張 帆,張金彥,彭志海
上海交通大學附屬第一人民醫(yī)院普外科,上海200080
補體系統(tǒng)主要由補體固有成分、補體調(diào)節(jié)蛋白及補體受體組成。在免疫反應(yīng)中發(fā)揮作用。
目前認為體內(nèi)存在著多種可溶性及膜結(jié)合性的補體調(diào)節(jié)蛋白,以特定的方式與不同的補體成分相互作用,使補體的激活和抑制處于精細的平衡狀態(tài)。從而防止對自身組織造成損害,并有效殺滅外來的微生物。這些膜蛋白包括DAF(decay accelerating factor)、MCP(membrane cofactor protein,CD46)、CD59(membrane inhibitor of reactive lysis)等。
在自身免疫性疾病,動脈粥樣硬化、糖尿病的血管并發(fā)癥等各類慢性疾病的發(fā)病機制中,補體系統(tǒng)的關(guān)鍵作用已被廣泛認可。由于肝臟是補體合成的主要場所(血漿中80% ~90%的補體成分在肝細胞合成),肝細胞也表達大量的補體受體,近年來,許多研究表明,肝臟疾病與補體激活相關(guān)?,F(xiàn)就肝臟損傷及修復(fù)中補體系統(tǒng)的作用研究進展作一綜述。
目前,HCV 與補體的相關(guān)研究較多。HCV 患者中轉(zhuǎn)氨酶水平較高的患者與轉(zhuǎn)氨酶正常的患者相比,其血清中C4 的含量明顯偏低。提示C4 含量與病理活動指數(shù)密切相關(guān),但與肝纖維化程度未發(fā)現(xiàn)明顯聯(lián)系[1]。在另一報道中,肝臟活檢病理顯示HCV 患者C4 mRNA 的水平明顯低于其他肝病的患者。進一步研究發(fā)現(xiàn),HCV 核心基因NS5A 能夠抑制促C4 表達因子IFN-γ、USF-1(upstream stimulating factor-1)的活動,因此能抑制C4 的激活[2]。另外,NS5A 表達蛋白還能夠抑制IL-1p(C3 啟動子刺激因子)的表達,且在一定程度上下調(diào)類法尼X 受體(farnesoid X receptor,F(xiàn)XR)的表達,從而降低C3 啟動子的活性來抑制C3的合成。因此HCV 患者血清C3 水平和組織中C3 mRNA 明顯低于正常人[3]。在研究病毒性肝炎自身防御實驗中發(fā)現(xiàn),部分HCV 病毒表面能夠表達補體調(diào)節(jié)蛋白CD59,后者通過抑制MAC 的生成,幫助病毒逃避補體系統(tǒng)的攻擊[4]。CD59 功能的喪失會增強抗體依賴的補體介導(dǎo)溶解(antibody-dependent complementmediated lysis,ADCML)對HCV 病毒的破壞,因此增加CD59 抑制因子表達可加強患者血清中的HCV 病毒溶解[4]。
HCV 病情發(fā)展、臨床演變及藥物治療反應(yīng)還與10號染色體的MBL-2 基因及其多態(tài)性相關(guān)。MBL 基因型為YA/YO 的人群相對而言更容易感染HCV。HCV患者中MBL 低水平提示更易進展為肝硬化。但MBL濃度與肝纖維化程度、炎癥程度等疾病進展無關(guān)。而X 或O 位點突變的患者,利巴韋林療效甚微[5]。對以INF 為主治療有效的患者,血清MBL 高水平提示對INF 方案有較好療效[6]。
HBV 感染者中,MBL 基因的第一個外顯子及啟動區(qū)域單倍頻率顯著增加,而血清MBL 水平明顯降低[7],提示MBL 能在一定程度上保護人群不受HBV感染。伴隨轉(zhuǎn)氨酶升高的HBV 患者,血清C4 水平對肝活檢結(jié)果有一定提示作用[8]。HBV 病毒還可以通過下調(diào)CD59 水平,導(dǎo)致肝細胞受到補體依賴毒性(complement-dependent cytotoxicity,CDC)增多,最后激活補體系統(tǒng),導(dǎo)致肝臟炎癥的發(fā)生[9]。
