袁 華,何云蔚,艾常春
1.武漢工程大學(xué)化學(xué)與環(huán)境工程學(xué)院,湖北 武漢 430074;2.武漢工程大學(xué)化工與制藥學(xué)院,湖北 武漢 430074
鋰離子電池由于具有安全、使用壽命高、便捷可攜帶的特點(diǎn)使其作為一種便攜式新興能源在眾多電子產(chǎn)品領(lǐng)域得到了廣泛的應(yīng)用.在鋰離子電池中,電極材料、電解質(zhì)、隔膜以及其他輔助材料的研究一直是國內(nèi)外新能源領(lǐng)域和材料學(xué)領(lǐng)域的研究熱點(diǎn),材料科學(xué)、電化學(xué)及制造環(huán)節(jié)的突破將實(shí)現(xiàn)鋰離子電池的更廣泛應(yīng)用.在已商品化鋰離子電池中,碳材料由于具有低倍率性能好和循環(huán)性能好的特點(diǎn),是最早使用也是應(yīng)用最多的負(fù)極材料,但碳材料的理論容量低(372 mAh/g),由于低電壓下易形成枝晶造成電池內(nèi)部短路,從而使其大電流充放電的安全性變差[1-3],因此碳材料難以應(yīng)用于動力電池等更大功率電器領(lǐng)域.金屬氧化物作鋰離子負(fù)極材料雖然充放電電壓略有提高,具有可逆容量高的特點(diǎn),但由于充放電機(jī)理的復(fù)雜使得不可逆容量損失大,體積變化率較大,因此循環(huán)性能較差,很難實(shí)現(xiàn)商品化應(yīng)用.氮化物作為鋰離子負(fù)極材料,具有可逆容量高,循環(huán)性能好的特點(diǎn),但是制備工藝復(fù)雜,生產(chǎn)成本高[4-5],不利于大量的生產(chǎn)利用.具有尖晶石結(jié)構(gòu)的鈦酸鋰作為負(fù)極材料,不僅提高了充放電電壓,而且在嵌脫鋰過程中形成的兩種物相晶格參數(shù)相近,體積效應(yīng)小,被稱作零應(yīng)變材料,故其安全性、循環(huán)性能及倍率性能都比碳負(fù)極材料要好,能用于大電流快速充放電.制作鈦酸鋰的材料來源廣泛,資源豐富,且對環(huán)境友好.鈦酸鋰的諸多特點(diǎn),使得鈦酸鋰成為一種極富前景的負(fù)極材料.
鈦酸鋰是一種復(fù)合氧化物,由過渡金屬鈦和低電位金屬鋰組成,屬于AB2X4系,是固溶體 Li1+xTi2-xO4(0≤x≤1/3)體系中的一員,其晶體結(jié)構(gòu)為尖晶石型,空間點(diǎn)陣群為Fd3m,晶胞參數(shù)a為0.836 nm,具有鋰離子三維擴(kuò)散通道.Li4Ti5O12晶胞中,O2-位于32e位,占總數(shù)3/4的Li+位于8a的四面體間隙中,剩余的1/4的Li+和所有的Ti4+位于八面體的間隙中[6-7],其結(jié)構(gòu)式可寫為[Li]8a[Li1/3Ti5/3]16d[O4]32e.
嵌入Li時,嵌入的Li和8a位的Li移到16c位,形成藍(lán)色的[Li2]16c[Li1/3Ti5/3]16d[O4]32e,嵌鋰的反應(yīng)可寫為:
[Li]8a[Li1/3Ti5/3]16d[O4]32e+ Li++ e= [Li2]16c[Li1/3Ti5/3]16d[O4]32e
Li4Ti5O12的理論容量為172 mAh/g,實(shí)際容量在150~160 mAh/g[8-10],Li4Ti5O12相對金屬鋰的電位為1.55 V.
鈦酸鋰的制備方法有很多,經(jīng)典方法有高溫固相法、水熱法、溶膠-凝膠法,新的制備手段有靜電紡絲技術(shù),流變相反應(yīng)制備法[11]等.
