劉曦宇 裴長艷 崔有斌
(吉林大學白求恩第一醫(yī)院胸部外科,吉林 長春 130021)
表觀遺傳學是目前生物學研究領(lǐng)域最具發(fā)展前景的學科〔1~4〕?;蜃陨淼母淖兒捅碛^遺傳基因的改變都會通過復雜的信號轉(zhuǎn)導,單獨或共同的引起有害基因突變率的增加。表觀遺傳學通過幾個機制控制基因的表達:DNA甲基化;組蛋白修飾;非編碼RNA的表觀遺傳調(diào)控〔5,6〕。目前研究最廣泛的是DNA甲基化〔7〕。實驗表明DNA重復序列的甲基化,可能會導致細胞染色體缺失或重組,從而造成遺傳不穩(wěn)定。因此人類基因甲基化增加染色質(zhì)的不穩(wěn)定性,導致腫瘤發(fā)展;同時特殊位點CpG島啟動子的甲基化,可以沉默腫瘤抑癌基因,有一定的致癌作用〔8〕。表觀遺傳學與飲食、藥物等外界環(huán)境有一定關(guān)系,當不利的環(huán)境因素作用于人體時,表觀改變使染色質(zhì)結(jié)構(gòu)重塑,繼而促進腫瘤等疾病的發(fā)生。
食管鱗狀細胞癌(ESCC)是遺傳、環(huán)境及飲食等多種因素共同作用的多基因、多途徑、多階段改變的疾病過程,是我國最常見的食管癌類型,發(fā)病人群以中老年為主,是最具侵犯性的腫瘤之一〔9〕,與中晚期ESCC不同,早期ESCC 5年生存率>90%〔10〕。盡管目前的診療技術(shù)不斷發(fā)展,但由于多種原因存在早期診斷困難,進而不能及時得到治療和完整切除腫瘤。因此尋找敏感度和特異度高的無創(chuàng)性診斷技術(shù)或指標是提高ESCC生存率的重要途徑。在治療效果有限的情況下促使尋找一種新的策略去治療ESCC,尤其是針對一些特定的因子去進行早期診斷。大量研究證明,在表觀遺傳變化上,DNA的甲基化在ESCC過程中起到至關(guān)重要的作用。由于表觀遺傳變化是一個可逆的過程,因此,在ESCC的早期診斷和治療上將會有更廣泛的應用。
甲基化是主要的表觀遺傳修飾中的一種,其通過腫瘤抑制基因的啟動子區(qū)抑制轉(zhuǎn)錄,甲基化通常發(fā)生在啟動子區(qū)的CpG島,且與基因失活有關(guān)。整體的甲基化也通過不同機制與癌癥的發(fā)生和發(fā)展有關(guān)〔11〕。已知DNA甲基化通過至少3個獨立的DNA甲基轉(zhuǎn)移酶(DNMT1)、DNMT3a、DNMT3b之間復雜的相互作用而對環(huán)境因子做出反應,其共同作用在于生成和維護遺傳基因甲基化模式。DNMT1在DNA復制后將甲基化模式轉(zhuǎn)移給一條新的合成鏈,因此經(jīng)常作為“維持”甲基轉(zhuǎn)移酶被提及〔12〕, DNMT3a 和DNMT3b顯示非甲基化和半甲基化DNA特性,催化新的甲基化位點形成〔13〕。
DNA的甲基化發(fā)生在多數(shù)基因序列上,包括重復序列和逆轉(zhuǎn)錄轉(zhuǎn)座子,因此導致基因的不穩(wěn)定性〔14〕。DNA重復序列的甲基化可能引起有絲分裂重組,進而導致基因缺失或異位,并同時促進染色體重組〔15〕。另外,異常的DNA甲基化可活化一些原癌基因和印跡缺失,如Angelman綜合征,普拉德-威利綜合征,脆弱型X染色體癥。
目前表觀遺傳學公認的導致腫瘤發(fā)生的原因是CpG島的甲基化和腫瘤抑癌基因的沉默。CpG核酸不均勻的分布在整個基因序列,但是大量集中分布在重復序列,如逆轉(zhuǎn)錄轉(zhuǎn)座子、rDNA、CpG島等。約60%哺乳動物在蛋白編碼基因的啟動子區(qū)域含有CpG島,其甲基化導致腫瘤可能通過三種機制:胞嘧啶甲基化后形成5-甲基胞嘧啶,促進基因突變〔16,17〕;異常的DNA甲基化導致相關(guān)的等位基因缺失〔18〕;DNA啟動子區(qū)域甲基化導致腫瘤抑癌基因沉默或失活〔19〕。
