岳創(chuàng),楊民
(皖南醫(yī)學(xué)院弋磯山醫(yī)院創(chuàng)傷骨科,蕪湖241000)
腰椎間盤退行性病變是導(dǎo)致的腰腿痛主要原因之一。在多種因素作用下可導(dǎo)致椎間盤突出、椎管狹窄、退行性脊柱側(cè)彎、脊柱失穩(wěn)等。而髓核細(xì)胞的數(shù)量和功能又與椎間盤退變密切相關(guān)[1-2]。以往認(rèn)為椎間盤退變是一種形態(tài)學(xué)的改變,表現(xiàn)為局部生物力學(xué)失穩(wěn)現(xiàn)象,近年來研究表明,髓核內(nèi)細(xì)胞數(shù)量的丟失可引起椎間盤退變。研究發(fā)現(xiàn)細(xì)胞凋亡是退變椎間盤組織細(xì)胞數(shù)量下降的重要原因[3]。為此將細(xì)胞凋亡在腰椎退變中扮演著重要的角色作一綜述。
腰椎間盤退變是一個(gè)多因素參與的綜合疾病,又是多種機(jī)制協(xié)同作用的結(jié)果。椎間盤內(nèi)細(xì)胞數(shù)量和細(xì)胞外基質(zhì)的減少是退變性椎間盤的主要因素,椎間盤退變過程中營(yíng)養(yǎng)供應(yīng)減少、基質(zhì)蛋白酶活性改變、一氧化氮與細(xì)胞因子、細(xì)胞凋亡失衡、生物力學(xué)、自身免疫反應(yīng)等因素和機(jī)制協(xié)同作用。有研究表明人類椎間盤組織在20歲后逐漸退變,而衰老、遺傳、心理、肥胖、脊柱過度軸向負(fù)荷等多種因素都可以加快椎間盤退變[4]。椎間盤退變的主要組織形態(tài)改變表現(xiàn)為髓核細(xì)胞壞死、變性,細(xì)胞外基質(zhì)的合成減少[5],逐漸引起椎間盤基質(zhì)蛋白多糖及水分的丟失和膠原構(gòu)成的改變。增生的纖維結(jié)締組織把髓核組織所取代,纖維環(huán)韌性的改變、破裂,軟骨終板鈣化。Haefeli等[6]發(fā)現(xiàn),認(rèn)為在退變開始階段為髓核組織纖維化,逐漸形成纖維環(huán)裂縫,椎間盤退變始于髓核。腰椎間盤退變的病理表現(xiàn)為髓核和纖維環(huán)界線模糊,可見細(xì)胞叢的聚集[7]和死亡;軟骨終板的解體裂縫、變薄、軟骨下骨微骨折和骨鈣化;纖維環(huán)破裂的數(shù)量和程度增加,肉芽組織和神經(jīng)血管從纖維環(huán)外層向內(nèi)侵入[8]。有研究表明細(xì)胞簇的形成是椎間盤退變的標(biāo)志,細(xì)胞簇是由增殖和凋亡的細(xì)胞組成[9]。
細(xì)胞凋亡是由指維持內(nèi)環(huán)境的穩(wěn)定,由基因控制的細(xì)胞自主有序的死亡。越來越多的研究表明細(xì)胞凋亡在椎間盤的退變中起重要作用。至今為止,有關(guān)凋亡的途徑,目前研究較多的是死亡受體途徑、線粒體途徑、內(nèi)質(zhì)網(wǎng)信號(hào)途徑。Wang等[10]報(bào)道,椎間盤退變的不同階段,細(xì)胞凋亡的途徑也有所不同。內(nèi)質(zhì)網(wǎng)信號(hào)途徑在椎間盤輕度退變階段較重要,死亡受體途徑在中度退變階段較重要,線粒體途徑在中、重度退變階段較重要。目前發(fā)現(xiàn)細(xì)胞表面死亡受體途徑是椎間盤細(xì)胞凋亡的主要途徑之一。FasL是Fas在體內(nèi)的天然配體,F(xiàn)as/FasL是一對(duì)凋亡因子,能夠誘導(dǎo)多種細(xì)胞凋亡。