Han等[12]以Li2CO3和TiO2為原料,通過0.30 mm的ZrO2高能球磨混合制得Li4Ti5O12.Chao Lai等[13]以TiOSO4·xH2O作為鈦源,以LiOH·H2O作為鋰源,使用球磨混合4 h,然后在高溫爐中500 ℃煅燒2.5 h制得多孔Li4Ti5O12, 在高電流密度10.0 C充放電時放電比容量為174.5 mAh/g,循環(huán)50圈以后放電比容量為143.4 mAh/g.在傳統(tǒng)的高溫固相法中,原料的混合都選用球磨的方式,在固相反應(yīng)階段可以采用多種方法獲得能量[14],如高速球磨產(chǎn)生熱量、微波、等離子體束以及傳統(tǒng)的煅燒,廣泛產(chǎn)業(yè)化的方法還是煅燒方法.
水熱法制備鈦酸理,是將鈦源和鋰源在合適的溶劑中混合,經(jīng)水熱反應(yīng)得前驅(qū)體,最后高溫煅燒得鈦酸鋰[15-17].Zhang等[18]將Ti(OC4H9)4溶于乙醇,逐滴加入2 mol/L LiOH,得到懸濁液在180 ℃保存24 h得到的前驅(qū)體,再將其在500 ℃煅燒10 h制得Li4Ti5O12. 0.1 C充放電時首圈比容量為172.5 mAh/g,循環(huán)50圈后比容量為160 mAh/g,在0.5、1、10 C首圈充放電時的比容量分別為157.6、152.7、82.2 mAh/g.
溶膠凝膠法是原料在液相中混合,發(fā)生水解、縮合化學(xué)反應(yīng),在溶液中形成穩(wěn)定的溶膠經(jīng)陳化得到凝膠,再將凝膠干燥燒結(jié)得到材料[19-20].Zhang等[21]使用改進(jìn)的溶膠凝膠法制備鈦酸鋰,EDTA和檸檬酸作螯合劑,制備出的納米級Li4Ti5O12比容量高,且倍率性能和循環(huán)性能優(yōu)異.在1 C和10 C倍率下首次放電容量為164 mAh/g和104 mAh/g. 1C充放電時,在25 ℃時循環(huán)1 000次后,容量保持率高達(dá)97%.
靜電紡絲技術(shù)是Formhals在1934年提出的,至今已應(yīng)用于許多的領(lǐng)域[22].靜電紡絲技術(shù)也能用于Li4Ti5O12材料的制備,陸海緯等[23]利用這種技術(shù)制備出鋰鹽和鈦鹽的PVP納米絲,750 ℃退火得到Li4Ti5O12納米絲三維電極. 4.5 C時首次放電容量為167.4 mAh/g,接近于0.9 C. 5次循環(huán)以后,4.5 C下的容量為138.1 mAh/g,0.9 C下為134.1 mAh/g,10次循環(huán)以后4.5 C下為114.4 mAh/g,0.9 C下為125.2 mAh/g.
在制備鈦酸鋰的方法中,水熱法和溶膠凝膠法能夠制備出形貌規(guī)整,粒度分布均勻的Li4Ti5O12材料[24](如球形納米材料),并且具有優(yōu)異的電化學(xué)性能,但這些方法對設(shè)備要求高,而且產(chǎn)品批次不穩(wěn)定,因此大規(guī)模工業(yè)化還存在一定困難.高溫固相法得到的材料形貌不如水熱法和溶膠凝膠法規(guī)整,電化學(xué)性能還有待進(jìn)一步提高.靜電紡絲技術(shù)能夠得到空間結(jié)構(gòu)較好的材料且性能優(yōu)異,有待開發(fā)其產(chǎn)業(yè)化應(yīng)用技術(shù).
純相的鈦酸鋰,低的Li+擴(kuò)散系數(shù)和低電導(dǎo)率(10-10S/cm)導(dǎo)致在大電流快速充放電時容量衰減很快,所以其改性顯得非常必要.鈦酸鋰的改性方式有納米化、形貌控制、碳包覆、金屬摻雜以及氮化處理等.
