羅光明,黃遠(yuǎn)亮
(1.同濟(jì)大學(xué),上海 200072;2.同濟(jì)大學(xué)附屬東方醫(yī)院,上海 200120)
?
肉蓯蓉松果菊苷藥理作用研究進(jìn)展
羅光明1,黃遠(yuǎn)亮2
(1.同濟(jì)大學(xué),上海 200072;2.同濟(jì)大學(xué)附屬東方醫(yī)院,上海 200120)
現(xiàn)代藥理學(xué)研究證實(shí),補(bǔ)益腎陽類傳統(tǒng)中藥肉蓯蓉具有廣泛藥理作用和豐富的化學(xué)成分。肉蓯蓉主要活性成分之一松果菊苷具有神經(jīng)保護(hù)、促進(jìn)新骨形成、抗氧化、抗組織損傷、抗炎等作用,是安全有效的植物雌激素因子。現(xiàn)對(duì)其藥理作用作一簡(jiǎn)要綜述。
肉蓯蓉;松果菊苷
肉蓯蓉Y. C. Ma(C. deserticola)是一種生長(zhǎng)于干旱和半干旱地區(qū)的藥用植物,在中國(guó)中草藥市場(chǎng)存在四種肉蓯蓉物種:沙漠肉蓯蓉(C. Deserticola)、管花肉蓯蓉(C. Tubulosa)、鹽生肉蓯蓉(C. salsa)、沙蓯蓉(C. sinensis),通過化學(xué)指紋結(jié)合基因指紋能鑒別和控制肉蓯蓉質(zhì)量。肉蓯蓉屬種是常年寄生草藥,主要分布于陸地和熱荒漠,傳統(tǒng)中醫(yī)主要用作滋補(bǔ)藥,主治腎虛、陽痿、女性不育、白帶異常、子宮不規(guī)則出血過多、老年性便秘等癥狀,故有“沙漠人參”之稱。現(xiàn)代藥理學(xué)研究已經(jīng)證實(shí)肉蓯蓉具有廣泛藥用功能,包括激素樣調(diào)節(jié)作用、通便、免疫調(diào)節(jié)、神經(jīng)保護(hù)、抗氧化、抗細(xì)胞凋亡、抗損傷、抗炎、抗衰老、抗疲勞活性以及促進(jìn)骨的形成[1,2],還可能具有保護(hù)心臟并能抗心肌缺血性損傷、預(yù)防和治療高血糖、高血脂癥的功能[3-5]。
近年來,人們對(duì)肉蓯蓉的化學(xué)成分進(jìn)行了大量研究,從其中分離出多種化合物,分析鑒定為:揮發(fā)油類、苯乙醇苷(phenylethanoid glycosides,PhGs,主要包含松果菊苷和阿克替甙)、三十烷醇、咖啡酸糖脂、環(huán)烯醚萜類、木脂素類、多羥糖醇、寡糖類、甜菜堿、谷甾醇、胡蘿卜苷、甘露醇、硬脂酸、β-谷固醇、胡蘿卜甙、琥珀酸、多糖類等。其中,PhGs是治療腎虛、抗氧化、神經(jīng)保護(hù)的主要活性成分;半乳糖醇、寡糖類是治療老年性便秘的活性成分;多糖由鼠李糖、木糖、阿拉伯糖、半乳糖濃縮而來,多糖是抗衰老、改善機(jī)體免疫力的活性成分[6-8]。
Nan等[9]又從塔中栽培荒漠肉蓯蓉干燥肉質(zhì)莖的85% 乙醇提取物中分離得到紫丁香苷、去甲基紫丁香苷、松柏苷、芐基葡萄糖苷、煙酰胺、對(duì)羥基苯甲酸、對(duì)羥基苯乙醇、半乳糖醇等17種化合物。沙漠肉蓯蓉中還含有豐富的錳、鉀、鈣、 鎂、鈉等微量元素,在肉蓯蓉不同生長(zhǎng)階段,微量元素含量比例不同[9,10]。
松果菊苷是沙漠肉蓯蓉主要活性成分之一,從其他藥用植物如密蒙花、紫錐花屬中也能分離出松果菊苷[11, 12],其具有如下藥理作用。
2.1 神經(jīng)保護(hù)[13-21]
松果菊苷能逆轉(zhuǎn)保護(hù)魚藤酮、中動(dòng)脈閉塞、6-羥多巴胺誘導(dǎo)的多巴胺能神經(jīng)元損傷。短暫接觸松果菊苷,即具有足夠保護(hù)抗魚藤酮損傷過表達(dá)TrkA或 TrkB受體的神經(jīng)元細(xì)胞和非神經(jīng)元細(xì)胞的作用,其機(jī)制與松果菊苷短暫抑制細(xì)胞色素C(cytochrome c)的釋放并激活細(xì)胞凋亡蛋白酶-3(caspase-3)有關(guān)。松果菊苷也能自由穿過血腦屏障,有可能用于治療帕金森病、阿爾茨海默病等神經(jīng)變性疾病及預(yù)防和治療大腦的缺血性疾病。zhao等觀察證實(shí),口服松果菊苷治療7~14天,帕金森病患者步態(tài)失調(diào)明顯改善。
