周璇 唐蘭芬 敖當(dāng)
隨著對胰高血糖素樣肽-1(GLP-1)及其類似物的深入研究,其葡萄糖依賴性的降糖作用,胰島及心血管系統(tǒng)的保護(hù)作用,已逐漸被人們認(rèn)識(shí)。近年來,研究表明 GLP-1及其類似物具有腦保護(hù)作用。本文將對GLP-1及其類似物的腦保護(hù)作用作一綜述。
1.1 胰高血糖素-1 胰高血糖素樣肽-1(GLP-1)又稱為腸促胰島素,胰升血糖素樣肽-1,類胰升血糖素-1。是一種主要由分布于結(jié)腸和直腸的腸道L細(xì)胞分泌的含30個(gè)氨基酸的多肽類物質(zhì)[1-2],通過與胰高血糖素樣-1受體(GLP-1R)結(jié)合而發(fā)揮作用,如促進(jìn)胰島素的合成和分泌、促進(jìn)胰島β細(xì)胞增殖和新生、抑制胰高血糖素分泌、減少食物攝取、能延緩胃排空、以及增強(qiáng)外周組織的葡萄糖利用和減少肝糖輸出等[3]。臨床上已用于成年人2型糖尿?。―M-2)的治療。但是GLP-1在人體內(nèi)半衰期短,僅1~2 min即被二肽酶(DPP-Ⅳ)快速降解而失去活性[4-5],使得其生物學(xué)效應(yīng)受到很大限制。
1.2 利拉魯肽 利拉魯肽(Liraglutide)是人工合成的GLP-1長效類似物,是通過基因重組技術(shù)將GLP-1第34位的賴氨酸替換為纈氨酸,第26位增加一條棕櫚酰脂肪酸側(cè)鏈而形成。經(jīng)證實(shí),利拉魯肽與人的GLP-1具有97%同源性[6],具有GLP-1的各種生理作用,且半衰期長達(dá)13 h[5]。在歐洲,美國及我國已批準(zhǔn)上市,用于成年人DM-2的治療。近年來,研究表明利拉魯肽不僅具有降糖作用,還可通過血腦屏障[7-9],與GLP-1R結(jié)合發(fā)揮腦保護(hù)作用。目前,國內(nèi)外已有利拉魯肽腦保護(hù)作用的臨床前期研究。
1.3 Exendin-4 Exendin-4是 Eng和Raufman從一種美洲毒蜥蜴的唾液中分離得到GLP-1的類似物,親和力和生理活性都遠(yuǎn)大于GLP-1,它的氨基酸殘基與哺乳動(dòng)物GLP-1序列有52%的同源性[10],在于N端第2位的甘氨酸(Gly)可抵抗血液中二肽基肽酶(DPP-Ⅳ)的降解作用,入血后的半衰期較長約2.4 h。研究表明,Exendin-4是一種強(qiáng)效GLP-1受體激動(dòng)劑。臨床上也已用于DM-2的治療。
近年來,研究發(fā)現(xiàn)除了腸道分泌GLP-1外,大腦中也產(chǎn)生少量的GLP-1,尤其是孤束核、后極區(qū)、腦干尾部[11-16]。且GLP-1R不僅存在于胰島細(xì)胞中,在腎臟、心臟、胃、肺和周圍及中樞神經(jīng)系統(tǒng)區(qū)域等都有表達(dá)[17]。在中樞神經(jīng)系統(tǒng),GLP-1 R表達(dá)于下丘腦,海馬,皮層及小腦[16,18]。已有研究證實(shí)GLP-1及其類似物利拉魯肽,Exendin-4都可以通過血腦屏障[9,19],促進(jìn)神經(jīng)細(xì)胞生長、增值、修復(fù)及抑制凋亡、減輕炎癥反應(yīng)[20]。另外,GLP-1及其類似物可以改善記憶和大腦中的突觸可塑性[21],增加腦血流量和提高認(rèn)知能力[22]。因此GLP-1及其類似物的神經(jīng)保護(hù)作用是它們極有可能成為治療中樞神經(jīng)系統(tǒng)疾病的新型藥物。