補體系統(tǒng)參與了酒精性肝病的發(fā)展過程,其中C3水平與酒精性肝損傷明顯相關(guān)。C3 基因敲除的小鼠,盡管經(jīng)過急性或者慢性的酒精暴露,結(jié)果均未進展為酒精性肝硬化[10]。乙醇可通過提高NADH/NAD(+)比率,促進固醇調(diào)節(jié)元件結(jié)合蛋白1(sterol regulatory element-binding protein-1,SREBP-1)活化,減少過氧化物酶體增生物激活受體α(peroxisome proliferator-activated receptor-alpha,RRAR-α)激活,增加補體C3 水平導(dǎo)致脂肪肝[11]。長期酒精喂食的小鼠,酒精代謝酶CYP2E1(cytochrome P4502E1)高表達可激發(fā)肝細胞中脂肪組織的炎癥反應(yīng),同時補體系統(tǒng)亦被激活并加重該炎癥反應(yīng)[12]。補體調(diào)節(jié)蛋白CD55/DAF 能夠抑制C3 的激活,減輕甘油三酯在脂肪內(nèi)的聚集,一定程度上延緩酒精性肝病的病程。另外,抑制C5 的激活也可減輕肝細胞的炎癥與損傷。而CD55/DAF 功能的缺失則加劇這些損傷[13]。
非酒精性脂肪性肝病(non-alcohol fatty lipid,NAFLD)是以肝細胞脂肪變性和脂肪蓄積為病理特征,但無過量飲酒史的臨床綜合征。肝細胞中C3、C9沉積多的人群,NAFLD 的發(fā)病較普遍。在一項試驗中,74%的NAFLD 患者肝細胞出現(xiàn)C3 及C4d 大量沉積。其中C3 陽性的患者,肝細胞膜表面高表達C1q及MBL。并且50%患者出現(xiàn)MAC 的大量沉積,主要集中于大血管周圍的肝細胞內(nèi)。此外,C3 表達與炎性因子生成呈正相關(guān)。C3 沉積多的患者肝組織中IL-8及IL-6 的表達也增多,而C9 沉積多的細胞IL-1β 的表達也增多[14]。
補體在脂肪性肝硬化的缺血再灌注損傷機制中起到了重要的作用[15]。脂肪變性的小鼠對肝臟熱缺血再灌注損傷比普通小鼠更敏感,而C3 缺乏能夠減少缺血再灌注小鼠帶來的損傷。若給予脂肪肝的野生型小鼠補體抑制劑治療,肝臟對缺血再灌注的損傷敏感性與正常肝臟無明顯差異。丙型肝炎引起的纖維化中,患者血清C3 及C4 水平明顯下降[16],C3、C4 的β鏈也明顯減少[17];患者的MBL 及MASP-1 的血清水平比正常人顯著升高[18],其肝硬化程度與MASP-1 復(fù)合體水平呈正相關(guān)[19]。與之相反,降低C5 水平能夠減輕炎癥反應(yīng),減少MMP-9(matrixmetalloproteinase-9)活動,從而顯著降低肝硬化程度[20]。
越來越多的證據(jù)表明,HBV 的X 蛋白[hepatitis B virus (HBV)X protein,HBx]在肝細胞癌的發(fā)病中起著至關(guān)重要的作用。HBx 能夠通過與CD59 啟動子區(qū)域相關(guān)cAMP 的結(jié)合增強CD59 啟動子的活性,上調(diào)CD59 基因的表達;并通過let-7i 在轉(zhuǎn)錄后調(diào)控時進一步上調(diào)CD59 的表達,從而通過增加CD59 阻止C5b-9的形成,最終導(dǎo)致乙肝后原發(fā)性肝癌[21]。進一步研究顯示,HBx 還能夠通過激活CREB/COX-2/PGE2/STAT3 通路,增強CD46 啟動子的激活,上調(diào)CD46 的表達,從而逃逸補體系統(tǒng)對肝臟腫瘤的攻擊[22]。另外,補體系統(tǒng)中C1qTNF6(C1qTNF-related protein 6)蛋白在許多肝細胞腫瘤中異常高表達,并有可能通過激活A(yù)kt 途徑參與了腫瘤血管的形成[23]。
自身免疫性肝炎(autoimmune hepatitis,AIH)是一種以自身免疫反應(yīng)為基礎(chǔ)的肝臟炎癥性病變,常伴隨其他自身免疫性疾病。AIH 模型小鼠中,提前注射眼鏡蛇蛇毒因子(cobra venom factor,CVF)中和補體抗體或注射DAF 進行治療可減輕肝臟損傷,提示AIH 中補體系統(tǒng)被過度激活[24]。另有研究顯示,年輕的自身免疫性肝炎患者常被檢測出C4A 基因缺失,因此血漿中C4 水平較低[25]。新近有研究分析認為該類患者血清C4 偏低常導(dǎo)致獲得性脂肪代謝障礙,但機制仍不明確[26]。