松果菊苷還可能通過逆轉(zhuǎn)線粒體功能及細(xì)胞凋亡、抗TNF-α(腫瘤壞死因子α)誘導(dǎo)的人神經(jīng)母細(xì)胞瘤細(xì)胞凋亡、促進(jìn)血管性癡呆鼠腦中膽堿能神經(jīng)遞質(zhì)水平等途徑發(fā)揮明顯的神經(jīng)保護(hù)效應(yīng),可用于干預(yù)神經(jīng)變性疾病。松果菊苷能選擇性逆轉(zhuǎn)線粒體功能和細(xì)胞凋亡,而對(duì)線粒體形態(tài)沒有影響。
2.2 骨保護(hù)
松果菊苷具有雌激素樣的作用。Yang等[22]用松果菊苷治療給藥12周,股骨礦物質(zhì)密度、微結(jié)構(gòu)、生物力學(xué)特性得到改善;松果菊苷還顯著增加骨保護(hù)素(OPG)水平,并降低血清核因子κB配體受體活化劑水平,而對(duì)子宮、乳腺無不良反應(yīng);松果菊苷能通過增加OPG/RANKL的比例有效安全預(yù)防鼠卵巢切除術(shù)后骨質(zhì)疏松并抑制骨吸收,是一類新的植物雌激素,是治療雌激素缺乏誘導(dǎo)的絕經(jīng)后骨質(zhì)疏松較有前景的草藥[23]。Li等[24]研究證實(shí),0.01~10nmol/L松果菊苷即能明顯增加成骨細(xì)胞系MC3T3-E1的增殖、堿性磷酸酶(alkaline phosphatase,ALP)活性、I型膠原含量、骨鈣素(osteocalcin,OCN)水平,增加了成骨細(xì)胞礦化,它主要增加OPG/RNKL比例促進(jìn)骨形成。Tm等[25]則研究證實(shí),肉蓯蓉提取物對(duì)培養(yǎng)的成骨細(xì)胞增殖、遷移無任何影響,也不影響骨誘裂,但增加了ALP、骨形態(tài)發(fā)生蛋白-2(bone morphogenetic proteins-2,BMP-2)、骨橋蛋白(osteopontin,OPN )的mRNA表達(dá)和骨的礦化 ,并能預(yù)防卵巢切除鼠的骨丟失,推斷松果菊苷可能是治療骨質(zhì)疏松的骨形成因子。
2.3 抗損傷、抗氧化
松果菊苷能保護(hù)急性肺損傷,用于治療急性呼吸窘迫綜合征[26],也能保護(hù)由四氯化碳引起的急性鼠肝損傷。經(jīng)松果菊苷治療后,肝的組織病理學(xué)損傷和凋亡的肝細(xì)胞數(shù)明顯好轉(zhuǎn),可能主要與抗氧化效應(yīng)有關(guān)[27]。松果菊苷還可能通過上調(diào)TTGF-B促進(jìn)腸上皮細(xì)胞增殖,阻止細(xì)胞死亡而改善黏膜組織修復(fù)[28]。
2.4 抗炎、護(hù)膚、抗衰老
松果菊苷可有效預(yù)防硫酸葡聚糖鈉誘導(dǎo)的鼠大腸炎,臨床用于治療炎性腸病[29]。松果菊苷通過誘導(dǎo)II期細(xì)胞保護(hù)能力而具有持久的皮膚保護(hù)效應(yīng)[30]。松果菊苷能激發(fā)細(xì)胞從G1期進(jìn)入S期和G2期,保護(hù)細(xì)胞免受DNA損傷可能是其抗衰老的機(jī)制[31]。
人們還進(jìn)行了大量松果菊苷藥物代謝動(dòng)力學(xué)研究,建立和驗(yàn)證了在動(dòng)物血漿中檢測(cè)松果菊苷濃度的方法,具有高度選擇性、敏感性、可重復(fù)性[32],并且易獲得高純度松果菊苷,完全能滿足實(shí)驗(yàn)研究及臨床治療需要[33]。肉蓯蓉及其主要活性成分松果菊苷更廣泛的藥理作用及臨床應(yīng)用有待進(jìn)一步研究證實(shí)。
[1] WANG T, ZHANG XY, XIE WY. Cistanche deserticola Y. C. Ma, "Desert Ginseng": A Review[J]. American Journal of Chinese Medicine, 2012, 40(6):1123-1141.