Fas/FasL系統(tǒng)是椎間盤細(xì)胞凋亡的主要途徑目前已經(jīng)得到證實(shí)[11-12],在退變椎間盤中Fas/FasL、TNF-a/TNFR1介導(dǎo)的細(xì)胞凋亡途徑的研究較多,而對(duì)于 TRAIL及其受體TRAIL-R的研究多集中在腫瘤領(lǐng)域,對(duì)椎間盤方面的研究比較少。椎間盤細(xì)胞凋亡在超負(fù)荷機(jī)壓力作用下可引起間盤退變中細(xì)胞可通過線粒體途徑凋亡[13],Rannou 等[14]報(bào)道應(yīng)用 1.3Mpa 拉伸力誘導(dǎo)兔髓核細(xì)胞凋亡,發(fā)現(xiàn)細(xì)胞中的caspase-9活性明顯增高,但加入caspase-9抑制劑后可以降低細(xì)胞凋亡效應(yīng),椎間盤細(xì)胞凋亡是通過線粒體途經(jīng)介導(dǎo)的。但在Li等[15]的研究中認(rèn)為死亡受體途徑和線粒體途徑都參與了髓核凋亡、而且可以相互交叉??梢哉J(rèn)為同樣一種細(xì)胞存在多種細(xì)胞凋亡途徑參與,細(xì)胞結(jié)構(gòu)功能的改變會(huì)影響到凋亡信號(hào)傳導(dǎo)途徑不同。
椎間盤細(xì)胞的大量凋亡直接影響細(xì)胞密度降低,細(xì)胞數(shù)量的減少,從而使基質(zhì)的生成量減少。打破了椎間盤基質(zhì)破壞與合成的動(dòng)態(tài)平衡,最后導(dǎo)致椎間盤的退變。推斷椎間盤細(xì)胞的過度凋亡可能是椎間盤退變的重要機(jī)制之一。
3.1 椎間盤細(xì)胞凋亡的始動(dòng)因素 近年研究認(rèn)為,椎間盤承受的異常機(jī)械負(fù)荷是椎間盤細(xì)胞凋亡的重要的始動(dòng)因素。椎間盤的正常的生物力學(xué)功能是維持椎間隙高度,對(duì)抗相鄰兩椎體的扭轉(zhuǎn)力與壓縮力活動(dòng)限制在一個(gè)無痛的范圍。生物力學(xué)性能保持脊柱的靈活性和機(jī)械穩(wěn)定性[16]。而異常的機(jī)械應(yīng)力會(huì)直接造成椎間盤的結(jié)構(gòu)和功能的破壞。在過度的機(jī)械負(fù)荷下可影響到椎間盤細(xì)胞代謝,及細(xì)胞凋亡率的增加,最終促使椎間盤退變。Sauerland等[17]認(rèn)為椎間盤的代謝依賴于間斷性的應(yīng)力負(fù)荷,而且與應(yīng)力負(fù)荷的強(qiáng)度和頻率相關(guān)。Cornelis[18]以成年公山羊腰椎間盤組織體外培養(yǎng)3周,分別在無負(fù)荷、低負(fù)荷、生理負(fù)荷力學(xué)條件下分組觀察,結(jié)果顯示,無負(fù)荷及低負(fù)荷條件下培養(yǎng)的椎間盤組織細(xì)胞在細(xì)胞活性、細(xì)胞密度、細(xì)胞基因表達(dá)上出現(xiàn)退化。
3.2 椎間盤細(xì)胞凋亡誘導(dǎo)因素 椎間盤細(xì)胞凋亡是由許多復(fù)雜和相互依賴的因素,其中誘導(dǎo)因素包括機(jī)體的老化,椎間盤微環(huán)境的變化,高血糖[19],尼古丁[20],炎性細(xì)胞因子[21]等。