肝移植是治療許多肝臟疾病的手段之一,但缺血再灌注損傷常導(dǎo)致術(shù)后嚴重并發(fā)癥。試驗顯示這一過程中,補體活化途徑激活增加,其下游產(chǎn)物膜反應(yīng)蛋白(membrane attack complex,MAC)高表達,同時血管內(nèi)皮損傷標志物vWF(von Willebrand Factor)及P 選擇素(p-Selectin)等顯著升高[27]。盡管受體和供體的C3基因型并不影響移植物成活率[28],但抑制MAC 的生成能夠有效減少原位肝移植患者移植肝冷灌注缺血損傷的級聯(lián)反應(yīng)[29],提高患者生存率。而ABO 血型相容的肝移植術(shù)后,DSA(donor-specific HLA alloantibodies)高表達及C4d 高表達的移植患者,由于DSA 抗體及補體系統(tǒng)等的相互影響,更容易發(fā)生免疫排斥或膽管并發(fā)癥等疾?。?0]。
補體系統(tǒng)的激活與細胞增殖的調(diào)控、肝細胞的保護等過程相關(guān)。試驗中,C3/C5 缺陷的小鼠肝細胞再生時產(chǎn)生IL-6、ERK 等信號分子的能力下降。肝臟手術(shù)后8 h,血漿中C3 裂解產(chǎn)物升高,考慮肝臟再生時補體系統(tǒng)起到了關(guān)鍵性的保護作用。手術(shù)后肝臟損傷時凋亡的部分并不顯示中央靜脈等肝臟組織結(jié)構(gòu),表明在C3-/-小鼠中凋亡與缺血、門靜脈病變無關(guān),可能與補體系統(tǒng)的缺陷有關(guān),提示補體系統(tǒng)能夠保護早期的肝臟再生細胞免受損傷[31]。
補體組分C3、B 因子及α-2 巨球蛋白等均參與了病理性氧化應(yīng)激和炎癥過程,可以考慮作為肝豆狀核變性早期階段的診斷標記物[32]。
混合型冷沉球蛋白血癥(mixed cryoglobulinemia,MC)見于10% ~15%的HCV 病毒感染者。高表達的gC1q-R 是MC 的顯著標志,它激活經(jīng)典補體途徑,導(dǎo)致血漿中的C4d 附著于血管床,最終造成血管的冷沉球蛋白損害[33]。
遺傳性血管水腫(hereditary angioedema,HAE)又稱C1 抑制物缺乏癥,表現(xiàn)為C1 抑制物量的缺乏或功能缺陷,是一種常染色體顯性遺傳病。有研究顯示,該病的發(fā)病頻率與MBL 補體激活途徑無關(guān)[34]。
研究發(fā)現(xiàn),向小鼠的腹腔內(nèi)注射LPS/D-GaIN(lipopolysaccharide/D-galactosamine)導(dǎo)致的急性肝衰竭模型中,補體大量激活,血清中的C3a 水平升高,C3、C5b-9 在肝臟中沉積增加,最后導(dǎo)致肝損害。這種損害與血清中C3a 的水平呈正相關(guān),同時血清C3aR 及C5aR 水平也與損傷程度有一定相關(guān)性。另有研究進一步發(fā)現(xiàn),在C3 基因敲除的小鼠中,血清C3aR 及C5aR 仍上升,但肝臟的炎癥性傷害及病理性損傷明顯減少,提示我們抑制補體系統(tǒng)激活是控制爆發(fā)性肝衰竭的有效治療措施[35]。
綜上所述,肝臟的損傷和修復(fù)與補體激活有較大相關(guān)性。但仍有一些機制尚待明確,如肝纖維化中C5aR 起到了怎樣的作用,C3 及C5 是怎樣促進肝臟再生等。另外,大多數(shù)試驗使用的是動物模型,人類肝臟疾病與補體的關(guān)系還需要更多臨床研究。進一步了解人類肝臟疾病病理過程中補體系統(tǒng)的作用將有助于為肝臟損傷治療提供新途徑。
[1] Bu?daci MS,Karaca C,Alkim C,et al. Serum complement C4 in chronic hepatitis C:correlation with histopathologic findings and disease activity[J]. Turk J Gastroenterol,2012,23(1):33-37.
