王欣,關(guān)鋒
1. 江南大學(xué),糖化學(xué)與生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,無(wú)錫214122;
2. 江南大學(xué)生物工程學(xué)院,無(wú)錫 214122
神經(jīng)粘附分子(Neural cell adhesion molecule,NCAM)是一種大量存在于細(xì)胞膜上的跨膜糖蛋白,含有5個(gè)IgG樣結(jié)構(gòu)域和兩個(gè)FN3樣結(jié)構(gòu)域(圖1A),通過(guò)同源(NCAM-NCAM)或者異源結(jié)合機(jī)制增強(qiáng)細(xì)胞-細(xì)胞間的粘附作用,并可以促進(jìn)突觸的生成與發(fā)生,改變突觸功效,有利于神經(jīng)系統(tǒng)的形態(tài)塑造等[1]。NCAM包括NCAM-120、NCAM-140和NCAM-180 3種亞型,分子量分別為120kDa、140kDa、180kDa。其中,NCAM-120是GPI錨定蛋白;NCAM-140和NCAM-180是兩種跨膜蛋白(圖1A)。NCAM-140和NCAM-180主要在胚胎早期發(fā)育中起作用,引導(dǎo)神經(jīng)元的遷移,在胚胎分化過(guò)程中,可以檢測(cè)到NCAM-120的表達(dá)上調(diào)[2]。NCAM的第3、4、5個(gè)IgG樣結(jié)構(gòu)域上共有 6個(gè) N-糖基化位點(diǎn)[3],NCAM基因經(jīng)轉(zhuǎn)錄后修飾在第5個(gè)IgG樣結(jié)構(gòu)域的第5和第 6個(gè)糖鏈末端修飾大量的多聚唾液酸(Polysialic acid, PSA),形成多聚唾液酸化的NCAM,即PSANCAM[4](圖 1:A,B)。
唾液酸(Sialic acid, Sia)是一種九碳糖,結(jié)構(gòu)超過(guò)了 50種,其核心結(jié)構(gòu)主要為酮基-脫氧壬酮糖酸(Kdn)、Neu、N-乙酰神經(jīng)氨酸(Neu5Ac或 NANA)和 N-羥乙酰神經(jīng)氨酸(Neu5Gc或 NANG)(圖2)。這些單體組成的線性碳水化合物即為 PSA,其鏈長(zhǎng)聚合度(Degree of polymerization, DP)可達(dá) 2~400不等[5](圖1B)。帶有大量負(fù)電荷的PSA可以降低NCAM的粘附作用,同時(shí)提高細(xì)胞的運(yùn)動(dòng)能力。一方面,PSA通過(guò)控制NCAM的粘附能力在神經(jīng)系統(tǒng)的形成與重建過(guò)程中起著重要的作用[6,7];另一方面,PSA因其空間排列以及聚合度的不同導(dǎo)致其載體-糖脂或糖蛋白的結(jié)構(gòu)差異,一定程度上決定了該糖脂或糖蛋白的功能發(fā)揮[8,9]。PSA-NCAM對(duì)細(xì)胞粘附能力、遷移能力、侵襲能力的作用報(bào)道較多,但PSA對(duì)NCAM的修飾作用進(jìn)而影響細(xì)胞下游信號(hào)通路的作用仍具有潛在研究?jī)r(jià)值[10]。
圖1 NCAM亞型及PSA-NCAM結(jié)構(gòu)示意圖
圖2 唾液酸的核心結(jié)構(gòu)
PSA對(duì)糖蛋白的修飾作用以及與小分子的結(jié)合作用會(huì)對(duì)細(xì)胞內(nèi)信號(hào)通路的維持產(chǎn)生影響。
脊椎動(dòng)物中有6種糖蛋白可以發(fā)生多聚唾液酸化修飾,分別是魚(yú)卵多唾液酸蛋白[11]、NCAM[12]、大鼠腦部鈉離子通道蛋白[12]、人乳 CD36[13]以及人淋巴細(xì)胞神經(jīng)纖毛蛋白-2[14],其中NCAM被認(rèn)為是研究PSA的模式蛋白。PSA-NCAM富含于各種胚胎組織中,但在絕大多數(shù)成熟組織中NCAM缺乏PSA修飾。PSA在胚胎和成人腦中的功能尚不完全清楚。人的血小板可以表達(dá)無(wú)唾液酸修飾的糖蛋白CD36,而人和鼠的乳汁中表達(dá)多聚唾液酸化的CD36,說(shuō)明多聚唾液酸對(duì)新生兒的發(fā)育和營(yíng)養(yǎng)至關(guān)重要[13]。