3.2.1 老齡化因素 腰椎間盤是由纖維環(huán)、軟骨終板、髓核組成。隨著年齡的增加,纖維環(huán)逐漸透明變性,最后導(dǎo)致破裂;軟骨終板的毛細(xì)血管漸漸萎縮,軟骨終板變薄滲透性增加,營(yíng)養(yǎng)供應(yīng)減少,最終導(dǎo)致椎間盤退變;髓核組織的水分逐漸減少,基質(zhì)的合成減少,膠原含量的增加,Ⅱ型膠原向Ⅰ型膠原的轉(zhuǎn)化,逐漸干燥,成顆粒樣改變,最后轉(zhuǎn)變成纖維軟骨變性[22]。隨著年齡的增加,在椎間盤中脊索細(xì)胞減少或消失,有研究表明脊索細(xì)胞是成熟髓核細(xì)胞的前體細(xì)胞,脊索細(xì)胞可以促進(jìn)軟骨樣細(xì)胞基質(zhì)合成[23],維持椎間盤的穩(wěn)態(tài)及抑制軟骨樣細(xì)胞的凋亡[24]。由此可見,年齡的增加是腰椎間盤的進(jìn)行性退變的關(guān)鍵因素之一。
3.2.2 營(yíng)養(yǎng)代謝因素 椎間盤是人體中無血管組織,而椎間盤的退變與營(yíng)養(yǎng)的供應(yīng)有著密切的聯(lián)系。其主要的營(yíng)養(yǎng)通路為終板途徑和纖維環(huán)途徑。軟骨終板與纖維環(huán)形成了一個(gè)屏障,髓核細(xì)胞營(yíng)養(yǎng)物質(zhì)的吸收是通過軟骨終板的滲透[25]。腰椎退變可引起軟骨終板血管的分布減少,管腔變窄,引起椎間盤內(nèi)營(yíng)養(yǎng)的減少及代謝產(chǎn)物的淤積,使椎間盤內(nèi)的氧分壓、pH值、滲透壓等因子變異常[26]。在微環(huán)境中營(yíng)養(yǎng)的減少可誘發(fā)軟骨終板細(xì)胞凋亡增加,加速腰椎間盤的退變[27]。Magnier等[28]報(bào)道椎間盤營(yíng)養(yǎng)供應(yīng)減少是導(dǎo)致椎間盤退變的始動(dòng)因素。軟骨終板是椎間盤的組成部分,在髓核組織的營(yíng)養(yǎng)供應(yīng)和應(yīng)力的緩沖起著重要的作用,軟骨終板鈣化造成椎間盤血液供給減少,細(xì)胞代謝從有氧變成無氧代謝,可引起代謝產(chǎn)物滯留,細(xì)胞凋亡增加,細(xì)胞數(shù)量逐漸減少,演化成一系列的病理生理改變,最終導(dǎo)致椎間盤退變。近年來,越來越多的研究證實(shí),軟骨終板細(xì)胞凋亡在椎間盤退變中起到重要的作用。
3.2.3 分子生物學(xué)因素 近年來隨著科學(xué)的進(jìn)步,分子生物學(xué)的發(fā)展,為進(jìn)一步研究椎間盤的退變提供了很好的條件。經(jīng)研究發(fā)現(xiàn)有加速椎間盤退變的細(xì)胞因子如腫瘤壞死因子(TNF-α)、白細(xì)胞介素-1、白細(xì)胞介素-6、基質(zhì)金屬蛋白酶(MMPs)等。Roberts等[29]通過研究報(bào)道有多種細(xì)胞因子在椎間盤退變中起著重要的作用。有促進(jìn)細(xì)胞合成,抑制細(xì)胞凋亡的細(xì)胞因子如轉(zhuǎn)化生長(zhǎng)因子(TGF-β);缺氧誘導(dǎo)因子(HIFs)和血管內(nèi)皮生長(zhǎng)因子(VEGF);胰島素樣生長(zhǎng)因子(IGF);骨形態(tài)發(fā)生蛋白(BMP)等。在椎間盤細(xì)胞凋亡啟動(dòng)后,各種生長(zhǎng)因子和細(xì)胞因子在椎間盤細(xì)胞凋亡過程中也發(fā)揮著重要作用[30]。有害的細(xì)胞因子通過炎性的應(yīng)答,增加基質(zhì)金屬蛋白酶的合成,加速基質(zhì)降解,誘導(dǎo)髓核細(xì)胞的凋亡。在椎間盤退變中髓核細(xì)胞白介素-1的表達(dá)增高,通過基質(zhì)金屬蛋白酶途徑,造成椎間盤基質(zhì)的降解[31]。