国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

轉(zhuǎn)2–Cys Prx基因煙草F1幼苗葉片光系統(tǒng)Ⅱ光化學活性對干旱脅迫的響應(yīng)

2014-08-31 07:25:24胡舉偉張會慧逄好勝孫廣玉
關(guān)鍵詞:光化學葉綠體葉綠素

胡舉偉,張會慧,2,逄好勝,孫廣玉*

(1.東北林業(yè)大學生命科學學院,黑龍江 哈爾濱 150040;2.黑龍江省科學院自然與生態(tài)研究所,黑龍江 哈爾濱150040)

轉(zhuǎn)2–Cys Prx基因煙草F1幼苗葉片光系統(tǒng)Ⅱ光化學活性對干旱脅迫的響應(yīng)

胡舉偉1,張會慧1,2,逄好勝1,孫廣玉1*

(1.東北林業(yè)大學生命科學學院,黑龍江 哈爾濱 150040;2.黑龍江省科學院自然與生態(tài)研究所,黑龍江 哈爾濱150040)

以轉(zhuǎn)2–Cys Prx基因煙草(龍江911)為材料,測定和分析了干旱脅迫下轉(zhuǎn)基因煙草的光化學活性。結(jié)果表明:干旱脅迫下,轉(zhuǎn)2–Cys Prx基因煙草葉片OJIP曲線上K點和J點的相對熒光強度增加量明顯低于非轉(zhuǎn)基因煙草,而2 ms時有活性反應(yīng)中心的開放程度(Ψo)明顯高于非轉(zhuǎn)基因煙草;增強2–Cys Prx基因的相對表達,增加了干旱脅迫下煙草葉片PSⅡ電子供體側(cè)OEC的電荷分離能力和受體側(cè)QA向QB的電子傳遞能力;轉(zhuǎn)2–Cys Prx基因煙草葉片在干旱脅迫下,吸收光能用于QA–以后的電子傳遞的能量比例(φEo)明顯大于非轉(zhuǎn)基因煙草,而非光化學猝滅的最大量子產(chǎn)額(φDo)。2–Cys Prx基因的表達可以提高煙草幼苗葉片的光化學活性,并改變光能的分配來增強其抗旱能力。

煙草;2–Cys Prx基因;干旱脅迫;葉綠素熒光動力學曲線;光反應(yīng)

1 材料與方法

1.1 材 料

轉(zhuǎn)2–Cys Prx基因煙草(龍江911)陽性植株種子和非轉(zhuǎn)基因煙草種子(對照)。轉(zhuǎn)2–Cys Prx基因煙草陽性植株幼苗葉片與非轉(zhuǎn)基因煙草幼苗葉片相比,顏色更綠,且葉片略小。

1.2 方 法

試驗于2013年3至6月在東北林業(yè)大學植物生理實驗室進行。轉(zhuǎn)2–Cys Prx基因煙草(記為Prx)和CK幼苗均移栽到直徑12 cm、高15 cm的培養(yǎng)缽中,每缽定植1株,培養(yǎng)基質(zhì)為蛭石。移栽后定期澆灌1/2的Hoagland營養(yǎng)液,置于溫室培養(yǎng), 光照200 μmol/m2·s,室溫25~30 ℃。待幼苗培養(yǎng)30 d,植株生長至6~7葉時,將Prx和CK幼苗均進行一次灌水處理,使基質(zhì)相對含水率達到飽和,停止?jié)菜龠M行自然干旱脅迫處理。

1.3 測定項目和方法

分別于干旱脅迫后的第1、5、9、13、17和21 天,對煙草幼苗葉片進行葉綠素含量和相對含水率測定。葉綠素含量利用CCM–200型葉綠素儀(OPTI–SCIENCES,美國)直接測定,以葉綠素儀的讀數(shù)作為相對葉綠素含量;葉片相對含水率的測定采用稱重法。在干旱脅迫第1天和第21天對煙草葉片進行快速葉綠素熒光動力學曲線(OJIP)的測定。

1.4 數(shù)據(jù)處理和統(tǒng)計方法

運用Excel 2007和DPS軟件對試驗數(shù)據(jù)進行統(tǒng)計分析。

2 結(jié)果與分析

2.1 干旱脅迫對煙草幼苗葉片葉綠素含量和相對率水率的影響

干旱脅迫過程中,轉(zhuǎn)2–Cys Prx基因煙草幼苗葉綠素含量無明顯變化,而CK則明顯降低。葉片相對含水量均呈降低趨勢,從干旱脅迫第9天始,CK幼苗葉片相對含水量降低幅度明顯大于轉(zhuǎn)2–Cys Prx基因煙草。

圖1 干旱脅迫下煙草幼苗葉片相對葉綠素含量和相對含水率Fig.1 Chlorophyll content and relative water content in leaves of tobacco seedlings under drought stress