Ono等[15]推測(cè)PSA可以通過(guò)與神經(jīng)因子形成特殊的復(fù)合物而調(diào)節(jié)神經(jīng)營(yíng)養(yǎng)因子、神經(jīng)遞質(zhì)(Neurotransmitters)、細(xì)胞因子和生長(zhǎng)因子等的活動(dòng)。PSA不僅具有抑制黏附的作用(圖3A),Ono等還通過(guò)“two-complex”模型提出了PSA可能存在的一種新功能,即PSA具有保留與釋放兩種性能(圖3B):首先,PSA能夠結(jié)合例如腦源性神經(jīng)營(yíng)養(yǎng)因子(Brain-derived neurotrophic factor, BDNF)、成纖維母細(xì)胞生長(zhǎng)因子2(Fibroblast growth factor 2, FGF2)和神經(jīng)遞質(zhì)等神經(jīng)活性分子;其次,PSA維持了這種復(fù)合物存在所需要的獨(dú)特微環(huán)境。同時(shí),PSA也具備調(diào)節(jié)釋放這些分子的功能,但PSA與這幾種分子的互作形式不盡相同:BDNF與PSA形成復(fù)合物后可由 PSA釋放 BDNF而直接遷移至高親和力的受體,轉(zhuǎn)移至哪個(gè)受體取決于這兩個(gè)分子之間的親和力大?。籉GF2與PSA-NCAM形成復(fù)合物后,F(xiàn)GF2要通過(guò)其他中間體,并不能直接遷移(間接遷移)至FGFR。在上述過(guò)程中PSA均參與了信號(hào)通路的調(diào)節(jié)。
圖 3 PSA新功能的可能機(jī)制(參考文獻(xiàn)[15]并修改)
近期研究發(fā)現(xiàn),多種腫瘤細(xì)胞表面表達(dá)多聚唾液酸化的糖鏈[16],表明PSA與腫瘤細(xì)胞的粘附性、遷移性和侵襲性等密切相關(guān)[17]。在小細(xì)胞肺癌(Small cell lung cancer)、膠質(zhì)瘤(Glioma)、甲狀腺上皮細(xì)胞腫瘤(Thyroid epithelial tumors)、卵巢粒細(xì)胞瘤(Ovarian granulosa)、胰腺癌(Pancreatic cancer)、腎母細(xì)胞瘤(Wilms’ tumor)和成神經(jīng)母細(xì)胞瘤(Neuroblastoma)等多種惡性腫瘤的病例中,可以檢測(cè)到NCAM的表達(dá),除了小細(xì)胞肺癌無(wú)明確報(bào)道外,其他幾種惡性腫瘤均伴有PSA-NCAM的表達(dá)[6,18~23]。此外,在胰腺癌病例中,正常的胰腺組織和癌癥組織中都有NCAM的表達(dá),而PSA-NCAM只表達(dá)于惡性胰腺癌中,在胰島中并沒(méi)有被發(fā)現(xiàn)[23],說(shuō)明PSA-NCAM與一些惡性腫瘤的發(fā)展密切相關(guān)。Schreiber等[24]對(duì)12例人胰腺癌腫瘤細(xì)胞樣品進(jìn)行分析,發(fā)現(xiàn)PSA-NCAM與上皮細(xì)胞粘附分子E-cadherin的結(jié)合抑制了E-cadherin介導(dǎo)的細(xì)胞粘附,揭示PSANCAM可以直接影響E-cadherin的功能。
細(xì)胞外基質(zhì)(Extracellular matrix, ECM)構(gòu)成復(fù)雜的網(wǎng)架結(jié)構(gòu),支持并連接組織,調(diào)節(jié)組織的發(fā)生和細(xì)胞的生理活動(dòng)。細(xì)胞的遷移能力依賴(lài)于細(xì)胞對(duì)細(xì)胞外基質(zhì)的粘附作用,Li等[25]驗(yàn)證了PSA在這一過(guò)程中所發(fā)揮的作用。該研究小組以表達(dá)NCAM而不表達(dá)PSA的小鼠胚胎成纖維細(xì)胞NIH-3T3為研究對(duì)象,發(fā)現(xiàn)轉(zhuǎn)染STX基因可以實(shí)現(xiàn)NIH-3T3細(xì)胞中NCAM 3種亞型的多聚唾液酸化;與對(duì)照組相比,PSA降低NCAM與細(xì)胞基質(zhì)間的相互作用,與肝素(Heparin)粘附能力增強(qiáng)而與纖連蛋白(Fibronectin, FN)粘附能力減弱,同時(shí)增強(qiáng)了NIH-3T3細(xì)胞的遷移以及侵襲能力。此外,當(dāng)唾液粘蛋白表面大量表達(dá)PSA后,易化了細(xì)胞從原發(fā)腫瘤的脫落,從而轉(zhuǎn)移形成新的病灶[26,27]。研究發(fā)現(xiàn),PSA可以引起腫瘤細(xì)胞的擴(kuò)散,NCAM也有類(lèi)似引起腫瘤細(xì)胞擴(kuò)散的作用。Colombo等[28]發(fā)現(xiàn)正常的卵巢細(xì)胞并不表達(dá)NCAM,而卵巢癌細(xì)胞卻隨著病程的加劇高表達(dá)NCAM,由此可見(jiàn),NCAM可以刺激卵巢癌細(xì)胞的遷移與侵襲。