事實(shí)上,GLP-1及其類似物不僅具有神經(jīng)保護(hù)作用,還具有抗炎效應(yīng)。研究表明,活化的星形細(xì)胞和小膠質(zhì)細(xì)胞參與免疫,炎癥反應(yīng),誘導(dǎo)GLP-1受體的表達(dá)。GLP-1治療可以預(yù)防內(nèi)毒素誘導(dǎo)星形細(xì)胞和小膠質(zhì)細(xì)胞釋放細(xì)胞因子白介素-1(IL-β),而IL-β能促進(jìn)炎癥反應(yīng),增強(qiáng)凋亡相關(guān)信號(hào)及減慢神經(jīng)元的傳導(dǎo)[23]。Exendin-4在動(dòng)脈粥樣硬化的炎癥反應(yīng)中能減少大動(dòng)脈血管內(nèi)皮的單核細(xì)胞黏附,而且能夠預(yù)防由LPS誘導(dǎo)的細(xì)胞因子和趨化因子的釋放[24],增加微血管的通透性。另外,有研究表明在大腦的慢性炎癥中,利拉魯肽除了可以減少大腦皮層、海馬齒狀回活化的小膠質(zhì)細(xì)胞、大腦皮層的星形膠質(zhì)細(xì)胞外,還可減少促炎因子IL-β、IL-12p70、IL-6,以及亞硝酸鹽的含量[20]。這就表明GLP-1及其類似物可以用于治療神經(jīng)系統(tǒng)疾病的炎癥反應(yīng)。
4.1 阿爾茲海默病 阿爾茲海默?。ˋlzheimer disease,AD)是最常見的癡呆類型,又稱為老年性癡呆, 是一種具有年齡相關(guān)性的以記憶力損害和進(jìn)行性的認(rèn)知障礙為主的中樞神經(jīng)系統(tǒng)退行性病變的疾病[25-26]。嚴(yán)重威脅著老年人的健康,也為社會(huì)經(jīng)濟(jì)帶來巨大負(fù)擔(dān)。目前認(rèn)為DM-2是阿爾茲海默病的危險(xiǎn)因素,AD患者也可能發(fā)展為DM-2,這兩者之間存在著一些相同的病理生理學(xué)特征,比如在AD患者的大腦灰質(zhì)中有淀粉樣蛋白-β(Aβ)過量集聚,而在DM-2患者的胰腺中有淀粉樣蛋白(IAPP)沉積,過早的細(xì)胞變性被認(rèn)為是這兩種疾病的共同特征[22]。最近,對胰島素受體、胰島素受體底物蛋白-1(IRS-1)的信號(hào)途徑的研究表明,AD的一些病理的特征和認(rèn)知缺陷可能是由于大腦的胰島素抵抗所造成,這種胰島素抵抗可能是由于Aβ沉積引起小膠質(zhì)細(xì)胞釋放細(xì)胞因子抑制IRS-1的絲氨酸而形成[27]。因此,降糖新藥GLP-1及其類似物L(fēng)iraglutide及Exendin-4等用于AD的治療逐漸被人們所重視。最近的研究表明在阿爾茨海默病的APP/PS1的小鼠模型上,利拉魯肽可通過血腦屏障,防止損害記憶的形成和突觸可塑性,增加軸突數(shù)量,減少淀粉樣蛋白斑塊負(fù)荷,提高齒狀回的神經(jīng)祖細(xì)胞的增殖和神經(jīng)細(xì)胞的發(fā)生[28],減少氧化應(yīng)激和大腦的炎癥反應(yīng)[8],利拉魯肽不僅能在阿爾茲海默病發(fā)展的早期發(fā)揮預(yù)防作用。在阿爾茲海默病晚期也有恢復(fù)效應(yīng)[29]。Exendin-4也被證實(shí)在AD的轉(zhuǎn)基因小鼠模型上有一系列神經(jīng)保護(hù)效應(yīng)[30],它能夠減少小鼠大腦中的內(nèi)源性Aβ的水平,還能夠劑量依賴性的保護(hù)Aβ誘導(dǎo)的細(xì)胞凋亡[31]。Exendin-4與GLP-1受體結(jié)合后,還能激活腺苷酸環(huán)化酶(AC),從而催化ATP生成cAMP,提高胞內(nèi)cAMP水平,觸發(fā)Ca2+內(nèi)流,增加神經(jīng)遞質(zhì)的釋放,加快神經(jīng)興奮性傳導(dǎo),增強(qiáng)學(xué)習(xí)、記憶和認(rèn)知能力。總而言之GLP-1類似物促進(jìn)突觸形成,神經(jīng)發(fā)生,細(xì)胞修復(fù),減輕炎癥反應(yīng),以及減少大腦中淀粉樣斑塊的作用使之能成為治療AD的新型藥物。