材料顆粒的納米化一方面可以增加電極和電解質(zhì)之間的接觸面積從而提高負(fù)極材料的導(dǎo)電率,另一方面可以縮短Li+的外界擴(kuò)散路徑,增加擴(kuò)散速率,從而整體上提升材料的電化學(xué)性能. Jiang等[25]合成的Li4Ti5O12納米粒子,0.035 A/g下的放電容量為149 mAh/g,1 A/g和3 A/g放電比容量為0.035 A/g下的80%和57%,即使在更高倍率下也有較高的容量保持率.Huang等[26]使用微乳法制備出空心結(jié)構(gòu)的Li4Ti5O12,該空心結(jié)構(gòu)的壁是由許多100 nm的Li4Ti5O12納米粒子構(gòu)建的.該材料在高倍率20 C充放電時的比容量達(dá)到95 mAh/g.在2 C下其比容量為140 mAh/g,循環(huán)500次后的比容量為135 mAh/g,每圈容量損失率僅為0.01%.將Li4Ti5O12納米粒子構(gòu)建成穩(wěn)固的空心球結(jié)構(gòu),不僅可以使樣品在高倍率下有較好的容量表現(xiàn),而且還兼具優(yōu)異的循環(huán)性能,這與空心球結(jié)構(gòu)帶來的穩(wěn)定性有較大關(guān)系.
Lin等[27]引入酸化碳黑合成了一種介孔Li4Ti5O12材料,圖1為該研究得到的介孔Li4Ti5O12(a) 材料和無孔Li4Ti5O12(b) 材料的SEM圖像.圖中構(gòu)建球形材料的一次粒子均為納米級別,不同的是圖1a中的材料存在分布均勻的孔,Li+在材料中界面間的擴(kuò)散容易得多,而無孔的材料中Li+的運(yùn)輸主要是固體的體相內(nèi)擴(kuò)散,其速率要慢得多,因此在高倍率充放電時很難在實(shí)現(xiàn)Li+的快速嵌脫,不能維持穩(wěn)定的容量.介孔結(jié)構(gòu)的Li4Ti5O12材料在30 C下的比容量為80 mAh/g,達(dá)到了0.5 C時的57%.無孔Li4Ti5O12材料的30 C時的比容量僅為20 mAh/g.對于具有介孔結(jié)構(gòu)的材料在高倍率下表現(xiàn)出優(yōu)異的電化學(xué)性能[28],但如何保持其結(jié)構(gòu)的穩(wěn)定是亟待解決的問題.
圖1 介孔Li4Ti5O12材料(a)和無孔Li4Ti5O12材料(b)的圖像[26]Fig.1 The SEM images of mesoporous(a) and non-porous lithium titanate spheres(b)
控制鈦酸鋰的形貌,將材料納米化可以提高離子導(dǎo)電率和電子導(dǎo)電率,但是在循環(huán)過程中納米顆粒極易團(tuán)聚,對循環(huán)穩(wěn)定性帶來消極影響,因此如何獲得相對穩(wěn)定的球形納米材料以及如何去固化這種結(jié)構(gòu)是顆粒納米化方向的研究重點(diǎn).
碳包覆改性方法是基于物理阻隔納米粒子的團(tuán)聚以及提高顆粒材料的表面電導(dǎo)率而產(chǎn)生的,即在鈦酸理負(fù)極材料表面覆蓋一層導(dǎo)電物相.Luo等[29]以葡萄糖作為碳源合成了碳包覆的Li4Ti5O12.在0.2 C到30 C之間對Li4Ti5O12/C作充放電試驗(yàn),與純相的Li4Ti5O12相比,Li4Ti5O12/C表現(xiàn)出很好的倍率性能, 30 C下純相Li4Ti5O12的可逆容量只有46.3 mAh/g,而Li4Ti5O12/C的可逆容量高達(dá)92.7 mAh/g.Li4Ti5O12/C也表現(xiàn)出良好的循環(huán)性能,特別是在高倍率下,10 C充放電時,循環(huán)100次后Li4Ti5O12/C的放電容量為127.9 mAh/g,僅僅損失了3.6%,而純相Li4Ti5O12的放電容量則為95.6 mAh/g,損失7.3%.交流阻抗實(shí)驗(yàn)表明Li4Ti5O12/C表現(xiàn)出比Li4Ti5O12低的電荷轉(zhuǎn)移阻抗(表1).也有研究采用石墨烯來包覆Li4Ti5O12材料,石墨烯不僅在一定程度上增加了Li4Ti5O12材料的導(dǎo)電性能,甚至其本身具有的容量還能在一定程度上增加材料的容量[30-31].