FGFR屬于一類(lèi)新的受體激酶家族,能與FGF和HS形成三元復(fù)合物,也可以與NCAM直接結(jié)合而引發(fā)一系列的信號(hào)傳導(dǎo)途徑,參與胚胎發(fā)育、血管形成、傷口愈合等一系列生理過(guò)程的調(diào)節(jié)[29]。研究表明,NCAM、PSA-NCAM、PSA分別參與FGFR信號(hào)通路以調(diào)節(jié)細(xì)胞的增殖與粘附[24,25,30,31]。
NCAM可以依賴(lài)FGFR家族方式激活神經(jīng)突生長(zhǎng),并伴隨著各種級(jí)聯(lián)信號(hào)的激活。如酪氨酸激酶 p59fyn(Tyrosine kinase p59fyn)、黏著斑激酶(Focal adhesion kinase,F(xiàn)AK)、磷脂酶(Phospholipase C)途徑(PLC-γ pathway)、Ras-絲裂原蛋白活化激酶(Ras-mitogen-activated protein kinase)途徑(p42/44 MAPK pathway)的激活等[32~34]。研究證實(shí),NCAM主要通過(guò)調(diào)節(jié)β1-integrin介導(dǎo)的細(xì)胞基質(zhì)粘著力來(lái)參與腫瘤的病變與淋巴結(jié)轉(zhuǎn)移[32,35],而NCAM與FGFR結(jié)合不但可以影響FGF介導(dǎo)的信號(hào)通路,還對(duì)細(xì)胞增殖粘附能力起作用[36]。
雖然諸多文獻(xiàn)報(bào)道了NCAM通過(guò)FGFR信號(hào)通路調(diào)節(jié)細(xì)胞生長(zhǎng)和增殖的作用,但PSA-NCAM在這一過(guò)程中的可能作用仍缺少進(jìn)一步的證據(jù)。Ono等[15]在分別過(guò)表達(dá) STX和 PST的 NIH-3T3細(xì)胞中,發(fā)現(xiàn)FGF2介導(dǎo)的細(xì)胞生長(zhǎng)受到抑制。該研究小組通過(guò)非變性凝膠電泳、凝膠過(guò)濾層析和SPR(Surface plasmon resonance)技術(shù)驗(yàn)證了FGF2可以與PSA結(jié)合,條件是PSA最小聚合度為17。與FGF2形成復(fù)合物的HS相比,PSA可以和FGF2形成更大、更復(fù)雜的FGF2低聚物,并同時(shí)與FGF受體相結(jié)合。以上結(jié)果說(shuō)明,PSA- NCAM與FGF2的結(jié)合方式異于HS,它能直接與FGF2結(jié)合而參與FGF2-FGF受體信號(hào)通路的調(diào)節(jié)。在研究PSA與FGFR的作用時(shí),該研究小組發(fā)現(xiàn)PSA不能與FGFR結(jié)合,說(shuō)明PSA對(duì)FGF- FGFR信號(hào)通路的影響主要通過(guò)調(diào)節(jié) FGF2分子在細(xì)胞內(nèi)的濃度水平來(lái)實(shí)現(xiàn)。
研究發(fā)現(xiàn),PSA也可以通過(guò)非依賴(lài)于NCAM的信號(hào)通路介導(dǎo)細(xì)胞粘附的調(diào)節(jié)。Li等[25]闡述了由 PSA介導(dǎo)的細(xì)胞粘附機(jī)制,發(fā)現(xiàn)轉(zhuǎn)染 STX的NIH-3T3細(xì)胞中FGFR、FAK、ERK1/2的磷酸化水平顯著提高;而p59fyn的磷酸化水平因ECM中成分而異:肝素可以增強(qiáng) p59fyn的磷酸化水平,F(xiàn)N(Fibronectin)反之,而 VN(Vitronectin)對(duì) p59fyn的磷酸化水平無(wú)影響。PSA介導(dǎo)的細(xì)胞遷移增加的現(xiàn)象可能是由于FGFR、FAK、ERK1/2的活化而引起,而PSA介導(dǎo)的細(xì)胞粘附可能與p59fyn的活化有關(guān)。