腫瘤壞死因子可以增加基質(zhì)金屬蛋白酶的活性度,能刺激激活炎性細(xì)胞因子,降解基質(zhì)中的糖蛋白和膠原[32]。Wei[33]報(bào)道 TNF-α 可以明顯誘導(dǎo)髓核細(xì)胞的凋亡,證明與椎間盤退變有著密切的關(guān)聯(lián)?;|(zhì)金屬蛋白酶主要作用是對(duì)椎間盤的外基質(zhì)的降解作用,造成髓核的水分的丟失,導(dǎo)致椎間盤功能的喪失,加速椎間盤的退變。有實(shí)驗(yàn)報(bào)道MMP-11與軟骨細(xì)胞凋亡呈正相關(guān),提示MMP-11可以促使椎間盤細(xì)胞密度降低,誘導(dǎo)細(xì)胞凋亡[34]。目前研究表明基質(zhì)金屬蛋白酶的表達(dá)與調(diào)節(jié)收到多種因素的影響。
3.2.4 一氧化氮 NO是一種炎性介質(zhì),是由一氧化氮合成酶(NOS)催化左旋精氨酸氧化產(chǎn)生。具有增加血管擴(kuò)張,制細(xì)胞的增殖,誘導(dǎo)細(xì)胞凋亡。NO在軟骨終板中可以減少軟骨終板的合成,在炎性因子的參與下,誘導(dǎo)軟骨終板的凋亡[35]。NO能夠抑制椎間盤外基質(zhì)的合成,造成椎間盤內(nèi)細(xì)胞數(shù)目的減少,加速椎間盤的退變。Denda等[36]發(fā)現(xiàn)NO在頸椎與腰椎退行性病變中起到重要的作用。
此外,已經(jīng)報(bào)道脊椎外傷椎體骨折,軟骨終板的破裂可誘導(dǎo)的髓核細(xì)胞凋亡[37]。但是目前影響椎間盤細(xì)胞凋亡的機(jī)制,仍不完全清楚。
人們通過細(xì)胞凋亡的干預(yù),影響細(xì)胞凋亡的過程,可以減緩腰椎間盤的退變[38]。Caspase家族在細(xì)胞凋亡起到重要的作用,Park等[39]研究Caspase抑制劑來抑制椎間盤細(xì)胞凋亡。近年來隨著生物治療發(fā)展,在動(dòng)物體內(nèi)做了大量的實(shí)驗(yàn),研究發(fā)現(xiàn)在動(dòng)物的椎間盤中內(nèi)打入各種生長(zhǎng)因子可以減緩椎間盤的退變[40],Zeng 等[41]發(fā)現(xiàn)在動(dòng)物實(shí)驗(yàn)中,缺氧誘導(dǎo)因子可能具有抑制髓核細(xì)胞凋亡的作用。利用組織工程的方法和干細(xì)胞來延緩椎間盤退變[42]。
[1] Kalichman L,Hunter DJ.The genetics of intervertebral discdegeneration.Associated genes[J].JointBone Spine,2008,75(4):388-396.
[2] Yang SH,Wu CC,Shih TT,et al.In vitro study on interaction between human nucleus pulposus cells and mesenchymal stem cells through paracrine stimulation[J].Spine,2008,33(18):1951-1957.
[3] Lotz JC,Chin JR.Intervertebral disc cell death is dependent on thmagnitude and duration of spinal loading[J].Spine,2000,25(12):1477-1483.
