敖大等
摘要 [目的]為研究和制備多聯(lián)或多價(jià)口蹄疫病毒樣顆粒疫苗奠定基礎(chǔ)。[方法]將FLAG序列通過融合PCR技術(shù)插入口蹄疫結(jié)構(gòu)蛋白VP1GHloop可變區(qū),并通過大腸桿菌原核表達(dá)技術(shù)表達(dá)口蹄疫病毒衣殼蛋白VP0、VP3和嵌合型VP1,在體外組裝出嵌合FLAG外源多肽的口蹄疫病毒樣顆粒。[結(jié)果]大腸桿菌表達(dá)的口蹄疫衣殼蛋白主要以可溶性存在,在緩沖體系中融合標(biāo)簽被切除衣殼蛋白VP0、VP3和FLAGVP1組裝成病毒樣顆粒,其大小約25 nm左右。FLAG序列成功插入GHloop可變區(qū)第150-151氨基酸位點(diǎn)之間,外源多肽的插入沒有影響衣殼蛋白VP1的空間結(jié)構(gòu)。[結(jié)論]口蹄疫loop可變區(qū)引入外源抗原是可行的,但外源多肽的大小及理化性質(zhì)會影響病毒樣顆粒的組裝效率。
關(guān)鍵詞 口蹄疫病毒;原核表達(dá);GHloop;嵌合型病毒樣顆粒
中圖分類號 S855.99 文獻(xiàn)標(biāo)識碼 A 文章編號 0517-6611(2014)13-03902-05
Abstract [Objective] The research aimed to lay the foundation for studying and preparing multiple or polyvalent viruslike particle vaccine of foot and mouth disease virus. [Method] FLAG sequence was inserted into variable region of structural protein VP1 GHloop of foot and mouth disease virus. Capsid proteins VP0, VP3 and chimeric VP1 of foot and mouth disease virus were expressed in Escherichia coli prokaryotic expression system. And the viruslike particles of foot and mouth disease virus with FLAG exogenous polypeptide was assembled in vitro. [Result] The capsid proteins of foot and mouth disease virus expressed by E. coli were mainly dissoluble. The fusion protein was cut in the buffer system, and capsid proteins VP0, VP3 and FLAG VP1 were assembled into viruslike particle (the size of about 25 nm). FLAG sequence was successfully inserted into 150-151 amino acid sites of variable region of GHloop. The insertion of exogenous polypeptide didnt influence the spatial structure of capsid protein VP1. [Conclusion] It was feasible to insert exogenous antigen into variable region of GHloop, but the size and physical and chemical characteristics of exogenous polypeptide would influence the assembly efficiency of viruslike particle.
Key words Foot and mouth disease; Prokaryotic expression; GHloop; Chimeric viruslike particles