上皮間質(zhì)轉(zhuǎn)化(Epithelial-mesenchymal transition,EMT)過(guò)程被認(rèn)為是上皮細(xì)胞來(lái)源的惡性腫瘤細(xì)胞獲得遷移和侵襲能力的重要生物學(xué)過(guò)程。該過(guò)程中,細(xì)胞極性喪失,上皮細(xì)胞表型丟失,而獲得了間質(zhì)細(xì)胞的表型[30,37,38]。
Lehembre等[31]研究了EMT過(guò)程中NCAM對(duì)下游信號(hào)通路的影響。EMT發(fā)生前,E-cadherin在細(xì)胞表面的表達(dá)量較高,此時(shí)只有少量的NCAM與FGFR和PLCγ形成復(fù)合物,F(xiàn)GFR發(fā)送NCAM依賴(lài)性的信號(hào),激活Raf-激酶PKCβII,持續(xù)保持MAPK 的活性以及增強(qiáng)細(xì)胞的粘附(圖 4b)。當(dāng)EMT發(fā)生后,E-cadherin發(fā)生功能性缺失,NCAM的表達(dá)量增加,同時(shí)一部分NCAM的表達(dá)重新定位于脂筏中,此時(shí)p59Fyn大量聚集并與NCAM結(jié)合,p59Fyn被磷酸化和激活,它的效應(yīng)物FAK導(dǎo)致形成穩(wěn)定的 β1-integrin介導(dǎo)的黏著斑,致使細(xì)胞延展性和轉(zhuǎn)移性的增強(qiáng)(圖4c)。與NCAM介導(dǎo)的 FGFR的信號(hào)通路比較,由 FGF介導(dǎo)的非NCAM依賴(lài)性的 FGFR信號(hào)通路則是通過(guò) FGFs激活PLCγ/PKCα和Ras/Raf/MAPK信號(hào)途徑積累FGFR,最終提高細(xì)胞的粘附和增殖能力(圖4a)。因此,EMT過(guò)程影響了 NCAM介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)特性,這種信號(hào)通路轉(zhuǎn)變的認(rèn)識(shí)將有利于人們進(jìn)一步認(rèn)識(shí)腫瘤惡變過(guò)程的分子機(jī)制。
圖4 基于NCAM亞細(xì)胞定位改變的分子機(jī)制(參考文獻(xiàn)[31]并修改)
在PSA介導(dǎo)的細(xì)胞應(yīng)答中,與PSA結(jié)合的配體較少,包括 BDNF[39]、組蛋白 H1(Histone H1)[40]、FGF2[15]等。Theis等[41]證明富含丙氨酸的豆蔻?;鞍准っ窩的作用底物(Myristoylated Alanine-rich C Kinase Substrate, MARCKS)也能作為配體直接與PSA相結(jié)合。MARCKS是蛋白激酶C(Protein Kinase C, PKC)的特異性底物蛋白,介導(dǎo)神經(jīng)元表面信號(hào)與肌動(dòng)蛋白的運(yùn)動(dòng)。在明確細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中,底物蛋白磷酸化是各種信使系統(tǒng)作用的最后通路,在PKC的作用下,MARCKS發(fā)生磷酸化反應(yīng),參與跨膜信息傳遞與腦組織的發(fā)育,還在細(xì)胞轉(zhuǎn)移、粘附、分泌,以及細(xì)胞的內(nèi)攝、外放和吞噬中起作用。同時(shí),PSA還有捕獲兒茶酚胺神經(jīng)遞質(zhì)的功能,包括多巴胺,可以通過(guò)多巴胺受體調(diào)節(jié)Akt信號(hào)通路[42]。
研究表明,兩種多聚唾液酸轉(zhuǎn)移酶(Polysialyltransferases)—ST8SiaII(STX)和 ST8SiaIV(PST)催化NCAM多聚唾液酸鏈的形成[43]。STX和PST在蛋白水平上有59%的同源性[44],二者可以在NCAM的第五和第六個(gè)糖基化位點(diǎn)上獨(dú)立合成 PSA,或者協(xié)同作用合成更長(zhǎng)的 PSA鏈,其特性比較見(jiàn)表 1。PST基因與STX基因是獨(dú)立調(diào)控的,預(yù)示這兩種酶有著不同的生物學(xué)作用。但是,每一個(gè)唾液酸轉(zhuǎn)移酶在惡性腫瘤發(fā)展中的生物學(xué)作用尚未見(jiàn)報(bào)道。
