趙旭龍 王偉
摘 要:在這篇文章中,假定市場(chǎng)經(jīng)濟(jì)狀態(tài)由一個(gè)兩狀態(tài)馬爾可夫鏈描述,風(fēng)險(xiǎn)資產(chǎn)滿足一個(gè)兩狀態(tài)的馬爾可夫調(diào)制過程。當(dāng)市場(chǎng)處于高波動(dòng)狀態(tài)時(shí),風(fēng)險(xiǎn)資產(chǎn)的價(jià)格滿足跳擴(kuò)散過程;當(dāng)市場(chǎng)處于穩(wěn)定狀態(tài)時(shí),風(fēng)險(xiǎn)資產(chǎn)的價(jià)格滿足幾何布朗運(yùn)動(dòng).通過測(cè)度變換的技術(shù),得到了交換期權(quán)的定價(jià)公式。最后,利用蒙特卡洛方法給出了期權(quán)價(jià)值的數(shù)值結(jié)果。
關(guān)鍵詞:馬爾可夫;期權(quán)定價(jià);蒙特卡洛模擬
中圖分類號(hào):F830 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-291X(2014)10-0120-04
引言
馬爾可夫調(diào)制模型是近年來非常受歡迎的一種金融模型,國內(nèi)外大量學(xué)者將其應(yīng)用到金融的多個(gè)領(lǐng)域當(dāng)中,并取得了豐碩的研究成果。有關(guān)馬爾可夫調(diào)制模型下資產(chǎn)定價(jià)方面,Guo [1]考慮了當(dāng)標(biāo)的資產(chǎn)價(jià)格滿足馬爾可夫調(diào)制的幾何布朗運(yùn)動(dòng)時(shí)歐式期權(quán)定價(jià)題。Guo [2]得到了在馬爾可夫調(diào)制模型下美式期權(quán)的定價(jià)公式。Siu [3]研究了當(dāng)市場(chǎng)中風(fēng)險(xiǎn)資產(chǎn)價(jià)格滿足馬爾可夫調(diào)制的幾何布朗運(yùn)動(dòng)時(shí),嵌入退保期權(quán)的分紅保單的價(jià)值。Boyle和Draviam [4]研究了馬爾可夫調(diào)制的幾何布朗運(yùn)動(dòng)時(shí)奇異期權(quán)的定價(jià)問題。Bo et al[5]研究了馬爾可夫調(diào)制的跳擴(kuò)散模型下外匯期權(quán)的定價(jià)問題。Wang和Wang[6]研究了馬爾可夫調(diào)制模型下歐式脆弱期權(quán)的定價(jià)問題。在這篇文章中我們考慮一個(gè)兩狀態(tài)馬爾可夫調(diào)制模型,市場(chǎng)狀態(tài)由一連續(xù)時(shí)間馬爾可夫鏈描述,假定市場(chǎng)處于穩(wěn)定狀態(tài)時(shí),股票價(jià)格滿足幾何布朗運(yùn)動(dòng);而當(dāng)市場(chǎng)處于高波動(dòng)狀態(tài)時(shí),股票價(jià)格服從跳擴(kuò)散過程。從文中的數(shù)值結(jié)果可以發(fā)現(xiàn)市場(chǎng)的經(jīng)濟(jì)狀態(tài)對(duì)期權(quán)價(jià)值有著很大的影響,因此我們考慮的問題是有意義的。
三、數(shù)值模擬
馬爾可夫調(diào)制的跳擴(kuò)散模型下交換期權(quán)的價(jià)值比在Black-Scholes模型下的價(jià)值大,這說明了跳風(fēng)險(xiǎn)對(duì)期權(quán)價(jià)值有著很大的影響,在金融模型中忽略了跳風(fēng)險(xiǎn)的存在可能會(huì)嚴(yán)重低估期權(quán)的價(jià)值。
參考文獻(xiàn):
[1] Guo,X..Information and option pricing[J].Quantitative Finance,2001,1:28-44.
[2] Guo,X.,Zhang,Q..Closed form solutions for perpetual American put options with regime switching[J].SIAM Journal on Applied
Mathematics,2004,64(6):2034-2049.
[3] Siu,T.K..Fair valuation of participating polices with surrender options and regime switching[J].Insurance:Mathematics and
Economics,2005,37:537-552.
[4] Boyle,P.,Draviam,T..Pricing exotic options under regime switching[J].Insurance:Mathematics and Economics,2007,40:267-282.
[5] Bo,L.J.,Wang,Y.J.,Yang,X.W..Markov-modulated jump diffusions for currency option pricing[J].Insurance:Mathematics and
Economics,2010,46(3):461-469.
[6] Wang,W.,Wang,W.S..Pricing vulnerable options under a Markov-modulated regime switching model[J].Communication in
Statistics-Theory and Methods,2010,39(19):3421-3433.
[7] Ji Hee Yoon,Bong-Gyu Jang,Kum-Hwan Roh.An analytic valuation method for multivariate contingent claims with regime-
switching volatilities[J].Operations research letters,2011,39:180-187.
Pricing Exchange Options Under a Markov-modulated Model
ZHAO XU-long,WANG Wei
(Department of Financial Engineer,Ningbo University,Ningbo 315211,China)
Abstract:In this paper,we suppose that the states of market economy are described by a two-state Markov chain,and the risky asset follows a two-state Markov-modulated process.The risky asset price is driven by a Markov-modulated geometric Brownian motion when the market is stable,but the risky asset follows a jump diffusion process if the market is at a high volatility state.We obtain the pricing formula of a exchange option by measure change.Finally,the result of illustration is provided by Monte Carlo simulation technique.
Key words:Markov;option pricing;Monte Carlo simulation
[責(zé)任編輯 吳明宇]