碳包覆能夠增強(qiáng)Li4Ti5O12材料表面的導(dǎo)電性,形成的碳膜阻止納米晶體的團(tuán)聚使材料保持了一維納米結(jié)構(gòu),從而提升了其循環(huán)穩(wěn)定性[32-33].但是對于鈦酸鋰材料,Li+擴(kuò)散過程主要包括體相內(nèi)的擴(kuò)散、包覆層擴(kuò)散和液相內(nèi)擴(kuò)散,其中其本身固有的離子導(dǎo)電率是制約其性能的關(guān)鍵因素,碳包覆對于改善其離子導(dǎo)電性作用具有一定局限性,因此對于該材料的體相摻雜是研究提升其離子導(dǎo)電率的重要途徑.
表1 純Li4Ti5O12和Li4Ti5O12/C電極的阻抗參數(shù)[29]Tabel 1 Impedance parameters of Li4Ti5O12 and Li4Ti5O12/C electrodes
體相內(nèi)摻雜是采用某些其他離子替代Li4Ti5O12結(jié)構(gòu)中的Li、Ti或O的位置,從而擴(kuò)張Li+在體相內(nèi)的傳輸路徑,達(dá)到提高離子電導(dǎo)率的目的.主族金屬、過渡金屬和稀土元素都可作為摻雜元素[34-39].Hu等[40]使用高溫固相法合成Li4Ti5O12和Ta摻雜后的Li4Ti4.95Ta0.05O12. Li4Ti4.95Ta0.05O12和Li4Ti5O12材料做成電池在不同電流密度下的充電實(shí)驗(yàn)結(jié)果如圖2所示, Ta摻雜到Li4Ti5O12的晶體中,在低倍率下的放電比容量要比未摻雜的樣品要低,但是在高倍率下?lián)诫s了Ta的樣品比未摻雜的樣品的首次放電容量和循環(huán)性能都要好的多.
對金屬摻雜改性鈦酸鋰,Lee等[41]對于使用不同的金屬摻雜鈦酸鋰做了比較,結(jié)果表明并不是所有的金屬摻雜都可以帶來積極的變化.制備了未被摻雜和分別用相同摩爾比的Al3+,Cr3+,Mg2+摻雜的鈦酸鋰樣品.交流阻抗的實(shí)驗(yàn)和內(nèi)阻測定顯示,與純的Li4Ti5O12相比,Cr3+,Mg2+的摻雜提高了Li4Ti5O12的電子導(dǎo)電性,而Al3+的摻雜則是降低了Li4Ti5O12的電子導(dǎo)電性.因此如何選擇合適的摻雜元素,在提升材料的導(dǎo)電性的同時又不對其晶體結(jié)構(gòu)造成大的影響而影響穩(wěn)定性是該項(xiàng)工作的關(guān)鍵.
氮化處理已經(jīng)被較多的應(yīng)用到了電化學(xué)的領(lǐng)域,材料經(jīng)過氮化處理后能夠被活化,提高材料的表面化學(xué)反應(yīng)活性.在Li-O2電池的研究中,Zhang 等[42]采用共沉淀法及氨退火處理制備出了Co3Mo3N 薄膜,該介孔納米材料和其內(nèi)在的電子排布提供了許多的活性位點(diǎn),使得Li-O2電池中的ORR/OER獲得優(yōu)異的電催化活性.Nandi等利用Mo(CO)6和NH3得到了原子層沉積氮化薄膜[43].
圖2 Li4Ti5O12(a)和Li4Ti4.95Ta0.05O12(b)在不同電流密度下的充電實(shí)驗(yàn)結(jié)果[40]Fig.2 Initial discharge-charge curves of Li4Ti5O12 (a) and Li4Ti4.95Ta0.05O12 (b) at different current densities
圖3 不同倍率下純Li4Ti5O12(A)和氮化處理的Li4Ti5O12(B)的循環(huán)性能[44]Fig.3 The cycle abilities of Li4Ti5O12 (A) and nitridated-Li4Ti5O12 (B) at different current densities.
Park等[44]將Li4Ti5O12置于NH3氛圍中,700 ℃退火得到氮化鈦酸鋰,純Li4Ti5O12和氮化處理的Li4Ti5O12的循環(huán)性能如圖3所示.在1 C以下氮化處理的Li4Ti5O12和純相的Li4Ti5O12比容量相近,但是在10 C下,氮化處理后的Li4Ti5O12的比容量高達(dá)120 mAh/g,幾乎是純相Li4Ti5O12的6倍.氮化處理后在Li4Ti5O12的表面形成了導(dǎo)電的TiN和Li2CO3,提高了鈦酸鋰的導(dǎo)電率,這種表面結(jié)構(gòu)的優(yōu)化使其更加適于單相Li+的嵌入和脫出.因此氮化處理可以同時提升材料的電子導(dǎo)電性和離子導(dǎo)電性,且?guī)缀醪桓淖儾牧系木w結(jié)構(gòu),能夠大幅提升鈦酸鋰的電化學(xué)性能,是一種較好的表面改性手段.