Tanaka等[6]研究了 24例非小細(xì)胞肺癌(Nonsmall cell lung cancer, NSCLC)病例,發(fā)現(xiàn)表達(dá)PSA的 NSCLC病例中,STX基因在 I期腫瘤中的表達(dá)(4.2%)明顯低于IV期腫瘤(85.7%),說(shuō)明STX基因在腫瘤組織中的表達(dá)與腫瘤的發(fā)展進(jìn)程密切相關(guān)。在NSCLC腫瘤組織中,只有腫瘤發(fā)展至后期STX基因才表達(dá),然而PST基因在所有病例和正常肺部組織中都有表達(dá),說(shuō)明STX基因在NSCLC腫瘤病變過(guò)程中起重要作用。因此,STX基因可能是肺癌治療的一個(gè)新目標(biāo),對(duì)臨床標(biāo)記具有重要的意義。另外,PST的mRNA水平表達(dá)的顯著變化也在胰腺癌病例中得到證實(shí):所有NCAM表達(dá)陽(yáng)性的胰腺癌腫瘤細(xì)胞都表達(dá)STX和PST兩種基因[24]。PSA的表達(dá)與癌癥分級(jí)相關(guān),PSA表達(dá)陽(yáng)性的癌癥中病患的5年存活率較低。針對(duì)不同癌癥中STX和PST基因的表達(dá)差異,監(jiān)控病情發(fā)展以及開(kāi)展預(yù)前預(yù)后的工作已經(jīng)應(yīng)用到臨床檢測(cè)中。在神經(jīng)母細(xì)胞瘤和橫紋肌肉瘤病人的血清檢查中,如果 PSA含量過(guò)高,則預(yù)示著有癌轉(zhuǎn)移與惡變的傾向,而STX轉(zhuǎn)錄水平的檢測(cè)已經(jīng)成為斷定病患是否患有轉(zhuǎn)移性神經(jīng)母細(xì)胞瘤疾病的標(biāo)志[45]。
表1 STX與PST的特性比較
PSA及PSA-NCAM的研究,不僅對(duì)人們了解癌癥發(fā)生與發(fā)展提供導(dǎo)向作用,更對(duì)臨床工作提供更多的借鑒和指導(dǎo)。PSA還與多種人類(lèi)重大疾病相關(guān),例如老年癡呆癥(Alzheimer’s Disease)、抑郁癥、帕金森綜合征和癲癇癥等。老年癡呆癥的標(biāo)志為神經(jīng)遞質(zhì)系統(tǒng)失調(diào)與突觸丟失,可能存在某些特殊的神經(jīng)化學(xué)類(lèi)物質(zhì)導(dǎo)致神經(jīng)元退化以及突觸重塑缺陷,研究發(fā)現(xiàn)NCAM影響腦源性神經(jīng)營(yíng)養(yǎng)因子BDNF的濃度水平,進(jìn)而影響老年癡呆癥的發(fā)生[46]。鑒于PSA與人類(lèi)多種疾病的發(fā)生緊密相關(guān),對(duì) PSA以及PSA-NCAM的研究,尤其是PSA影響細(xì)胞多種下游信號(hào)通路的研究將成為熱點(diǎn)。PSA通過(guò)FGFR信號(hào)通路增強(qiáng)細(xì)胞增殖能力,但也有報(bào)道指出PSA干擾了FGFR介導(dǎo)的細(xì)胞增殖現(xiàn)象[15]。因此,PSA的繁雜空間構(gòu)象以及不同鏈長(zhǎng)的存在形式影響了其載體糖蛋白功能,使PSA在不同的細(xì)胞中行使了不同的作用。PSA不同作用的發(fā)揮很可能存在其他信號(hào)通路的影響,有待深入研究探討。
[1]Gascon E, Vutskits L, Kiss JZ. The role of PSA-NCAM in adult neurogenesis. Adv Exp Med Biol, 2010, 663: 127–136.
[2]Polo-Parada L, Bose CM, Plattner F, Landmesser LT.Distinct roles of different neural cell adhesion molecule(NCAM) isoforms in synaptic maturation revealed by analysis of NCAM 180 kDa isoform-deficient mice. J Neurosci, 2004, 24(8): 1852–1864.