[2] Banerjee A,Mazumdar B,Meyer K,et al. Transcriptional repression of C4 complement by hepatitis C virus proteins[J]. J Virol,2011,85(9):4157-4166.
[3] Mazumdar B,Kim H,Meyer K,et al. Hepatitis C virus proteins inhibit C3 complement production [J]. J Virol,2012,86 (4):2221-2228.
[4] Amet T,Ghabril M,Chalasani N,et al. CD59 incorporation protects hepatitis C virus against complement-mediated destruction[J]. Hepatology,2012,55(2):354-363.
[5] Alves Pedroso ML,Boldt AB,Pereira-Ferrari L,et al. Mannan-binding lectin MBL2 gene polymorphism in chronic hepatitis C:association with the severity of liver fibrosis and response to interferon therapy[J]. Clin Exp Immunol,2008,152(2):258-264.
[6] Esmat S,Omran D,Sleem GA,et al. Serum mannan-binding lectin in egyptian patients with chronic hepatitis C:its relation to disease progression and response to treatment[J]. Hepat Mon,2012,12(4):259-264.
[7] Filho RM,Carmo RF,Catsman C,et al. High frequency of variant alleles of the mannose-binding lectin 2 (MBL2)gene are associated with patients infected by hepatitis B virus[J]. Viral Immunol,2010,23(4):449-453.
[8] Bugdaci MS,Alkim C,Karaca C,et al. Could complement C4 be an alternative to biopsy for chronic hepatitis B histopathologic findings[J]. J Clin Gastroenterol,2011,45(5):449-455.
[9] Qu Z,Liang X,Liu Y,et al. Hepatitis B virus sensitizes hepatocytes to complement-dependent cytotoxicity through downregulating CD59[J]. Mol Immunol,2009,47(2-3):283-289.
[10] Bykov I,Junnikkala S,Pekna M,et al. Complement C3 contributes to ethanol-induced liver steatosis in mice[J]. Ann Med,2006,38(4):280-286.
[11] Purohit V,Gao B,Song BJ. Molecular mechanisms of alcoholic fatty liver[J]. Alcohol Clin Exp Res,2009,33(2):191-205.
[12] Sebastian BM,Roychowdhury S,Tang H,et al. Identification of a cytochrome P4502E1/Bid/C1q-dependent axis mediating inflammation in adipose tissue after chronic ethanol feeding to mice[J]. J Biol Chem,2011,286(41):35989-35997.
[13] Pritchard MT,McMullen MR,Stavitsky AB,et al. Differential contributions of C3,C5,and decay-accelerating factor to ethanol-induced fatty liver in mice [J]. Gastroenterology,2007,132 (3 ):1117-1126.
[14] Rensen SS,Slaats Y,Driessen A,et al. Activation of the complement system in human nonalcoholic fatty liver disease[J]. Hepatology,2009,50(6):1809-1817.
[15] He S,Atkinson C,Evans Z,et al. A role for complement in the enhanced susceptibility of steatotic livers to ischemia and reperfusion injury[J]. J Immunol,2009,183(7):4764-4772.
[16] Gangadharan B,Antrobus R,Dwek RA,et al. Novel serum biomarker candidates for liver fibrosis in hepatitis C patients[J]. Clin Chem,2007,53(10):1792-1799.
[17] Gangadharan B,Antrobus R,Chittenden D,et al. New approaches for biomarker discovery:the search for liver fibrosis markers in hepatitis C patients[J]. J Proteome Res,2011,10(5):2643-2650.