鈦酸鋰作為鋰離子電池負(fù)極材料,其制備的方法主要是高溫固相法、水熱法和溶膠凝膠法.鈦酸鋰材料的改性對于其高倍率下性能的提高意義重大,通過將材料做成納米級別可以增大材料的比表面而增大與電解質(zhì)的反應(yīng)面.碳材料與鈦酸鋰復(fù)合能夠改善鈦酸鋰材料的導(dǎo)電性,石墨烯材料與鈦酸鋰復(fù)合可以得到電化學(xué)性能不錯的復(fù)合材料.合適的金屬摻雜鈦酸鋰晶體會改善其導(dǎo)電性能.氮化處理沒有明顯改變鈦酸鋰的晶體結(jié)構(gòu),保持了鈦酸鋰材料零應(yīng)變的特性,而能顯著改善電導(dǎo)率和離子導(dǎo)電率,得到高倍率下優(yōu)異的容量性能和循環(huán)性能.在實(shí)際應(yīng)用中應(yīng)將幾種改性方法結(jié)合起來,采用合適的制備方法,從體相內(nèi)的摻雜、表面結(jié)構(gòu)的優(yōu)化以及材料顆粒形貌及大小等方面綜合設(shè)計(jì)和考慮.
致 謝
感謝國家磷資源開發(fā)利用工程技術(shù)研究中心和國家級環(huán)境與化工清潔生產(chǎn)實(shí)驗(yàn)教學(xué)示范中心和湖北省自然科學(xué)基金委員會的支持.
[1] FLANDROIS S,SIMON B. Carbon materials for lithium-ion rechargeable batteries[J].Carbon,1999,37:165-180.
[2] ENDO M,KIM C, NISHIMURA K,et al. Recent development of carbon materials for Li-ion batteries[J]. Carbon,2000,38:183-197.
[3] PROSINI P P, MANCINI R, PETRUCCI L, et al. Li4Ti5O12as anode in all-solid-state,plastic, lithium-ion batteries for low-power applications[J]. Solid State Ionics,2001,144(1):185-192.
[4] DIP K N,UTTAM K. S,DEVIKA C,et al. Atomic layer deposited molybdenum nitride thin film: a promising anode material for Li ion batteries[J]. Applied Materials Interfaces,2014,6(9):6606-6615.
[5] ZHANG Ke-jun,ZHANG Li-xue,CHEN Xiao,et al. Mesoporous cobalt molybdenum nitride: a highly active bifunctional electrocatalyst and its application in Lithium-O2batteries[J]. The Journal of Physical Chemistry C,2013,117:858?865
[6] WANG F,CHEN T,SHANG Y Z,et al. Two-phase aqueous systems of cetyltrimethylammonium bromide / sodium dodecyl sulfate with and without polyethylene glycol[J]. Korean J Chem Eng,2011,28( 3):923-926.
[7] AYDOGAN O,BAYRAKTARM E,MEHMETOGLU U,et al. Selection and optimization of an aqueous two-phase system for the recovery of 1,3-propandiol from fermentation broth[J].Eng Life Sci,2010,10( 2): 121-129.
[8] OHZUKU T,YAMAMOTO A.Zero-strain insertion material of Li4Ti5O12for rechargeable lithium cell[J]. Journal of the Electrochemical Society,1995,142(5):1431-1435.
[9] MITSUNORI K,TOMOKI A,YASUSHI M,et al. Study of surface reaction of spinel Li4Ti5O12during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy[J]. Langmuir,2012,7(28):12384-12392.
[10] YU Xi-qian,PAN Hui-lin,WAN Wang,et al. A size-Dependent sodium storage mechanism in Li4Ti5O12Investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation[J]. Nano Letters,2013,13(10):4721-4727.