[3]Liedtke S, Geyer H, Wuhrer M, Geyer R, Frank G, Gerardy-Schahn R, Zahringer U, Schachner M. Characterization of N-glycans from mouse brain neural cell adhesion molecule. Glycobiology, 2001, 11(5): 373–384.
[4]Bruses JL, Rutishauser U. Roles, regulation, and mechanism of polysialic acid function during neural development.Biochimie, 2001, 83(7): 635–643.
[5]Nakata D, TroyII FA. Degree of polymerization (DP) of polysialic acid (polySia) on neural cell adhesion molecules (N-CAMS): development and application of a new strategy to accurately determine the DP of polySia chains on N-CAMS. J Biol Chem, 2005, 280(46): 38305–38316.
[6]Tanaka F, Otake Y, Nakagawa T, Kawano Y, Miyahara R,Li M, Yanagihara K, Nakayama J, Fujimoto I, Ikenaka K,Wada H. Expression of polysialic acid and STX, a human polysialyltransferase, is correlated with tumor progression in non-small cell lung cancer. Cancer Res, 2000, 60(11):3072–3080.
[7]Sato C, Kitajima K. Disialic, oligosialic and polysialic acids:distribution, functions and related disease. J Biochem,2013, 154(2): 115–136.
[8]Wickramasinghe S, Medrano JF. Primer on genes encoding enzymes in sialic acid metabolism in mammals. Biochimie,2011, 93(10): 1641–1646.
[9]Nie H, Li Y, Sun XL. Recent advances in sialic acidfocused glycomics. J Proteomics, 2012, 75(11): 3098–3112.
[10]Falconer RA, Errington RJ, Shnyder SD, Smith PJ, Patterson LH. Polysialyltransferase: a new target in metastatic cancer. Curr Cancer Drug Targets, 2012, 12(8): 925–939.
[11]Inoue S, Iwasaki M. Isolation of a novel glycoprotein from the eggs of rainbow trout: occurrence of disialosyl groups on all carbohydrate chains. Biochem Biophys Res Commun,1978, 83(3): 1018–1023.
[12]Finne J. Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain. J Biol Chem,1982, 257(20): 11966–11970.