20年前,腫瘤組織內(nèi)的基因序列甲基化第1次被發(fā)現(xiàn)〔20〕,后期發(fā)現(xiàn)甲基化可能與致癌作用相關(guān)〔21〕。然而,甲基化在ESCC致病過程中的機制仍知之甚少,目前比較公認的有以下幾種機制:
2.1DNA序列的甲基化 基因啟動子的甲基化和相應位點的缺失是目前世界公認的腫瘤標志,DNA甲基化已經(jīng)成為ESCC最有前途的生物學治療靶點及檢測標志物,目前有大量的研究證明了多種基因的表觀遺傳學改變與ESCC的發(fā)生發(fā)展過程密切相關(guān)〔22~63〕。
人類基因序列大約17%由逆轉(zhuǎn)錄轉(zhuǎn)座子構(gòu)成,其甲基化水平是重要的DNA甲基化標志,在ESCC中可達25%~92%,逆轉(zhuǎn)錄轉(zhuǎn)座子的甲基化高表達同樣預示預后不良〔64〕。需要進一步的研究證實各因素之間的關(guān)系,全基因組芯片測序技術(shù)將會更廣泛的應用到抗腫瘤治療中。
2.2腫瘤抑制基因的甲基化 食管癌患者腫瘤組織和血漿中發(fā)現(xiàn)一些抑癌基因啟動子區(qū)異常甲基化,目前已經(jīng)被確認為多種腫瘤早期的特征性基因改變,其中甲基化率較高的抑癌基因有如下幾種:腺瘤性結(jié)腸息肉病基因(APC)通過與微管結(jié)合,調(diào)節(jié)β-蛋白水平,間接調(diào)節(jié)細胞增殖,在ESCC中,研究顯示有55%~80%的APC位點缺失〔65〕和少量的基因突變〔66〕,APC啟動子區(qū)域的甲基化達到27%~46%〔22〕,并與淋巴結(jié)轉(zhuǎn)移有相關(guān)性〔23〕。
細胞周期調(diào)控基因P16,在細胞增殖的調(diào)控中,p16 蛋白與細胞周期蛋白(cyclin D1)競爭與Cyclin D1依賴性激酶家族(CDK4/CDK6)的結(jié)合,發(fā)揮負性調(diào)節(jié)作用,在ESCC中甲基化頻率達到57.8%~81.6%〔67,68〕,并與腫瘤分化、分期和淋巴結(jié)轉(zhuǎn)移有關(guān)。上皮細胞鈣黏蛋白基因(CDH1),在ESCC中甲基化表達率達14%~61%,CDH1的缺失與腫瘤的侵襲、轉(zhuǎn)移和預后不良明顯相關(guān)〔69,70〕。抑癌基因(CNKN2A),在ESCC甲基化程度達到19%~88%〔26,71,72〕,其失活與腫瘤的侵襲、轉(zhuǎn)移密切相關(guān)。脆性組氨酸三聯(lián)體(FHIT),在ESCC甲基化程度達到14%~85%〔50,73,74〕,其表達缺失與吸煙有關(guān)〔37〕,F(xiàn)HIT的缺失與早期淋巴轉(zhuǎn)移和不良預后明顯相關(guān)。視黃酸受體-β(RARβ)參與腫瘤生長和誘導凋亡,在正常食管上皮細胞中有12%陽性表達,ESCC組織中約70%表達〔75〕早期ESCC中也達到67%甲基化〔50〕。Ras相關(guān)區(qū)域家族1(RASSF1) ,正常組織中RASSF1啟動子甲基化只有3%~4%,在ESCC組織中達13%~53%,與腫瘤分化程度相關(guān)〔76~78〕。Runt 相關(guān)轉(zhuǎn)錄因子3(RUNX3),參與TGF-β上皮細胞生長的負調(diào)控,其正常編碼產(chǎn)物RUNX蛋白與絲/蘇氨酸激酶受體(Smad)形成復合物,共同調(diào)節(jié)相關(guān)靶基因的轉(zhuǎn)錄,RUNX3表達缺失將導致Smad蛋白功能的限制TGF-β的生長抑制作用,進而促使腫瘤細胞擺脫〔52〕,ESCC 組織RUNX3 啟動子甲基化頻率為64.3%并與淋巴結(jié)轉(zhuǎn)移有相關(guān)性〔53〕。
