方式,加之治療機(jī)制不明,也給臨床廣泛開展應(yīng)用帶來限制。因此,針對GBP治療T2DM機(jī)制的研究更須深入,以尋得根治T2DM的靶標(biāo),也為新型的內(nèi)科治療方式奠定基礎(chǔ)。
[1] Whiting DR, Guariguata L, Weil C,. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030[J]. Diabetes Res Clin Pract, 2011, 94(3): 311?321.
[2] Pories WJ, Swanson MS, MacDonald KG,. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus[J]. Ann Surg, 1995, 222(3): 339?350; discussion 350?352.
[3] Schauer PR, Bhatt DL, Kirwan JP,. Bariatric surgeryintensive medical therapy for diabetes-3-year outcomes[J]. N Engl J Med, 2014, 370(21): 2002?2013.
[4] Morino M, Toppino M, Forestieri P,. Mortality after bariatric surgery: analysis of 13,871 morbidly obese patients from a national registry[J]. Ann Surg, 2007, 246(6): 1002?1007; discussion 1007?1009.
[5] Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution[J]. J Clin Endocrine Metab, 2004, 89(6): 2608?2615.
[6] Zhang CL, Katoh M, Shibasaki T,. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs[J]. Science, 2009, 325(5940): 607?610.
[7] Rubino F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis[J]. 2008, 31 (Suppl 2): S290?S296.
[8] Moran-Atkin E, Brody F, Fu SW,. Changes in GIP gene expression following bariatric surgery[J]. Surg Endosc, 2013, 27(7): 2492?2497.
[9] Kindel TL, Yoder SM, D’Alessio DA,. The effect of duodenal-jejunal bypass on glucose-dependent insulinotropic polypeptide secretion in Wistar rats[J]. Obes Surg, 2010, 20(6): 768?775.
[10] Cabou C, Burcelin R. GLP-1, The gut-brain, and brain-periphery axes[J]. Rev Diabet Stud, 2011, 8(3): 418?431.
[11] Mingrone G, Castagneto-Gissey L. Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery[J]. Diabetes Metab, 2009, 35(6 Pt2): 518?523.
[12] Meirelles K, Ahmed T, Culnan DM,. Mechanisms of glucose homeostasis after Roux-en-Y gastric bypass surgery in the obese, insulin-resistant Zucker rat[J]. Ann Surg, 2009, 249(2): 277?285.
[13] Dirksen C, J?rgensen NB, Bojsen-M?ller KN,. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass[J]. Diabetologia, 2012, 55(7): 1890?1901.
[14] Rodieux F, Giusti V, D’Alessio DA,. Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release[J]. Obesity(Silver Spring), 2008, 16(2): 298?305.
[15] Nannipieri M, Baldi S, Mari A,. Roux-en-Y gastric bypass and sleeve gastrectomy: mechanisms of diabetes remission and role of gut hormones[J]. J Clin Endocrinol Metab, 2013, 98(11): 4391?4399.
[16] Hansen CF, Bueter M, Theis N,. Hypertrophy dependent doubling of L-cells in Roux-en-Y gastric bypass operated rats[J]. PLoS One, 2013, 8(6): e65696.
[17] Allen RE, Hughes TD, Ng JL,. Mechanisms behind the immediate effects of Roux-en-Y gastric bypass surgery on type 2 diabetes[J]. Theor Biol Med Model, 2013, 10: 45.
[18] Tong J, Prigeon RL, Davis HW,. Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans[J]. Diabetes, 2010, 59(9): 2145?2151.
[19] Chronaiou A, Tsoli M, Kehagias I,. Lower ghrelin levels and exaggerated postprandial peptide-YY, glucagon-like peptide-1, and insulin responses, after gastric fundus resection, in patients undergoing Roux-en-Y gastric bypass: a randomized clinical trial[J]. Obes Surg, 2012, 22(11): 1761?1770.
[20] Pournaras DJ, le Roux CW. Ghrelin and metabolic surgery[J]. Int J Pept, 2010, 2010pii: 217267.
[21] Le Roux CW, Neary NM, Halsey TJ,. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy[J]. J Clin Endocrinol Metab, 2005, 90(8): 4521?4524.
[22] McLaughlin T, Abbasi F, Lamendola C,. Plasma ghrelin concentrations are decreased in insulin-resistant obese adults relative to equally obese insulin-sensitive controls[J]. J Clin Endocrinol Metab, 2004, 89(4): 1630?1635.
[23] Bandaru P, Shankar A. Association between plasma leptin levels and diabetes mellitus[J]. Metab Syndrome Relat Disord, 2011, 9(1): 19?23.
[24] Gu X, Chen Z, El Bayoumy I. Serum leptin levels in obese women with and without type 2 diabetes mellitus[J]. Minerva Endocrinol, 2014, [Epub ahead of print].