[18] El Saadany SA,Ziada DH,F(xiàn)arrag W,et al. Fibrosis severity and mannan-binding lectin (MBL)/MBL-associated serine protease 1(MASP-1)complex in HCV-infected patients[J]. Arab J Gastroenterol,2011,12(2):68-73.
[19] Brown KS,Keogh MJ,Tagiuri N,et al. Severe fibrosis in hepatitis C virus-infected patients is associated with increased activity of the mannan-binding lectin(MBL)/MBL-associated serine protease 1 (MASP-1)complex[J]. Clin Exp Immunol,2007,147(1):90-98.
[20] Schmitt J,Roderfeld M,Sabrane K,et al. Complement factor C5 deficiency significantly delays the progression of biliary fibrosis in bile duct-ligated mice[J]. Biochem Biophys Res Commun,2012,418(3):445-450.
[21] Shan C,Zhang S,Cui W,et al. Hepatitis B virus X protein activates CD59 involving DNA binding and let-7i in protection of hepatoma and hepatic cells from complement attack[J]. Carcinogenesis,2011,32(8):1190-1197.
[22] Zhang S,Shan C,Cui W,et al. Hepatitis B virus X protein protects hepatoma and hepatic cells from complement-dependent cytotoxicity by up-regulation of CD46[J]. FEBS Lett,2013,587(6):645-651.
[23] Takeuchi T,Adachi Y,Nagayama T. Expression of a secretory protein C1qTNF6,a C1qTNF family member,in hepatocellular carcinoma[J].Anal Cell Pathol (Amst),2011,34(3):113-121.
[24] Tu Z,Li Q,Chou HS,et al. Complement mediated hepatocytes injury in a model of autoantibody induced hepatitis[J]. Immunobiology,2011,216(4):528-534.
[25] Scully LJ,Toze C,Sengar DP,et al. Early-onset autoimmune hepatitis is associated with a C4A gene deletion [J]. Gastroenterology,1993,104:1478-1484.
[26] Eren E,?zkan TB,?aklr ED,et al. Acquired generalized lipodystrophy associated with autoimmune hepatitis and low serum C4 level[J]. J Clin Res Pediatr Endocrinol,2010,2(1):39-42.
[27] Zhang J,Hu W,Xing W,et al. The protective role of CD59 and pathogenic role of complement in hepatic ischemia and reperfusion injury[J]. Am J Pathol,2011,179(6):2876-2884.
[28] Dhillon N,Walsh L,Krüger B,et al. Complement component C3 allotypes and outcomes in liver transplantation [J]. Liver Transpl,2010,16(2):198-203.
[29] Fondevila C,Shen XD,Tsuchihashi S,et al. The membrane attack complex (C5b-9)in liver cold ischemia and reperfusion injury[J].Liver Transpl,2008,14(8):1133-1141.
[30] Musat AI,Agni RM,Wai PY,et al. The significance of donor-specific HLA antibodies in rejection and ductopenia development in ABO compatible liver transplantation [J]. Am J Transplant,2011,11(3):500-510.
[31] Markiewski MM,DeAngelis RA,Strey CW,et al. The regulation of liver cell survival by complement[J]. J Immunol,2009,182(9):5412-5418.
[32] Park JY,Mun JH,Lee BH,et al. Proteomic analysis of sera of asymptomatic,early-stage patients with Wilson's disease[J]. Proteomics Clin Appl,2009,3(10):1185-1190.
[33] Sansonno D,Tucci FA,Ghebrehiwet B,et al. Role of the receptor for the globular domain of C1q protein in the pathogenesis of hepatitis C virus-related cryoglobulin vascular damage[J]. J Immunol,2009,183(9):6013-6020.
[34] Cedzyński M,Madaliński K,Gregorek H,et al. Possible diseasemodifying factors:the mannan-binding lectin pathway and infections in hereditary angioedema of children and adults[J]. Arch Immunol Ther Exp (Warsz),2008,56(1):69-75.
[35] Sun S,Guo Y,Zhao G,et al. Complement and the alternative pathway play an important role in LPS/D-GalN-induced fulminant hepatic failure[J]. PLoS One,2011,6(11):e26838.