4.2 帕金森病 帕金森病(idiopathic Parkinson’s disease,PD)是一種以靜止震顫、肌張力增高、動(dòng)作遲緩及減少、姿勢不穩(wěn)為主要特征的錐體外系運(yùn)動(dòng)功能障礙性疾病。是中老年人常見的神經(jīng)系統(tǒng)變性疾病,也是中老年人最常見的錐體外系疾病。PD的主要病理特征為選擇性黑質(zhì)致密區(qū)多巴胺(DA)神經(jīng)元丟失,而經(jīng)研究證實(shí),在PD的動(dòng)物模型中,Exendin-4使合成多巴胺的相關(guān)酶類表達(dá)增加,保護(hù)多巴胺能神經(jīng)元和預(yù)防基底神經(jīng)節(jié)的多巴胺丟失[32],如:在6-羥基多巴胺(6-OHDA)和內(nèi)毒素(LPS)構(gòu)建的PD大鼠模型上,Exendin-4可以減少苯丙胺誘導(dǎo)的大鼠旋轉(zhuǎn)行為,增加基底神經(jīng)節(jié)的多巴胺水平,減少多巴胺能神經(jīng)元的損傷[33];在1-甲基-4-苯基-1, 2, 3, 6-四氫吡啶(MPTP)誘導(dǎo)的PD小鼠模型上,Exendin-4可以通過抑制黑質(zhì)紋狀體小膠質(zhì)細(xì)胞的過度活化,基質(zhì)蛋白酶-3(MMP-3)的表達(dá)來保護(hù)多巴胺能神經(jīng)元[34]。另外,Exendin-4還能減少炎癥因子如TNF-α、IL-1β的釋放,減少多巴胺能神經(jīng)元的損傷。也有研究表明,Exendin-4促進(jìn)PD小鼠大腦側(cè)腦室室管膜下層的神經(jīng)干細(xì)胞增生[35]?;谶@些臨床前期研究,GLP-1類似物極有可能為PD患者帶來福音。
4.3 腦卒中、腦缺血 腦卒中(Stroke)又稱腦中風(fēng),是一種突然起病的腦血液循環(huán)障礙性疾病。又稱為腦血管意外。是指在腦血管疾病的患者,因各種誘發(fā)因素引起腦內(nèi)動(dòng)脈狹窄,閉塞或破裂,而造成急性腦血液循環(huán)障礙,臨床上表現(xiàn)為一過性或永久性腦功能障礙的癥狀和體征。GLP-1類似物的抗炎效應(yīng)和神經(jīng)保護(hù)效應(yīng)使它們有望成為治療腦卒中的新型藥物。在Wistar大鼠的腦卒中模型,Wistar大鼠經(jīng)過90 min的大腦中動(dòng)脈血流阻斷,再經(jīng)恢復(fù)血流1 h后,隨機(jī)分為利拉魯肽治療組,生理鹽水治療組。治療24 h后評估發(fā)現(xiàn)利拉魯肽治療組與生理鹽水治療組相比外周學(xué)血糖水平并無明顯差異。利拉魯肽治療組大鼠的行為評分比生理鹽水組大大提高,腦梗死面積減少,活性氧代謝產(chǎn)物的誘導(dǎo)水平降低,大腦皮層的血管內(nèi)皮生長因子(VEGF)增加。這表明了利拉魯肽可以通過抗氧化應(yīng)激和上調(diào)VEGF對腦卒中發(fā)揮神經(jīng)保護(hù)效應(yīng)[36]。在Stroke的大鼠模型中,Exendin-4也被證明能減少大腦的梗死面積、改善行為障礙[34],減少腦缺血再灌注誘導(dǎo)的神經(jīng)元死亡、氧化應(yīng)激、小膠質(zhì)細(xì)胞活化后的炎癥反應(yīng)[37]。此外,在暫時(shí)性腦缺血(transient cerebral ischemia)的沙土鼠模型上,可觀察到Exendin-4治療后,海馬CA1區(qū)GLP-1 R表達(dá)增加。這些臨床前期研究表明,GLP-1類似物能有效的治療腦卒中,腦缺血。
臨床前實(shí)驗(yàn)表明,GLP-1類似物利拉魯肽、艾塞那肽除具有降糖作用外,還具有一系列神經(jīng)保護(hù)特性和抗炎特性,且因其降糖作用呈葡萄糖依賴性,很少發(fā)生低血糖事件,胃腸道反應(yīng)也較輕微。因此,GLP1類似物很有可能為神經(jīng)系統(tǒng)退行性疾病的治療開辟新的道路,目前其對于AD和PD的治療已進(jìn)入臨床實(shí)驗(yàn)階段。但是其作用機(jī)制未完全清楚,還需要大量的臨床研究和實(shí)驗(yàn)數(shù)據(jù)的支持。
[1]Drucker D J, Nauck M A.The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes[J].Lancet,2006,368(9548):1696-705.