口蹄疫是由口蹄疫病毒引起的一種急性、熱性、高度接觸性傳染病,其易感動物主要是牛、羊等偶蹄動物??谔阋咴趤喼?、非洲和中東以及南美洲均有發(fā)生,造成了巨大的經(jīng)濟(jì)損失,被世界衛(wèi)生組織劃分為A類疾病[1-2]。目前,預(yù)防控制該病的疫苗主要是滅活苗和弱毒苗,但全病毒疫苗存在散毒風(fēng)險(xiǎn)且在交叉免疫保護(hù)方面存在不足。由于口蹄疫病毒有7個(gè)血清型、65個(gè)亞型[3],在特定的口蹄疫感染區(qū)域常伴有多種抗原變異體共同流行,因此迫切需要研發(fā)新型、高效的多價(jià)口蹄疫疫苗。
對口蹄疫病毒結(jié)構(gòu)蛋白的研究發(fā)現(xiàn),其衣殼蛋白GHloop突出于病毒衣殼表面[4],包含口蹄疫病毒的主要抗原表位[5-8],且后續(xù)研究表明loop環(huán)抗原表位合成肽能夠與相關(guān)抗體相互作用[9]。研究表明,loop環(huán)中保守的ArgGlyAsp(RGD)序列是細(xì)胞整合素識別位點(diǎn),RGD序列與口蹄疫病毒侵入細(xì)胞密切相關(guān)[10-12],且RGD序列兩側(cè)的殘基高度可變。因此,研究人員在重組亞洲I型口蹄疫病毒GHloop環(huán)中的150~151氨基酸之間插入含有10個(gè)氨基酸的保守序列(RTSRRGDAAA)成功完成病毒拯救。將FLAG外源多肽嵌入口蹄疫衣殼蛋白GHloop環(huán)RGD基序上游,成功構(gòu)建了FLAG標(biāo)記的重組口蹄疫病毒[13]。O型口蹄疫病毒中和表位插入亞洲I型口蹄疫GHloop可變區(qū)成功構(gòu)建出多表位重組口蹄疫病毒,誘導(dǎo)機(jī)體能產(chǎn)生抗2種血清型的中和抗體[14]。以上研究均證實(shí)口蹄疫病毒GHloop可變區(qū)耐受外源多肽的插入。
病毒樣顆粒(Virus like particles,VLPs)作為最接近自然病毒粒子但不含病毒基因的類病毒顆粒在多個(gè)研究領(lǐng)域的突破性進(jìn)展盡顯其顯著優(yōu)勢,尤其在疫苗研究及應(yīng)用領(lǐng)域。VLPs重復(fù)且有序排列的抗原表位能夠誘導(dǎo)近乎病毒自然感染的免疫力,被認(rèn)為是目前最具優(yōu)勢的候選疫苗。目前有多種病毒都進(jìn)行了病毒樣顆粒疫苗的研究,如口蹄疫病毒[15-17]、豬圓環(huán)病毒[18-19]、人免疫缺陷性病毒[20]、乳頭瘤病毒[21-23]等,病毒樣顆粒疫苗的免疫效果與全病毒疫苗(滅活苗或弱毒苗)接近,但在交叉免疫方面仍然存在缺陷。因此,研究人員在病毒樣顆粒疫苗研究的基礎(chǔ)上進(jìn)一步開始研究多價(jià)或多聯(lián)病毒樣顆粒疫苗,如嵌合型細(xì)小病毒樣顆粒疫苗[24-25]、乳頭瘤病毒多聯(lián)病毒樣顆粒疫苗[26-28]。
基于口蹄疫病毒樣顆粒體外組裝的研究及口蹄疫病毒GHloop獨(dú)特的特點(diǎn),筆者將FLAG標(biāo)簽蛋白插入衣殼蛋白GHloop環(huán),通過大腸桿菌原核表達(dá)技術(shù)表達(dá)口蹄疫病毒衣殼蛋白并體外組裝出嵌合FLAG外源多肽的口蹄疫病毒樣顆粒。筆者首次體外組裝嵌合型口蹄疫病毒樣顆粒,以期為研究制備多聯(lián)或多價(jià)口蹄疫病毒樣顆粒疫苗奠定基礎(chǔ)。
1 材料與方法
1.1 質(zhì)粒、菌種、表達(dá)載體及抗體
含南非2型FMDV分離株VP1、VP0和VP3編碼區(qū)的重組克隆質(zhì)粒pUC57SAT2V1、pUC57SAT2V0及pUC57SAT2V3由家畜疾病病原生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室保存。帶有 SUMO 和 6×His 融合標(biāo)簽的 pSMK、pSMA表達(dá)載體、JM109大腸桿菌及BL21(DE3)RIL表達(dá)菌株,均購自生工生物工程(上海)有限公司。小鼠抗 His 單克隆抗體、辣根過氧化物酶(HRP)標(biāo)記兔抗鼠IgG抗體、兔抗FLAG單克隆抗體、辣根過氧化物酶(HRP)標(biāo)記山羊抗兔IgG抗體,均購自Sigma公司。
3 討論
大腸桿菌缺乏外源蛋白翻譯后修飾體系,因此通常情況下大腸桿菌表達(dá)的外源蛋白大多以包涵體的形式存在,包涵體純化需要變性、復(fù)性對衣殼蛋白的空間結(jié)構(gòu)損傷較大,不利于體外包裝病毒樣顆粒。筆者對衣殼蛋白進(jìn)行小泛素化修飾增加了目的蛋白的水溶性,實(shí)現(xiàn)了大腸桿菌可溶性表達(dá)口蹄疫衣殼蛋白,不僅為體外組裝病毒樣顆粒提供充足的蛋白,還保證了衣殼蛋白的空間構(gòu)象不被破壞。尤其小泛素化修飾蛋白酶特異性識別小泛素化修飾蛋白可以通過小泛素化修飾蛋白酶將小泛素化修飾蛋白與目的蛋白分離使目的蛋白以天然構(gòu)象存在,避免了小泛素化修飾蛋白對衣殼蛋白組裝的影響。