2.3ESCC的外周血DNA甲基化 多年前已有研究表明腫瘤細胞在增殖的過程中可以釋放大量游離的 DNA 到外周血循環(huán),并富集于血清或血漿中,腫瘤患者血清中DNA可能來源于腫瘤DNA,其甲基化程度明顯高于正常人〔79,80〕,但甲基化比例卻低于ESCC腫瘤組織,近年研究通過分析ESCC 患者外周血游離DNA以及配對組織DNA 中多種抑癌基因啟動子的甲基化狀態(tài),發(fā)現(xiàn)外周血游離DNA 高甲基化是ESCC 特異性的早期診斷、預后評估的潛在分子標志物,為發(fā)展臨床診療新策略提供理論基礎(chǔ)。
目前大部分關(guān)于ESCC甲基化方面的研究都是基于特定基因,缺乏高通量、大樣本、高靈敏度的檢測,芯片技術(shù)的發(fā)展將這一瓶頸打破,克服了以往檢測手段操作復雜、成本高、效率低等缺點?;蛐酒膬?yōu)點:(1)基因芯片可一次性分析數(shù)萬個靶基因片段,通過對比可獲得數(shù)十個有表達差異的基因;(2)通過堿基互補原理,特異性結(jié)合,準確率高;(3)通過計算機讀取,自動化程度高,數(shù)據(jù)分析效率明顯提高?;驕y序后,通過比較分析不同個體之間的序列差異,可以發(fā)現(xiàn)功能基因,并可以解碼每個核酸的生物學意義,識別與疾病相關(guān)的基因,從而達到預防、診斷和治療的目的。
與其他不可逆轉(zhuǎn)的基因改變不同,DNA的甲基化是一個可逆的過程,這一機制可以作為分子治療腫瘤的潛在位點。由DNMT1、DNMT3a、DNMT3b 3種酶催化,假設(shè)DNMT酶蛋白表達被抑制,會造成沉默基因的激活,抑癌基因的增殖,促進細胞凋亡,增加細胞對化療藥物的敏感度,因此DNMT抑制劑是目前的研究熱點。但是到目前為止還沒有專門針對ESCC治療有效的藥物報導。一些天然成份(茶多酚)抑制DNMT1的活性部位,導致甲基化沉默基因的激活,從而達到抗癌目的〔81〕。這些自然元素可以和常規(guī)治療相結(jié)合,為ESCC的治療打開一個新的領(lǐng)域。
表觀遺傳學是生物學和腫瘤研究方面迅速擴張的領(lǐng)域,其在ESCC預防、診斷、治療方面具有巨大的潛力及深遠影響,同時基因組測序技術(shù)的發(fā)展推動了生物學各個領(lǐng)域的發(fā)展,尤其測序成本迅速降低,實現(xiàn)高通量的多基因位點DNA甲基化聯(lián)合檢測成為可能。ESCC的早期發(fā)現(xiàn)對癌癥患者的有效治療非常重要,許多ESCC患者臨床癥狀出現(xiàn)較晚,并且活體取樣檢測也存在一定的局限性,嚴重影響了癌癥的早期診斷和對病人有效的治療。雖然腫瘤的發(fā)生發(fā)展是一個復雜的過程,但通過芯片技術(shù)篩選出腫瘤早期發(fā)生甲基化改變的特異性位點是可能實現(xiàn)的,將外周血DNA甲基化測定和基因芯片檢測相結(jié)合,給早期ESCC診斷提供了新的手段,同時對抑制甲基化方法的不斷探索深入,對ESCC患者的診斷和治療效果將會有巨大的積極意義。
6 參考文獻
1Taby R, Issa JP. Cancer epigenetics〔J〕. CA Cancer J Clin,2010;60(6):376-92.