[2]Lovshin J A, Drucker D J. Incretin-based therapies for type 2 diabetes mellitus[J].Nat Rev Endocrinol,2009,5(5):262-269..
[3]Salehi M, Aulinger B A, D’Alessio D A. Targeting beta-cell mass in type 2 diabetes: promise and limitations of new drugs based on incretins[J]. Endocr Rev,2008,29(3):367-379.
[4]Green B D, Flatt P R, Bailey C J. Dipeptidyl peptidase IV (DPP IV)inhibitors: A newly emerging drug class for the treatment of type 2 diabetes[J].Diab Vasc Dis Res,2006,3(3):159-165.
[5]Vilsb?ll T, Agers? H, Krarup T, et al. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects[J]. J Clin Endocrinol Metab,2003,88(1):220-224.
[6]Vilsboll T. Liraglutide: a new treatment for type 2 diabetes[J]. Drugs Today (Barc),2009,45(2):101-113.
[7]Kastin A J, Akerstrom V, Pan W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier[J]. J Mol Neurosci,2013,18(1-2):7-14.
[8]McClean P L, Parthsarathy V, Faivre E,et al.The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease[J]. J Neurosci,2011,31(17):6587-6594.
[9]Hunter K, H?lscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis[J]. BMC Neurosci,2012,13(12):33.
[10]Eng J, Kleinman W A, Singh L,et al. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas[J]. J Biol Chem,1992,267(11):7402-7405.
[11]Campos R V, Lee Y C, Drucker D J. Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse[J]. Endocrinology,1994,134(5):2156-2164.
[12]Calvo J C,Gisolfi C V,Blazquez E,et al.Glucagon-like peptide-1(7-36)amide induces the release of aspartic acid and glutamine by the ventromedial hypothalamus of the conscious rat[J]. Brain Res Bull, 1995,38(5):435-439.
[13]Alvarez E, Roncero I, Chowen J A, et al. Expression of the glucagonlike peptide-1 receptor gene in rat brain[J].J Neurochem,1996,66(3):920-927.