[2] SHI HM, WANG J, WANG MY, et al. Identification of Cistanche species by chemical and inter-simple sequence repeat fingerprinting[J]. Biol Pharm Bull, 2009, 32(1):142-146.
[3] XIONG WT, GU L, WANG C, et al. Anti-hyperglycemic and hypolipidemic effects of Cistanche tubulosa in type 2 diabetic db/db mice[J]. J Ethnopharmacol, 2013.
[4] SIU AH-L, KO KM. Herba Cistanche extract enhances mitochondrial glutathione status and respiration in rat hearts, with possible induction of uncoupling proteins[J]. Pharmaceutical Biology ,2010, 48(5):512-517.
[5] WONG HS, KO KM. Herba Cistanches stimulates cellular glutathione redox cycling by reactive oxygen species generated from mitochondrial respiration in H9c2 cardiomyocytes[J]. Pharmaceutical Biology, 2013, 51(1):64-73.
[6] JIANG Y, TU P-F. Analysis of chemical constituents in Cistanche species[J]. Journal of Chromatography A ,2009, 1216(11):1970-1979.
[7] XUE D, ZHANG M, WU X, et al. Active antisenile constituents in Cistanche deserticola Y. C. Ma[J]. Zhongguo Zhong Yao Za Zhi, 1995, 20(11):687-689, 704.
[8] CHEN MH, LIU FS, XU JP. Chemical constituents of Cistanche deserticola Y.C.Ma[J]. Zhongguo Zhong Yao Za Zhi, 1993, 18(7):424-426, 447.
[9] CUI XS, ZHENG L, DU Y, et al. Mineral elements content of C. deserticola at different growth stages[J]. Guang Pu Xue Yu Guang Pu Fen Xi, 2011, 31(11):3115-3118.
[10] ZHU YX, GUO YH. Determination of mineral elements in cistanche and its extractives by ICP-AES[J]. Guang Pu Xue Yu Guang Pu Fen Xi, 2013, 33(3):813-816.
[11] TAI BH, JUNG BY, CUONG NM,et al. Total Peroxynitrite Scavenging Capacity of Phenylethanoid and Flavonoid Glycosides from the Flowers of Buddleja officinalis[J]. Biological & Pharmaceutical Bulletin, 2009, 32(12):1952-1956.
[12] FACINO RM, CARINI M, ALDINI G, et al. Echinacoside and caffeoyl conjugates protect collagen from free radical-induced degradation: A potential use of Echinacea extracts in the prevention of skin photodamage[J]. Planta Medica, 1995, 61(6):510-514.
[13] ZHU M, LU C, LI W. Transient exposure to echinacoside is sufficient to activate Trk signaling and protect neuronal cells from rotenone[J]. J Neurochem, 2013, 124(4):571-580.
[14] FENG XY, ZHU M, ZHANG QQ, et al. Selective protection of nigral dopaminergic neurons by echinacoside in a rat model of Parkinson disease induced by rotenone[J]. Journal of Chinese integrative medicine, 2012, 10(7):777-783.
[15] WEI LL, CHEN H, JIANG Y, et al. Effects of echinacoside on histio-central levels of active mass in middle cerebral artery occlusion rats[J]. Biomedical and environmental sciences , 2012, 25(2):238-244.
[16] ZHAO Q, GAO J, LI W, et al. Neurotrophic and neurorescue effects of Echinacoside in the subacute MPTP mouse model of Parkinson's disease[J]. Brain Res, 2010, 1346:224-236.