2Daniel FI, Cherubini K, Yurgel LS,etal. The role of epigenetic transcription repression and DNA methyltransferases in cancer〔J〕. Cancer,2011;117(4):677-87.
3Portela A, Esteller M. Epigenetic modifications and human disease〔J〕. Nat Biotechnol,2010;28(10):1057-68.
4Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches main stream oncology〔J〕. Nat Med,2011;17(3):330-9.
5Wang Z, Yao H, Lin S,etal. Transcriptional and epigenetic regulation of human micro RNAs〔J〕. Cancer Lett,2013;331(1):1-10.
6Lim LP, Lau NC, Garrett-Engele P,etal. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs〔J〕. Nature,2005;433(7027):769-73.
7Slotkin RK, Martienssen R.Transposable elements and the epigenetic regulation of the genome〔J〕.Nat Rev Genet,2007;8(4):272-85.
8Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution〔J〕.Nat Rev Genet,2009;10(10):691-703.
9Enzinger PC, Mayer RJ. Esophageal cancer〔J〕.N Engl J Med,2003;349(23):2241-52.
10Correa P. Precursors of gastric and esophageal cancer〔J〕.Cancer,1982;50(11):2554-65.
11Wong NC, Craig JM . Epigenetics:a reference manual〔M〕. Norfolk, England: Caister Academic Press,2011:ISBN 1-904455-88-3.
12Robertson KD, Wolffe AP .DNA methylation in health and disease〔J〕. Nat Rev Genet,2000;1(1):11-9.
13Laird PW. The power and the promise of DNA methylation markers〔J〕. Nat Rev Cancer,2003;3(4):253-66.
14Ehrlich M. DNA hypomethylation in cancer cells〔J〕. Epigenomics,2009;1(2):239-59.
15Eden A, Gaudet F, Waghmare A,etal. Chromosomal instability and tumors promoted by DNA hypomethylation〔J〕.Science,2003;300(5618):455.
16Cheng X, Blumenthal RM. Mammalian DNA methyltransferases:a structural perspective〔J〕.Structure,2008;16(3):341-50.
17Shen JC, Rideout WM 3rd, Jones PA. High frequency mutagenesis by a DNA methyltransferase〔J〕.Cell,1992;71(7):1073-80.
18Robertson KD. DNA methylation, methyltransferases, and cancer〔J〕. Oncogene,2001;20(24):3139-55.
19Jones PA, Laird PW. Cancer epigenetics comes of age〔J〕.NatGenet,1999;21(2):163-7.
20Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts〔J〕.Nature,1983;301(5895):89-92.
21Gaudet F, Hodgson JG, Eden A,etal. Induction of tumors in mice by genomic hypomethylation〔J〕. Science,2003;300(5618):489-92.
22Zare M, Jazii FR, Alivand MR,etal. Qualitative analysis of Adenomatous Polyposis Coli Promoter: hypermethylation, engagement and effects on survival of patients with esophageal cancer in a high risk region of the world, a potential molecular marker〔J〕. BMC Cancer,2009;9():24.
23Kim YT, Park JY, Jeon YK,etal.Aberrant promoter CpG island hypermethylation of the adenomatosis polyposis coli gene can serve as a good prognostic factor by affecting lymph node metastasis in squamous cell carcinoma of the esophagus〔J〕. Dis Esophagus,2009;22(2):143-50.
24Zhang X, Wei J, Zhou L,etal. A functional BRCA1 coding sequence genetic variant contributes to risk of esophageal squamous cell carcinoma〔J〕. Carcinogenesis,2013;34(10):2309-13.
25Ito T, Shimada Y, Hashimoto Y,etal. Involvement of TSLC1 in progression of esophagealsquamous cell carcinoma〔J〕. Cancer Res,2003;63(19):6320-6.
26Lee EJ, Lee BB, Han J,etal. CpGisland hypermethylation of E-cadherin (CDH1) and integrinalpha4 is associated with recurrence of early stage esophageal squamous cell carcinoma〔J〕. Int J Cancer,2008;123(9):2073-9.