[14]Alvarez E, Martínez M D, Roncero I, et al. The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem[J].J Neurochem,2005,92(4):798–806.
[15]Larsen P J, Tang-Christensen M, Holst J J, et al. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem[J]. Neuroscience,1997,77(1):257-270.
[16]Hamilton A, H?lscher C. Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system[J].Neuroreport,2009,20(13):1161-1166.
[17]Tibaduiza E C, Chen C, Beinborn M. A small molecule ligand of the glucagon-like peptide 1 receptor targets its amino-terminal hormone binding domain[J]. J Biol Chem,2001,276(41):37 787-37 793.
[18]Abbas T, Faivre E, H?lscher C. Impairment of synaptic plasticity and memory formation in GLP-1 receptor KO mice: Interaction between type 2 diabetes and Alzheimer’s disease[J].Behav Brain Res,2009,205(1):265-271.
[19]Kastin A J, Akerstrom V. Entry of exendin-4 into brain is rapid but may be limited at high doses[J].Int J Obes Relat Metab Disord,2003,27(3):313-318.
[20]Parthsarathy V, H?lscher C. The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain[J]. Eur J Pharmacol,2013,700(1-3):42-50.
[21]Holscher C. Incretin analogues that have been developed to treat type 2 diabetes hold promise as a novel treatment strategy for Alzheimer’s disease[J].Recent Pat CNS DrugDiscov,2010,5(2):109-117.
[22]Egefjord L, Gejl M, M?ller A, et al. Effects of liraglutide on neurodegeneration, blood flow and cognition in Alzheimer’s diseaseprotocol for a controlled, randomized double-blinded trial[J]. Dan Med J,2012,59(10):A4519.,
[23]Iwai T, Ito S, Tanimitsu K,et al. Glucagon-like peptide-1 inhibits LPS-induced IL-1beta production in cultured rat astrocytes[J].Neurosci Res,2006,55(4):352-360.
[24]Arakawa M, Mita T, Azuma K, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4[J]. Diabetes,2010,59(4):1030-1037.
[25]Kivipelto M. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal,population based study[J].BMJ,2001,322(7300):1447–1451.
[26]Kivipelto M, Helkala E-L, Laakso M P, et al. Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for latelife Alzheimer disease[J]. Ann Intern Med, 2002,137(3):149-155.
[27]Talbot K, Wang H-Y. The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer’s disease[J]. Alzheimers Dement,2014,10(1S):S12–S25.
[28]H?lscher C.The incretin hormones glucagonlike peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer’s disease[J].Alzheimers Dement,2014,10(1S):S47–S54.
[29]McClean P L, H?lscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice,a model of Alzheimer’s disease[J]. Neuropharmacology,2014,76(Pt A):57-67.
[30]Li Y, Duffy K B, Ottinger M A, et al. GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease[J].J Alzheimers Dis,2010,19(4):1205-1219.
[31]Perry T, Lahiri D K, Sambamurti K, et al. Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron[J]. J Neurosci Res,2003,72(5):603-612.
[32]Holscher C.Central effects of GLP-1:new opportunities for treatments of neurodegenerative diseases[J]. J Endocrinol,2013,145(89):540-556.
[33]Harkavyi A, Abuirmeileh A, Lever R,et al. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease[J]. J Neuroinflammation,2008,5(12):19.
[34]Li Y, Perry T, Kindy M S, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism[J].Proc Natl Acad Sci U S A,2009,106(4):1285-1290.
[35]Bertilsson G, Patrone C, Zachrisson O, et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease[J]. J Neurosci Res,2008,86(2):326-338.
[36]Sato K, Kameda M, Yasuhara T, et al. Neuroprotective effects of liraglutide for stroke model of rats[J]. Int J Mol Sci,2013,14(11):21 513–21 524.
[37]Teramoto S, Miyamoto N, Yatomi K, et al. Exendin-4, a glucagonlike peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2011,31(8):1696–1705.
中國醫(yī)學(xué)創(chuàng)新2014年14期