[25] Chen J, Pamuklar Z, Spagnoli A,. Serum leptin levels are inversely correlated with omental gene expression of adiponectin and markedly decreased after gastric bypass surgery[J]. Surg Endosc, 2012, 26(5): 1476?1480.
[26] Terra X, Auguet T, Guiu-Jurado E,. Long-term changes in leptin, chemerin and ghrelin levels following different bariatric surgery procedures: Roux-en-Y gastric bypass and sleeve gastrectomy[J]. Obes Surg, 2013, 23(11): 1790?1798.
[27] Iglesias P, Díez JJ. Influence of thyroid dysfunction on serum concentrations of adipocytokines[J]. Cytokine, 2007, 40(2): 61?70.
[28] Furler SM, Gan SK, Poynten AM,. Relationship of adiponectin with insulin sensitivity in humans, independent of lipid availability[J]. Obesity(Silver Spring), 2006, 14(2): 228?234.
[29] Hindle AK, Edwards C, McCaffrey T,. Reactivation of adiponectin expression in obese patients after bariatric surgery[J]. Surg Endosc, 2010, 24(6): 1367?1373.
[30] Umeda LM, Pereira AZ, Carneiro G,. Postprandial adiponectin levels are associated with improvements in postprandial triglycerides after Roux-en-Y gastric bypass in type 2 diabetic patients[J]. Metab Syndr Relat Disord, 2013, 11(5): 343?348.
[31] Ramanjaneya M, Chen J, Brown JE,. Identification of nesfatin-1 in human and murine adipose tissue: a novel depot-specific adipokine with increased levels in obesity[J]. Endocrinology, 2010, 151(7): 3169?3180.
[32] Zhang Z, Li L, Yang M,. Increased plasma levels of nesfatin-1 in patients with newly diagnosed type 2 diabetes mellitus[J]. Exp Clin Endocrinol Diabetes, 2012, 120(2): 91?95.
[33] Li Z, Gao L, Tang H,. Peripheral effects of nesfatin-1 on glucose homeostasis[J]. PLoS One, 2013, 8(8): e71513.
[34] Lee WJ, Chen CY, Ser KH,. Differential influences of gastric bypass and sleeve gastrectomy on plasma nesfatin-1 and obestatin levels in patients with type 2 diabetes mellitus[J]. Curr Pharm Des, 2013, 19(32): 5830?5835.
[35] Trauner M, Claudel T, Fickert P,. Bile acids as regulators of hepatic lipid and glucose metabolism[J]. Dig Dis, 2010, 28(1): 220?224.
[36] Pournaras DJ, Glicksman C, Vincent RP,. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control[J]. Endocrinology, 2012, 153(8): 3613?3619.
[37] Werling M, Vincent RP, Cross GF,. Enhanced fasting and post-prandial plasma bile acid responses after Roux-en-Y gastric bypass surgery[J]. Scand J Gastroenterol, 2013, 48 (11): 1257?1264.
[38] Hennige AM, Fritsche A, Strack V,. PKC zeta enhances insulin-like growth factor 1-dependent mitogenic activity in the rat clonal beta cell line RIN 1046-38[J]. Biochem Biophys Res Commun, 2002, 290(1): 85?90.
[39] Pardina E, Ferrer R, Baena-Fustegueras JA,. The relationships between IGF-1 and CRP, NO, leptin, and adiponectin during weight loss in the morbidly obese[J]. Obes Surg, 2010, 20(5): 623?632.
[40] Rubino F1, Gagner M, Gentileschi P,. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism[J]. Ann Surg, 2004, 240(2): 236?242.
(編輯: 李菁竹)
Research progress of the mechanism of gastric bypass in the treatment of type 2 diabetes mellitus
LI Xu-Zhong1, HU Cheng2, ZHANG Xue-Li3*
(1Medical College, Soochow University, Suzhou 215000, China;2Department of Endocrinology and Metabolism, Shanghai Institute of Diabetes, the 6th People’s Hospital, Shanghai Jiaotong University, Shanghai 200233, China;3Department of General Surgery, Central Hospital of Shanghai Fengxian District, Shanghai 201400, China)
Surgery has been accepted as a new approach for the treatment of type 2 diabetes mellitus (T2DM). At present, gastric bypass is the high-profile operation method and gradually applied clinically. It showed significant effect in the treatment of T2DM, especially for the T2DM patients accompanied with obesity and even achieve the purpose to control blood glucose and its complications. However, the underlying mechanism of gastric bypass in treating T2DM is quite complex, including the changes in gastrointestinal hormones, the action of fat factor, bile acid metabolism,
gastric bypass surgery; diabetes mellitus, type 2
(81322010).
R587.1
A
10.3724/SP.J.1264.2014.000145
2014?04?03;
2014?05?30
國家自然科學(xué)基金(81322010)
張學(xué)利, E-mail: lejing1996@alinyun.com