[11] KATSUYA T,HIKARU I,SYOHEI T,et al. Growth of well-Developed Li4Ti5O12crystals by the cooling of a sodium chloride flux[J]. Crystal Growth Design,2011(11):4401-4405.
[12] HAN S W,RYU J H,JEONG J,et al. Solid-state synthesis of Li4Ti5O12for high power lithium ion battery[J]. Journal of Alloys and Compounds,2013,570:144-149.
[13] LAI Chao,WU Zhen-zhen,ZHU Yu-xuan,et al. Ball-milling assisted solid-state reaction synthesis of mesoporous Li4Ti5O12for lithium-ion batteries anode[J]. Journal of Power Sources,2013,226:71-74.
[14] HAN J,WANG Y,YU C L,et al. Tetrafluoroborate and ammonium tartrate at different temperatures: experimental determination and correlation [J].Anal Bioanal Chem,2011,399: 1295-1304.
[15] YAN Hui, ZHU Zhi, ZHANG Ding,et al. A new hydrothermal synthesis of spherical Li4Ti5O12anode material for lithium-ion secondary batteries[J]. Journal of Power Sources, 2012,219:45-51.
[16] LIU Jian,LI Xi-fei,YANG Jin-li,et al. Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12as anode materials for lithium ion batteries[J]. Electrochimica Acta,2012,63:100-104.
[17] RAHMAN M M,WANG J Z,HASSAN M F,et al. Basic molten salt process -A new route for synthesis of nanocrystalline Li4Ti5O12-TiO2anode material for Li -ion batteries using eutectic mixture of LiNO3-LiOH -Li2O2[J]. Journal of Power Sources,2010,195( 13):4297 -4303.
[18] ZHANG Zhen-wei,CAO Li-yun,HUANG Jian-feng,et al. Hydrothermal synthesis of Li4Ti5O12microsphere with high capacity as anode material for lithium ion batteries[J]. Ceramics International, 2013,39:2695-2698.
[19] FANG Wei,CHENG Xin-qun ,ZUO Peng-jian ,et al. Hydrothermal-assisted sol-gel synthesis of Li4Ti5O12/C nano-composite for high-energy lithium-ion batteries[J]. Solid State Ionics,2014,244:52-56.
[20] LEE S B,JANG I C,LIM H H,et al. Preparation and electrochemical characterization of LiFePO4nanoparticles with high rate capability by a sol-gel method[J]. J Alloy Compd,2010,491(12):668-672.
[21] ZHANG Chun-ming,ZHANG Yao-yao,WANG Jin,et al. Li4Ti5O12prepared by a modified citric acid solegel method for lithium-ion Battery[J]. Journal of Power Sources,2013,236:118-125.
[22] MIAO Yue-e, FAN Wei, CHEN Dan, et al.High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning[J]. ACS Applied Materials & Iinterfaces,2013,5(10):4423-4428.
[23] 陸海緯,周永寧,李越生,等. 三維尖晶石Li4Ti5O12納米絲網(wǎng)狀帶電極的構(gòu)置與化學(xué)性能,無機(jī)化學(xué)學(xué)報,2006,5(2):1802-1806.
LU Hai-wei, ZHOU Yong-ning, LI Yue-sheng et al. Fabrication and electrochemical properties of 3-dimentional net architectures of spinal Li4Ti5O12nanofibers[J]. Chinese Journal of Inorganic Chemistry, 2006,5(2):1802-1806 .(in Chinese)
[24] ABDELFATTAH M,JOSE M A,KARIMA L,et al. Influence of the synthesis method on the electrochemical properties of the Li4Ti5O12spinel in Li-half and Li-ion full-cells. A systematic comparison[J]. Electrochimica Acta,2013,93:163-172.
[25] JIANG Chun-hai,EIJI H, MASKI I,et al. Synthesis of nanocrystalline Li4Ti5O12by chemical lithiation of anatase nanocrystals and postannealing[J]. Journal of The Electrochemical Society,2008,155(8):553-556.
[26] HUANG Jun-jie ,JIANG Zhi-yu. The Synthesis of hollow spherical Li4Ti5O12by macroemulsion method and its application in Li-ion batteries[J]. Electrochemical and Solid-State Letters,2008,11(7):116-118.
[27] LIN Yu-sheng,DUH Jenq-gong. Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries[J]. Journal of Power Sources,2011,196:10698-10703.