[17] CHEN J, YU J, XU R, et al. Study on reproduction biology of Cistanche deserticola-seedling emergence and flowering[J]. Zhongguo Zhong Yao Za Zhi ,2007, 32(17):1729-1732.
[18] KUANG R, SUN Y, ZHENG X,Suppression of nitric oxide implicated in the protective effect of echinacoside on H2O2-induced PC12 cell injury[J]. Nat Prod Commun, 2010, 5(4):571-574.
[19] ZHU M, ZHOU M, SHI Y, et al. Effects of echinacoside on MPP(+)-induced mitochondrial fragmentation, mitophagy and cell apoptosis in SH-SY5Y cells[J].Journal of Chinese integrative medicine, 2012, 10(12):1427-1432.
[20] DENG M, ZHAO JY, TU PF, et al. Echinacoside rescues the SHSY5Y neuronal cells from TNF alpha-induced apoptosis[J]. European Journal of Pharmacology, 2004, 505(1-3):11-18.
[21] LIU CL, CHEN H, JIANG Y, et al. Effects of echinacoside on extracellular acetylcholine and choline levels of hippocampus and striatum of cerebral ischemia rats[J]. Acta pharmaceutica Sinica, 2013, 48(5):790-793.
[22] YANG XL, LI F, YANG YA, et al. Efficacy and Safety of Echinacoside in a Rat Osteopenia Model[J]. Evidence-Based Complementary and Alternative Medicine, 2013.
[23] LI F, YANG X, YANG Y, et al. Antiosteoporotic activity of echinacoside in ovariectomized rats[J]. Phytomedicine, 2013, 20(6):549-557.
[24] LI F, YANG YN, ZHU PP, et al. Echinacoside promotes bone regeneration by increasing OPG/RANKL ratio in MC3T3-E1 cells[J]. Fitoterapia, 2012, 83(8):1443-1450.
[25] LI TM, HUANG HC, SU CM, et al. Cistanche deserticola extract increases bone formation in osteoblasts[J]. The Journal of pharmacy and pharmacology, 2012, 64(6):897-907.
[26] ZHANG YL, XING JJ, ZHAO JY. Protection of echinacoside against acute lung injury in early phase in rats[J]. Free Radic Res, 2007, 41(7):798-805.
[27] WU Y, LI L, WEN T, et al. Protective effects of echinacoside on carbon tetrachloride-induced hepatotoxicity in rats[J]. Toxicology, 2007, 232(1-2):50-56.
[28] JIA YM, GUAN QN, GUO YH, et al. Eehinacoside Stimulates Cell Proliferation and Prevents Cell Apoptosis in Intestinal Epithelial MODE-K Cells by Up-Regulation of Transforming Growth Factor-beta 1 Expression[J]. Journal of Pharmacological Sciences, 2012, 118(1):99-108.
[29] JIA Y, GUAN Q, JIANG Y, et al. Amelioration of Dextran Sulphate Sodium-Induced Colitis in Mice by Echinacoside-Enriched Extract of Cistanche tubulosa[J]. Phytotherapy research, 2013.
[30] SGARBOSSA A, DAL BOSCO M, PRESSI G, et al. Phenylpropanoid glycosides from plant cell cultures induce heme oxygenase 1 gene expression in a human keratinocyte cell line by affecting the balance of NRF2 and BACH1 transcription factors[J]. Chemico-Biological Interactions, 2012, 199(2):87-95.
[31] XIE H, ZHU H, CHENG C, et al. Echinacoside retards cellular senescence of human fibroblastic cells MRC-5[J]. Pharmazie, 2009, 64(11):752-754.
[32] YANG H, WANG GJ, HAO HP, et al. A sensitive and specific liquid chromatography/tandem mass spectrometry method for determination of echinacoside and its pharmacokinetic application in rats[J]. Biomedical Chromatography, 2009, 23(6):630-637.
[33] LIU B, OUYANG J, YUAN X, et al. Adsorption properties and preparative separation of phenylethanoid glycosides from Cistanche deserticola by use of macroporous resins[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2013, 937:84-90.
(責(zé)任編輯:魏 曉)
2014-04-29
羅光明(1971-),同濟(jì)大學(xué)博士研究生,研究方向?yàn)榭谇簧镝t(yī)學(xué)及轉(zhuǎn)化醫(yī)學(xué)。
R285
A
1673-2197(2014)17-0058-03