[4] Guo T M,Liu M,Zhang Y G,et al.Association between caspase-9 promoter region polymorphisms and discogenic low back pain[J].Connect Tissue Res,2011,52(2):133-138.
[5] Anderson DG,Tannoury C.Molecular pathogenic factors in symptomatic disc degeneration[J].Spine J,2005,5(6 Suppl):260-266.
[6] Haefeli M,Kalberer F,Saegesser D,et al.The course of macroscopic degeneration in the human lumbar in-tervertebral disc[J].Spine,2006,31(14):1522-1531.
[7] Gruber HE,Ingram JA,Davis DE,et al.Increased cell senescence is associated with decreased cell proliferation in vivo in the degenerating human annulus[J].Spine J,2009,9(3):210-215.
[8] Grunhagen T,Wilde G,Soukane DM,et al.Nutrient supply andintervertebral disc metabolism[J].J Bone Joint Surg Am.2006,88(Suppl 2):30-35.
[9] Stephan S,Johnson WE,Roberts S.The influence of nutrient supply and cell density on the growth and survival of interverte-bral disc cells in 3D culture[J].Eur Cell Mater,2011,22:97-108.
[10] WANG H,LIU H,ZHENG Z M,et al.Role of death receptor,mitochondrial and endoplasmic reticulum pathways in differ-ent stages of degenerative human lumbar disc[J].Apoptosis,2011,16(10):990-1003.
[11] Cui LY,Liu SL,Ding Y,et a1.IL-1beta sensitizes rat interverte-bral disc cells to Fas ligand mediated apoptosis in vitro[J].ActaPharmacol Sin,2007,28(10):1671-1676.
[12] Wang J,Tang T,Yang H,et a1.The expression of fas ligand on normal and stabbed-disc cells in a rabbit model of intervertebral disc degeneration:a possible pathogenesis[J].J Neurosurg Spine,2007,6(5):425-430.
[13] Ding F,Shao ZW,Yang SH,et a1.Role of mitochondrial pathway in compression-induced apoptosis of nucleus pulposus cells[J].Apoptosis,2012,17(6):579-590.
[14] Rannou F,Lee TS,Zhou RH,et al.Intervertebral disc degeneration:the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload[J].Am J Pathol,2004,164(3):915-924.
[15] Li R,Yang L,Lindholm K,et al.Tumor necrosis factor death receptor signaling cascade is required for amyloidbeta protein-induced neuron death[J].J Neurosci,2004,24(7):1760-1771.
[16] Lam SK,Chan SC,Leung VY,et al.The role of cryopreservation in the biomechanical prop-erties of the intervertebral disc[J].Eur Cell Mater,2011,22:393-402.
[17] Sauerland K,Raiss RX,Steinmeyer J.Proteoglycan metabolism and vi-ability of articular cartilage explants as modulated by the frequency of intermittent loading osteoarthritis cartilage[J].Osteoarthritis Catilage,2003,11(5):343-350.
[18] Paul CP,Zuiderbaan HA,Zandieh doulabi B,et al.Simulated-physio-logical loading conditions preserve biological and mechanical properties of caprine lumbarintervertebral discs in ex vivo culture[J].PLoS One,2012,7(3):e33147.
[19] Won HY,Park JB,Park EY,et al.Effect of hyper-glycemia on apoptosis of notochordal cells and intervertebral disc degeneration in diabetic rats[J].J Neurosurg Spine,2009,11(6):741-748.
[20] Akmal M,Kesani A,Anand B,et al.Effect of nicotine on spinal disc cells:a cellular mechanism for disc degeneration[J].Spine,2004,29(5):568-575.
[21] Le maitre CL,Pockert A,Buttle DJ,et al.Matrix synthesis and degradation in human intervertebral disc degen-eration[J].Biochem Soc Trans,2007,35(Pt 4):652-655.
[22] Haefeli M,Kalberer F,Saegesser D,et al.The course of macroscopic degeneration in the human lumbar intervertebral disc[J].Spine,2009,6,31(14):1522-1531.
[23] Erwin WM.The Notochord,Notochordal cell and CTGF/CCN-2:ongoing activity from development through maturation[J].J Cell Commun Signal,2008,2(3/4):59-65.