[28] LI Cheng-chao,LI Qiu-hong,CHEN Li-bao,et al. A facile titanium glycolate precursor route to mesoporous Au/Li4Ti5O12spheres for high-Rate lithium-ion batteries[J]. Applied Materials Interfaces,2012, 4:1233-1238.
[29] LUO Hong-jun,SHEN Lai-fa,RUI Kun ,et al. Carbon coated Li4Ti5O12nanorods as superior anode material for high rate lithium ion batteries[J]. Journal of Alloys and Compounds,2013,572:37-42.
[30] HAO Shuai,XIAO Xiao-ling,HU Zhong-bo,et al. Improving the electrochemical performance of Li4Ti5O12anode through confinement into ordered bimodal porous carbon frameworks[J]. The Journal of Physical Chemistry C, 2013, 117 (51):26889-26895.
[31] ZHU N,LIU W,XUE M,et al. Graphene as a conductive additive to enhance the high rate capabilities of electrospun Li4Ti5O12for lithium -ion batteries [J]. Electrochimical Acta,2010,55( 20): 5813 -5818.
[32] RAI A K,GIM J,KANG Sung-Won,et al. Improved electrochemical performance of Li4Ti5O12with a variable amount of graphene as a conductive agent for rechargeable lithium-ion batteries by solvothermal method[J]. Materials Chemistry and Physics,2012,136:1044-1051.
[33] CHENG L,YAN J,ZHU G N,et al. General synthesis of carbon coated nanostructure Li4Ti5O12as a high rate electrode material for Li -ion intercalation [J]. Journal of Material Chemistry,2010,20 ( 3 ):595-602.
[34] WANG Zhen-hong, CHEN Gang. Synthesis and electrochemical performances of Li4Ti4.95Al0.05O12/C as anode material for lithium-ion batteries[J]. Journal of Physics and Chemistry of Solids, 2011,72(6):773-778.
[35] ZHAO Hai-lei, LI Yue, ZHU Zhi-ming. Structural and electrochemical characteristics of Li4-xAlxTi5O12as anode material for lithium-ion batteries[J]. Electrochimica Acta. 2008,53:7079-7083.
[36] TIAN Bing-bing,XIANG Hong-fa,ZHANG Le,et al. Niobium doped lithium titanate as a high rate anode material for Li-ion batteries[J]. Electrochimica Acta,2010,55:5453-5458.
[37] SHARMILA S,SENTHILKUMARB,NITHYA V D,et al. Electrical and electrochemical properties of moltensalt-synthesized Li4Ti5-xSnxO12(x1/40.0, 0.05and0.1)asanodesforLi-ionbatteries[J]. Journal of Physics and Chemistry of Solids,2013,74:1515-1523.
[38] JI Shuang-ze, ZHANG Jun-ying. Preparation and effects of Mg-doping on the electrochemical properties of spinel Li4Ti5O12as anode material for lithium-ion battery[J]. Materials Chemistry and Physics,2010,123:510-515.
[39] ARUMUGAM S, SUKUMARAN G. Novel Li4Ti5O12/Sn nano-composites as anode material for lithium ion batteries[J]. Materials Research Bulletin, 2011,46:492-500.
[40] HU Guo-rong,ZHANG Xin-long,PENG Zhong-dong. Preparation and electrochemical performance of tantalum-doped lithium titanate as anode material for lithium-ion battery[J]. Transactions of Nonferrous Metals Society of China,2011,21:2248-2253.
[41] LEE B,YOON J R. Preparation and characteristics of Li4Ti5O12with various dopants as anode electrode for hybrid supercapacitor[J]. Current Applied Physics,2013,13:1350-1353.
[42] ZHANG Ke-jun,ZHANG Li-xue,CHEN Xiao,et al. Mesoporous cobalt molybdenum nitride: a highly active bifunctional electrocatalyst and its application in lithium-O2batteries[J]. Jounrnal of Physical Chemistry C,2013,117:858-865.
[43] NANDI D K.,SEN U K.,DEVIKA C,et al. Atomic layer deposited molybdenum nitride thin film: a promising anode material for Li ion batteries[J]. ACS Applied Materials & Interfaces,2014:6606-6615.
[44] PARK Kyu-Sung,BENAYAD A,KANG Dae-Joon,et al. Nitridation-driven conductive Li4Ti5O12for lithium ion batteries[J]. Journal of the American Chemical Society,2008,130:14930-14931.