27Guo M, House MG, Suzuki H,etal.Epigenetic silencing of CDX2 is a feature of squamous esophageal cancer〔J〕. Int J Cancer,2007;121(6):1219-26.
28Shibata Y, Haruki N, Kuwabara Y,etal. Chfr expression is downregulated by CpG island hypermethylation in esophageal cancer〔J〕. Carcinogenesis,2002;23(10):1695-9.
29Sung CO, Han SY, Kim SH. Low expression of claudin-4 is associated with poor prognosis in esophageal squamous cellcarcinoma〔J〕. Ann Surg Oncol,2011;18(1):273-81.
30Tanaka K, Imoto I, Inoue J,etal. Frequent methylation-associated silencing of a candidate tumor-suppressor, CRABP1, in esophageal squamous-cell carcinoma〔J〕.Oncogene,2007;26(44):6456-68.
31Anupam K, Tusharkant C, Gupta SD,etal. Loss of disabled-2 expression is an early event in esophageal squamous tumorigenesis〔J〕. World J Gastroenterol,2006;12(37):6041-5.
32鄭 吉,凌志強,李 波,等. 食管鱗癌患者血漿中DAPK基因異常甲基化及臨床意義研究〔J〕. 腫瘤學雜志,2013;19(5):346-51.
33Park HL, Kim MS, Yamashita K,etal. DCC promoter hypermethylation in esophageal squamous cell carcinoma〔J〕. Int J Cancer,2008;122(11):2498-502.
34Li LW, Li YY, Li XY,etal. A novel tumor suppressor gene ECRG4 interacts directly with TMPRSS11A (ECRG1) to inhibit cancer cell growth in esophageal carcinoma〔J〕. BMC Cancer,2011;11:52.
35Wong VC, Chan PL, Bernabeu C,etal.Identification of an invasion and tumor-suppressing gene,Endoglin (ENG), silenced by both epigenetic inactivation and allelic loss in esophageal squamous cell carcinoma〔J〕. Int J Cancer,2008;123(12):2816-23.
36Zhang C, Li K, Wei L,etal. P300 expression repression by hypermethylation associated with tumour invasion and metastasis in oesophageal squamous cell carcinoma〔J〕. J Clin Pathol,2007;60(11):1249-53.
37Lee EJ, Lee BB, Kim JW,etal.Aberrant methylation of fragile histidine triad gene is associated with poor prognosis in early stage esophageal squamous cell carcinoma. Eur J Cancer,2006;42(7):972-80.
38Kim MS, Yamashita K, Chae YK,etal. A promoter methylation pattern in theN-methyl-D-aspartate receptor 2B gene predicts poor prognosis in esophageal squamous cell carcinoma〔J〕. Clin Cancer Res,2007;13(22-1):6658-65.
39Zhang X, Lin A, Zhang JG,etal. Alteration of HLA-F and HLA I antigen expression in the tumor is associated with survival in patients with esophageal squamous cell carcinoma. Int J Cancer,2013;132(1):82-9.
40Yamashita K, Kim MS, Park HL,etal. HOP/OB1/NECC1 promoter DNA is frequently hypermethylated and involved in tumorigenic ability in esophageal squamous cell carcinoma〔J〕. Mol Cancer Res,2008;6(1):31-41.
41Chang X, Yamashita K, Sidransky D,etal. Promoter methylation of heat shock protein B2 in human esophageal squamous cell carcinoma〔J〕. Int J Oncol,2011;38(4):1129-35.
42Sonoda I, Imoto I, Inoue J,etal.Frequent silencing of low density lipoprotein receptor-related protein 1B (LRP1B) expression by genetic and epigenetic mechanisms in esophageal squamous cell carcinoma〔J〕. Cancer Res,2004;64(11):3741-7.
43Chan SH, Yee-Ko JM, Chan KW,etal. The ECM protein LTBP-2 is a suppressor of esophageal squamous cell carcinoma tumor formation but higher tumor expression associates with poor patient outcome〔J〕. Int J Cancer,2011;129(3):565-73.