[24] Erwin WM,Islam D,Inman RD,et al.Notochordal cells protect nucleus pulposus cells from degradation and apoptosis:implica-tions for the mechanisms of intervertebral disc degeneration[J].Arthritis Res Ther,2011,13(6):R215.
[25] Grunhagen T,Shirazi-Adl A,F(xiàn)airbank JC,et al.Intervertebral disk nutrition:a review of factors influencing concentrations of nutrients and metabolites[J].Orthop Clin North Am,2011,42(4):465-477.
[26] JacksonAR,HuangCY,GuWY.Effect of endplate calcification and mechanical deformation on the distribution of glucose in inter-vertebral disc:a3Dfiniteelement study[J].Comput Methods Biomech Biomed Engin,2011,14(2):195.
[27] Mousa SA,ShaquraM,Brendl U,et al.Involvement of theperiph-eral sensory and sympathetic nervous system in the vascular en-dothelial expression of ICAM-1 and the recruitment of opioid-con-taining immune cells to inhibit inflammatory pain[J].BrainBehav Immun,2010,24(8):1310.
[28] Magnier C,Boiron O.Nut rient distribution and met abolism in the intervertebral disc in the unloaded st at e:a paramet ricstudy[J].J Biomech,2009,42(2):100-108.
[29] Roberts S,Evans H,Trivedi J,et a.l Histology and pathology of the human intervertebral disc[J].Bone Joint Surg Am,2006,88(12):10-14.
[30] Studer PK,Vo N,Sowa G,et al.Human nucleus pulposus cells react to IL-6:independent actions and amplification of response to IL-1 and TNF-α[J].Spine 2011,36(8):593-599.
[31] Ie Maitre CL,F(xiàn)reemont AJ,Hoyland JA.The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration[J].Arthritis Res Ther,2005,7(4):732-745.
[32] Seguin CA,Pilliar RM,Roughley PJ,et al.Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue[J].Spine,2005,30(17):1940-1948.
[33] Wei A,Brisby H,Chung SA,et al.Chung,Bone morphogenetic protein-7 protects human intervertebral disc cells in vitro from apoptosis[J].Spine J,2008,8(3):466-474.
[34]郭團(tuán)茂,劉淼,張銀剛,等.人頸椎間盤退變與細(xì)胞凋亡及基質(zhì)金屬蛋白酶11的表達(dá)[J].中國(guó)組織工程研究與臨床康復(fù),2011,15(37):6937-6941.
[35] Kohyama K,Saura R,Doita M,et al.Intervertebral disc cell apoptosis by nitric oxide:biological understanding of intervertebral disc degener-ation[J].Kobe J Med Sci,2000,46(6):283-295.
[36] Denda H,Kimura S,Yamazaki A,et al.Clinical significance of cerebrospinal fluid nitric oxide concentrations in degenerative cervical and lumbar diseases[J].Eur Spine J,2011,20(4):604-611.
[37] Haschtmann D,Stoyanov JV,Ge'det P,et al.Vertebral endplate trauma induces disc cell apoptosis and promotes organ degeneration in vitro[J].Eur Spine J,2008,17(2):289-299.
[38] Gruber HE,Norton HJ,Hanley EN Jr.Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro[J].Spine,2000,25(17):2153-2157.
[39] Park JB,Lee JK,Park SJ,et al.Mitochondrial involvement in fas-mediated apoptosis of human lumbar disc cells[J].J Bone Joint Surg Am,2005,87(6):1338-1342.
[40] Henriksson HB,Svanvik T,Jonsson M,et al.Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model[J].Spine,2009,34(2):141-148.
[41] Zeng Y,Danielson KG,Albert TJ,et al.HIF-1 alpha is a regulator of galectin-3 expression in the intervertebral disc[J].J Bone Miner Res,2007,22(12):1851-1861.
[42] Sakai D.Stem cell regeneration of the intervertebral disk[J].Orthop Clin North Am,2011,42(4):555-562.