[13]Yabe U, Sato C, Matsuda T, Kitajima K. Polysialic acid in human milk - CD36 is a new member of mammalian polysialic acid-containing glycoprotein. J Biol Chem, 2003,278(16): 13875–13880.
[14]Curreli S, Arany Z, Gerardy-Schahn R, Mann D, Stamatos NM. Polysialylated neuropilin-2 is expressed on the surface of human dendritic cells and modulates dendritic cell-T lymphocyte interactions. J Biol Chem, 2007, 282(42):30346–30356.
[15]Ono S, Hane M, Kitajima K, Sato C. Novel regulation of fibroblast growth factor 2 (FGF2)-mediated cell growth by polysialic acid. J Biol Chem, 2012, 287(6): 3710–3722.
[16]Cheray M, Petit D, Forestier L, Karayan-Tapon L, Maftah A, Jauberteau MO, Battu S, Gallet FP, Lalloue F. Glycosylation-related gene expression is linked to differentiation status in glioblastomas undifferentiated cells.Cancer Lett, 2011, 312(1): 24–32.
[17]Jun L, Yuanshu W, Yanying X, Zhongfa X, Jian Y, Fengling W, Xianjun Q, Kokudo N, Wei T, Weixia Z, Shuxiang C. Altered mRNA expressions of sialyltransferases in human gastric cancer tissues. Med Oncol, 2012, 29(1):84–90.
[18]Aletsee-Ufrecht MC, Langley K, Rotsch M, Havemann K,Gratzl M. NCAM: a surface marker for human small cell lung cancer cells. FEBS Lett, 1990, 267(2): 295–300.
[19]Amoureux MC, Coulibaly B, Chinot O, Loundou A, Metellus P, Rougon G, Figarella-Branger D. Polysialic acid neural cell adhesion molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines. BMC Cancer, 2010, 10: 91.
[20]Satoh F, Umemura S, Yasuda M, Osamura RY. Neuroendocrine marker expression in thyroid epithelial tumors.Endocr Pathol, 2001, 12(3): 291–300.
[21]Sentani K, Oue N, Noguchi T, Sakamoto N, Matsusaki K,Yasui W. Immunostaining of gastric cancer with neuroendocrine differentiation: Reg IV-positive neuroendocrine cells are associated with gastrin, serotonin, pancreatic polypeptide and somatostatin. Pathol Int, 2010, 60(4):291–297.
[22]Valentiner U, Muhlenhoff M, Lehmann U, Hildebrandt H,Schumacher U. Expression of the neural cell adhesion molecule and polysialic acid in human neuroblastoma cell lines. Int J Oncol, 2011, 39(2): 417–424.
[23]Kameda K, Shimada H, Ishikawa T, Takimoto A, Momiyama N, Hasegawa S, Misuta K, Nakano A, Nagashima Y,Ichikawa Y. Expression of highly polysialylated neural cell adhesion molecule in pancreatic cancer neural invasive lesion. Cancer Lett, 1999, 137(2): 201–207.
[24]Schreiber SC, Giehl K, Kastilan C, Hasel C, Muhlenhoff M, Adler G, Wedlich D, Menke A. Polysialylated NCAM represses E-cadherin-mediated cell-cell adhesion in pancreatic tumor cells. Gastroenterology, 2008, 134(5): 1555–1566.
[25]Li J, Dai G, Cheng YB, Qi X, Geng MY. Polysialylation promotes neural cell adhesion molecule-mediated cell migration in a fibroblast growth factor receptor-dependent manner, but independent of adhesion capability. Glycobiology, 2011, 21(8): 1010–1018.
[26]Evangelou A, Letarte M, Marks A, Brown TJ. Androgen modulation of adhesion and antiadhesion molecules in PC-3 prostate cancer cells expressing androgen receptor.Endocrinology, 2002, 143(10): 3897–3904.
[27]Ozaki H, Matsuzaki H, Ando H, Kaji H, Nakanishi H,Ikehara Y, Narimatsu H. Enhancement of metastatic ability by ectopic expression of ST6GalNAcI on a gastric cancer cell line in a mouse model. Clin Exp Metastasis,2012, 29(3): 229–238.