44Wang J, Sasco AJ, Fu C,etal. Aberrant DNA methylation of P16, MGMT, and hMLH1 genes in combinationwith MTHFR C677T genetic polymorphism in esophageal squamous cell carcinoma〔J〕. Cancer Epidemiol Biomarkers Prev,2008;17(1):118-25.
45Smith E, Drew PA, Tian ZQ,etal. Metallothionein 3 expression is frequently down-regulated in oesophageal squamous cell carcinoma by DNA methylation〔J〕.Mol Cancer,2005;4(1):42.
46Xing EP, Nie Y, Song Y,etal. Mechanisms of inactivation of p14ARF, p15INK4b, and p16INK4a genes in human esophageal squamouscell carcinoma〔J〕. Clin Cancer Res,1999;5(10):2704-13.
47Haruki S, Imoto I, Kozaki K,etal. Frequent silencing of protocadherin 17, a candidate tumour suppressor for esophageal squamous cell carcinoma〔J〕.Carcinogenesis,2010;31(6):1027-36.
48Mandelker DL, Yamashita K, Tokumaru Y,etal. PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma〔J〕. Cancer Res,2005;65(11):4963-8.
49Wang JX, He YL, Zhu ST,etal. Aberrant methylation of the 3q25 tumor suppressor gene PTX3 in humanesophageal squamous cell carcinomai〔J〕. World J Gastroenterol,2011;17(37):4225-30.
50Kuroki T, Trapasso F, Yendamuri S,etal. Allele loss and promoter hypermethylation of VHL, RAR-beta, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma〔J〕.Cancer Res,2003;63(13):3724-8.
51Mizuiri H, Yoshida K, Toge T,etal. DNA methylation of genes linked to retinoid signaling in squamous cell carcinoma of the esophagus: DNA methylation of CRBP1 and TIG1 is associated with tumor stage〔J〕. Cancer Sci,2005;96(9):571-7.
52Chi Xz,Yang JD,Lee KY,etal.RUNX3 Yan suppresses gastric epithelial cell growth by inducing p21(WAFl/Cip1) expression in cooperation with trnansforming growth factor{beta}-activated SMAD〔J〕.Mol Cell Biol,2005;25(18):8097-107.
53Long C,Yin B,Lu Q,etal. Promoter hypermethylation of the RUNX3 gene in esophageal squamous cell carcinoma〔J〕. Cancer Invest,2007;25(8):685-90.
54Guo M, Ren J, Brock MV,etal. Promoter methylation of HIN-1 in the progression to esophageal squamous cancer〔J〕. Epigenetics,2008;3(6):336-41.
55Meng Y, Wang QG, Wang JX,etal.Epigenetic inactivation of the SFRP1 gene in esophageal squamous cell carcinoma〔J〕. Dig Dis Sci,2011;56(11):3195-203.
56Hussain S, Singh N, Salam I,etal. Methylation-mediated gene silencing of suppressor of cytokine signaling-1 (SOCS-1) gene in esophageal squamous cell carcinoma patients of Kashmir valley〔J〕. J Recept SignalTransduct Res,2011;31(2):147-56.
57Jin Z, Mori Y, Hamilton JP,etal.Hypermethylation of the somatostatin promoter is a common,early event in human esophageal carcinogenesis〔J〕. Cancer,2008;112(1):43-9.
58Jin Z, Olaru A, Yang J,etal. Hypermethylation of tachykinin-1 is a potential biomarker in human esophageal cancer〔J〕. Clin Cancer Res,2007;13(21):6293-300.
59Ninomiya I, Kawakami K, Fushida S,etal. Quantitative detection of TIMP-3 promoter hypermethylation and its prognostic significance in esophageal squamous cell carcinoma〔J〕. Oncol Rep,2008;20(6):1489-95.
60Zhao BJ, Tan SN, Cui Y,etal. Aberrant promotermethylation of the TPEF gene in esophageal squamous cell carcinoma〔J〕. Dis Esophagus,2008;21(7):582-8.
61Zhao BJ, Tan SN, Cui Y,etal. Aberrant promoter methylation of the TPEF gene in esophageal squamous cell carcinoma〔J〕. Dis Esophagus,2008;21(7):582-8.