口蹄疫病毒結(jié)構(gòu)蛋白VP1 GHloop環(huán)包含口蹄疫病毒主要抗原表位,能夠誘導(dǎo)機(jī)體產(chǎn)生保護(hù)性中和抗體反應(yīng),其結(jié)構(gòu)研究表明loop環(huán)突出于病毒衣殼表面且RGD基序周圍是高度可變區(qū),這為可變區(qū)內(nèi)插入外源表位提供了理論依據(jù)。目前,通過細(xì)小病毒VP1獨(dú)特區(qū)及乳頭瘤病毒loop區(qū)插入外源表位成功制備出高免疫力嵌合型病毒樣顆粒疫苗,這為制備嵌合型口蹄疫病毒樣顆粒奠定了實(shí)踐基礎(chǔ)。亞洲1型口蹄疫病毒免疫表位插入O型口蹄疫病毒GHloop可變區(qū)既不影響O型口蹄疫病毒的復(fù)制,同時(shí)制備的重組病毒能夠被特定的抗O型和亞洲1型特定表位的抗體識別,說明GHloop可變區(qū)免疫表位的插入沒有破壞O型口蹄疫病毒loop可變區(qū)的免疫表位,且將亞洲1型口蹄疫病毒特定免疫表位呈遞到病毒衣殼表面。目前研究表明二十面體病毒樣顆粒在組裝過程中跟真實(shí)病毒組裝相似,組裝過程中都會由衣殼蛋白組裝成單體,再由單體通過共價(jià)鍵或疏水作用有序聚集形成組裝前體或病毒樣顆粒,因此推測GHloop環(huán)可變區(qū)插入外源多肽不會影響口蹄疫病毒衣殼蛋白的組裝,能夠形成嵌合型病毒樣顆粒。該試驗(yàn)表明loop可變區(qū)150~151氨基酸位點(diǎn)FLAG標(biāo)簽蛋白的插入沒有影響蛋白空間構(gòu)象,并成功組裝出嵌合型口蹄疫病毒樣顆粒。這表明口蹄疫loop可變區(qū)引入外源抗原是可行的,但外源多肽的大小及理化性質(zhì)會影響病毒樣顆粒的組裝效率。對于外源多肽的插入是否會影響或破壞口蹄疫病毒本身的抗原表位,有待進(jìn)一步研究。
參考文獻(xiàn)
[1] DOMINGO E,BARANOWSKI E,ESCARMIS C,et al.Footandmouth disease virus[J].Comp Immunol Microbiol Infect Dis,2002,25:297-308.
[2] MASON P W,GRUBMAN M J,BAXT B.Molecular basis of pathogenesis of FMDV[J].Virus Res,2003,91:9-32.
[3] PEREIRA H G.Subtyping of footandmouth disease virus[J].Dev Biol Stand,1976,35:167-174.
[4] ACHARYA R,F(xiàn)RY E,STUART D,et al.The threedimensional structure of footandmouth disease virus at 2.9 A resolution[J].Nature,1989,337:709-716.
[5] LOGAN D,ABUGHAZALEH R,BLAKEMORE W,et al.Structure of a major immunogenic site on footandmouth disease virus[J].Nature,1993,362:566-568.
[6] MATEU M G,MARTINEZ M A,ROCHA E,et al.Implications of a quasispecies genome structure:effect of frequent,naturally occurring amino acid substitutions on the antigenicity of footandmouth disease virus[J].Proc Natl Acad Sci USA,1989,86:5883-5887.
[7] PFAFF E,MUSSGAY M,BOHM H O,et al.Antibodies against a preselected peptide recognize and neutralize foot and mouth disease virus[J].EMBO J,1982,1:869-874.
[8] STROHMAIER K,F(xiàn)RANZE R,ADAM K H.Location and characterization of the antigenic portion of the FMDV immunizing protein[J].J Gen Virol,1982,59:295-306.