[28]Colombo N, Cavallaro U. The interplay between NCAM and FGFR signalling underlies ovarian cancer progression.Ecancermedicalscience, 2011, 5: 226.
[29]Jacobsen J, Kiselyov V, Bock E, Berezin V. A peptide motif from the second fibronectin module of the neural cell adhesion molecule, NCAM, NLIKQDDGGSPIRHY, is a binding site for the FGF receptor. Neurochem Res, 2008,33(12): 2532–2539.
[30]Granit RZ, Slyper M, Ben-Porath I. Axes of differentiation in breast cancer: untangling stemness, lineage identity, and the epithelial to mesenchymal transition. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014,6(1): 93–106.
[31]Lehembre F, Yilmaz M, Wicki A, Schomber T, Strittmatter K, Ziegler D, Kren A, Went P, Derksen PW, Berns A,Jonkers J, Christofori G. NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin.Embo J, 2008, 27(19): 2603–2615.
[32]Cavallaro U, Niedermeyer J, Fuxa M, Christofori G.N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol, 2001, 3(7):650–657.
[33]Beggs HE, Baragona SC, Hemperly JJ, Maness PF. NCAM140 interacts with the focal adhesion kinase p125fak and the SRC-related tyrosine kinase p59fyn. J Biol Chem,1997, 272(13): 8310–8319.
[34] Niethammer P, Delling M, Sytnyk V, Dityatev A, Fukami K, Schachner M. Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol,2002, 157(3): 521–532.
[35]Christofori G. Changing neighbours, changing behaviour:cell adhesion molecule-mediated signalling during tumour progression. Embo J, 2003, 22(10): 2318–2323.
[36]Kiselyov VV, Soroka V, Berezin V, Bock E.Structural biology of NCAM homophilic binding and activation of FGFR. J Neurochem, 2005, 94(5):1169–1179.
[37]Balanis N, Wendt MK, Schiemann BJ, Wang Z, Schiemann WP, Carlin CR. Epithelial to mesenchymal transition promotes breast cancer progression via a fibronectin-dependent STAT3 signaling pathway. J Biol Chem, 2013,288(25): 17954–17967.
[38]Qu C, Zhang WJ, Zheng GP, Zhang ZJ, Yin J, He ZM.Metformin reverses multidrug resistance and epithelial–mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol Cell Biochem, 2014, 386(1–2): 63–71.
[39]Kanato Y, Kitajima K, Sato C. Direct binding of polysialic acid to a brain-derived neurotrophic factor depends on the degree of polymerization. Glycobiology, 2008, 18(12):1044–1053.
[40]Mishra B, von der Ohe M, Schulze C, Bian S, Makhina T,Loers G, Kleene R, Schachner M. Functional role of the interaction between polysialic acid and extracellular histone H1. J Neurosci, 2010, 30(37): 12400–12413.
[41]Theis T, Mishra B, von der Ohe M, Loers G, Prondzynski M, Pless O, Blackshear PJ, Schachner M, Kleene R.Functional role of the interaction between polysialic acid and myristoylated alanine-rich C kinase substrate at the plasma membrane. J Biol Chem, 2013, 288(9): 6726– 6742.
[42]Isomura R, Kitajima K, Sato C. Structural and functional impairments of polysialic acid by a mutated polysialyltransferase found in schizophrenia. J Biol Chem,2011, 286(24): 21535–21545.
[43]Angata K, Fukuda M. Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule. Biochimie, 2003, 85(1–2): 195–206.
[44]Kurosawa N, Yoshida Y, Kojima N, Tsuji S. Polysialic acid synthase (ST8Sia II/STX) mRNA expression in the developing mouse central nervous system. J Neurochem,1997, 69(2): 494–503.
[45]Cheung IY, Vickers A, Cheung NK. Sialyltransferase STX(ST8SiaII): a novel molecular marker of metastatic neuroblastoma. Int J Cancer, 2006, 119(1): 152–156.
[46]Aisa B, Gil-Bea FJ, Solas M, García-Alloza M, Chen CP,Lai MK, Francis PT, Ramírez MJ. Altered NCAM expression associated with the cholinergic system in Alzheimer's disease. J Alzheimers Dis, 2010, 20(2): 659–668.