62Ito T, Shimada Y, Hashimoto Y,etal. Involvement of TSLC1 in progression of esophageal squamous cell carcinoma〔J〕. Cancer Res,2003;63(19):6320-6.
63Nie Y, Liao J, Zhao X,etal. Detection of multiple gene hypermethylation in the development of esophageal squamous cell carcinoma〔J〕. Carcinogenesis,2002;23(10):1713-20.
64Iwagami S, Baba Y, Watanabe M,etal. LINE-1 hypomethylation is associated with apoor prognosis among patients with curatively resected esophageal squamous cell carcinoma〔J〕. Ann Surg,2013;257(3):440-55
65Boynton RF, Blount PL, Yin J,etal. Loss of heterozygosity involving the APC and MCC genetic loci occurs in the majority of human esophageal cancers〔J〕.Proc Natl Acad Sci USA,1992;89(8):3385-8.
66Powell SM, Papadopoulos N, Kinzler KW,etal. APC gene mutations in the mutation cluster region are rare in esophageal cancers〔J〕. Gastroenterology,1994;107(6):1759-63.
67肖志平,劉 冉,許 婧,等. DNA 修復酶基因MGMT 啟動子區(qū)異常甲基化與食管癌的關(guān)系〔J〕.癌變·畸變·突變, 2009;21(2):105-8.
68余煒偉, 王立東, 李醒亞. 食管鱗癌組織p16 基因調(diào)控區(qū)甲基化及其蛋白表達研究〔J〕. 山東醫(yī)藥, 2005;45(31):5-7.
69Sato F, Shimada Y, Watanabe G,etal. Expression of vascular endothelial growth factor, matrixmetalloproteinase-9 and E-cadherin in the process of lymph node metastasis in oesophageal cancer〔J〕. Br J Cancer,1999;80(9):1366-72.
70王長春,凌志強.食管鱗癌DNA甲基化的研究進展.國際腫瘤學雜志,2010;37(1):692-4.
71Mohammad Ganji S, Miotto E, Callegari E,etal. Associations of risk factors obesity and occupational airborne exposures with CDKN2A/p16 aberrant DNA methylation in esophageal cancer patients〔J〕. Dis Esophagus,2010;23(7):597-602.
72Taghavi N, Biramijamal F, Sotoudeh M,etal. p16INK4a hypermethylation and p53,p16 and MDM2 protein expression in esophageal squamous cell carcinoma〔J〕. BMC Cancer,2010;10():138.
73Tzao C, Sun GH, Tung HJ,etal.Reduced acetylated histone H4 is associated with promoter methylation of the fragile histidine triad gene in resected esophageal squamous cell carcinoma〔J〕. Ann Thorac Surg,2006;82(2):396-401.
74Guo XQ, Wang SJ, Zhang LW,etal.DNA methylation and loss of protein expression in esophageal squamous cell carcinogenesis of high-risk area〔J〕. J Exp Clin Cancer Res,2007;26(4):587-94.
75Wang Y, Fang MZ, Liao J,etal.Hypermethylation-associated inactivation of retinoic acid receptor beta in human esophageal squamous cell carcinoma〔J〕.Clin Cancer Res,2003;9(14):5257-63.
76Kuroki T, Trapasso F, Yendamuri S,etal. Promoter hypermethylation of RASSF1A inesophageal squamous cell carcinoma〔J〕. Clin Cancer Res,2003;9(4):1441-5.
77Yamaguchi S, Kato H, Miyazaki T,etal. RASSF1A gene promoter methylation in esophageal cancer specimens〔J〕. Dis Esophagus,2005;18(4):253-6.
78Mao WM, Li P, Zheng QQ,etal.Hypermethylation-modulated downregulation of RASSF1A expression is associated with the progression of esophageal cancer〔J〕. Arch Med Res,2011;42(3):182-8.
79Esteller M,Sanchez-Cespedes M,Rosell R,etal. Detection of aberrant promoter hyper methylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients〔J〕. Cancer Res,1999;59(1):67-70.
80Hoque MO,F(xiàn)eng Q,Toure P,etal. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer〔J〕.J ClinOncol, 2006;24(26):4262-9.
81Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components〔J〕.Curr Med Chem,2010;17(20):2141-51.