[9] BITTLE J L,HOUGHTEN R A,ALEXANDER H,et al.Protection against footandmouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence[J].Nature,1982,298:30-33.
[10] BURMAN A,CLARK S,ABRESCIA N G,et al.Specificity of the VP1 GH loop of FootandMouth Disease virus for alphav integrins[J].J Virol,2006,80:9798-9810.
[11] JACKSON T,ELLARD F M,GHAZALEH R A,et al.Efficient infection of cells in culture by type O footandmouth disease virus requires binding to cell surface heparan sulfate[J].J Virol,1996,70:5282-5287.
[12] MATEU M G,VALERO M L,ANDREU D,et al.Systematic replacement of amino acid residues within an ArgGlyAspcontaining loop of footandmouth disease virus and effect on cell recognition[J].J Biol Chem,1996,271:12814-12819.
[13] LAWRENCE P,PACHECO J M,UDDOWLA S,et al.Footandmouth disease virus(FMDV)with a stable FLAG epitope in the VP1 GH loop as a new tool for studying FMDV pathogenesis[J].Virology,2013,436:150-161.
[14] WANG H,XUE M,YANG D,et al.Insertion of type Oconserved neutralizing epitope into the footandmouth disease virus type Asia1 VP1 GH loop:effect on viral replication and neutralization phenotype[J].J Gen Virol,2012,93:1442-1448.
[15] GOODWIN S,TUTHILL T J,ARIAS A,et al.Footandmouth disease virus assembly:processing of recombinant capsid precursor by exogenous protease induces selfassembly of pentamers in vitro in a myristoylationdependent manner[J].J Virol,2009,83:11275-11282.
[16] GUO H C,SUN S Q,JIN Y,et al.Footandmouth disease viruslike particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs,swine and cattle[J].Vet Res,2013,44:48.
[17] LEE C D,YAN Y P,LIANG S M,et al.Production of FMDV viruslike particles by a SUMO fusion protein approach in Escherichia coli[J].J Biomed Sci,2009,16:69.
[18] WU P C,LIN W L,WU C M,et al.Characterization of porcine circovirus type 2 (PCV2)capsid particle assembly and its application to viruslike particle vaccine development[J].Appl Microbiol Biotechnol,2012,95:1501-1507.
[19] YIN S,SUN S,YANG S,et al.Selfassembly of viruslike particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli[J].Virol J,2010,7:166.
[20] CAMPBELL S,F(xiàn)ISHER R J,TOWLER E M,et al.Modulation of HIVlike particle assembly in vitro by inositol phosphates[J].Proc Natl Acad Sci USA,2001,98:10875-10879.
[21] XIE M,LI S,SHEN W,et al.[Expression,purification and immunogenicity analysis of HPV type 18 viruslike particles from Escherichia coli[J].Chinese Journal of Biotechnology,2009,25:1082-1087.
[22] YAN C,LI S,WANG J,et al.[Expression,purification and immunogenicity of human papillomavirus type 11 viruslike particles from Escherichia coli[J].Acta microbiologica Sinica,2009,49:1527-1533.
[23] ZHANG W,CARMICHAEL J,F(xiàn)ERGUSON J,et al.Expression of human papillomavirus type 16 L1 protein in Escherichia coli:denaturation,renaturation,and selfassembly of viruslike particles in vitro[J].Virology,1998,243:423-431.
[24] CASAL J I,RUEDA P,HURTADO A.Parvoviruslike particles as vaccine vectors[J].Methods,1999,19:174-186.
[25] RUEDA P,HURTADO A,DEL BARRIO M,et al.Minor displacements in the insertion site provoke major differences in the induction of antibody responses by chimeric parvoviruslike particles[J].Virology,1999,263:89-99.
[26] MULLER M,ZHOU J,REED T D,et al.Chimeric papillomaviruslike particles[J].Virology,1997,234:93-111.
[27] SLUPETZKY K,SHAFTIKERAMAT S,LENZ P,et al.Chimeric papillomaviruslike particles expressing a foreign epitope on capsid surface loops[J].J Gen Virol,2001,82:2799-2804.
[28] XU Y F,ZHANG Y Q,XU X M,et al.Papillomavirus viruslike particles as vehicles for the delivery of epitopes or genes[J].Arch Virol,2006,151:2133-2148.