2.2 干旱脅迫21 d煙草幼苗葉片的快速葉綠素熒光誘導動力學曲線

由圖2–A中可以看出,干旱脅迫21天與第1天相比,OJIP曲線上O點(0 ms)和J點(2 ms)熒光強度增強,I點(30 ms)和P點(1 000 ms)熒光強度降低。將OJIP曲線標準化后(圖2–B)可以發(fā)現(xiàn),干旱脅迫21天與第1天相比,OJIP曲線上J點熒光強度明顯上升,分別將Prx和CK干旱脅迫第21天與第1天的標準化OJIP曲線作差值(圖3–C)也可以看出,Prx幼苗OJIP曲線整體變化幅度均小于CK,且以J點差異最為明顯。

圖2 干旱脅迫第21 天和第1 天的OJIP曲線Fig.2 OJIP for leaves of tobacco seedlings under 21 d and 1 d drought stress

2.3 干旱脅迫21 d對煙草幼苗葉片的放氧復(fù)合體(OEC)的影響

圖3 干旱脅迫第21天和第1天按VO–J=(Ft–Fo)/(FJ–Fo)標準化的O–J曲線和按VO–J標準化后的OKJ曲線差值Fig.3 Chlorophyll a fluorescence transients (O–J) normalized using VO–P=(Ft–Fo)/(FJ–Fo) and difference value of OKJ curve normalized by VO–J under 21 d and 1 d drought stress

將OJIP曲線進行O–J點標準化(圖3–A),結(jié)果發(fā)現(xiàn),干旱脅迫21天與第1天相比,2種煙草幼苗葉片OJIP曲線0.3 ms時(即K點)的熒光強度呈增加趨勢,比較Prx和CK之間的差異(圖3–B)可以看出,干旱脅迫21 d 時,Prx幼苗OJIP曲線上K點的熒光強度增加量明顯低于CK。

2.4 干旱脅迫對煙草幼苗葉片F(xiàn)v/Fm和PIABS的影響

從圖4可以看出,干旱脅迫5 d 后,F(xiàn)v/Fm和PIABS均隨著干旱脅迫的加劇呈降低趨勢,并且PIABS的降低幅度明顯大于CK,干旱脅迫1~13 d,Prx和CK葉片的Fv/Fm和PIABS均無顯著差異(P>0.05),至干旱脅迫17 d后,Prx和CK葉片的Fv/Fm和PIABS達顯著差異水平(P<0.05)。

圖4 干旱脅迫下煙草幼苗葉片F(xiàn)v/Fm和PIABSFig.4 Fv/Fm and PIABS in leaves of tobacco seedlings under drought stress

2.5 干旱脅迫對煙草幼苗葉片VJ和Mo及Ψo的影響

圖5結(jié)果顯示,干旱脅迫13 d后,2種煙草幼苗葉片的VJ和Mo隨著干旱脅迫天數(shù)的增加呈增加趨勢,而Ψo呈降低趨勢,但Prx的變化幅度明顯低于CK,干旱脅迫17和21 d時,Prx和CK之間均達顯著差異水平(P<0.05)。

圖5 干旱脅迫下煙草幼苗葉片VJ和Mo及ΨoFig.5 VJ, Mo and Ψo in leaves of tobacco seedlings under drought stress

2.6 干旱脅迫對煙草幼苗葉片φEo和φDo的影響

圖6結(jié)果顯示,干旱脅迫明顯降低了2種煙草幼苗葉片的φEo,而φDo則隨干旱脅迫的加劇呈增加趨勢。干旱脅迫9 d后,Prx葉片的φEo降低幅度和φDo增加幅度均明顯低于CK,干旱脅迫17和21 d時,Prx幼苗葉片的φEo顯著高于CK(P<0.05),而φDo顯著低于CK(P<0.05)。

圖6 干旱脅迫下煙草幼苗葉片φEo和φDoFig.6 φEo and φDo in leaves of tobacco seedlings under drought stress

3 討 論

植物對光能的吸收、傳遞和轉(zhuǎn)換均是依靠葉綠體來完成的,葉綠體數(shù)量和葉綠素含量直接影響植物對光能的吸收和利用,逆境會抑制葉綠素的合成或加快其降解率[30]。本試驗中,轉(zhuǎn)2–Cys Prx基因煙草幼苗葉片的葉綠素含量明顯高于CK,說明增強2–Cys Prx基因的表達,可以提高煙草幼苗葉綠素含量,并防止干旱脅迫下葉綠素的過快降解。干旱脅迫后期,轉(zhuǎn)2–Cys Prx基因煙草幼苗葉片的相對含水率也明顯高于CK,較高的葉片含水率為葉片光合作用的正常運轉(zhuǎn)提供了保證。

OJIP–test分析中,K相的出現(xiàn)與PSⅡ受體側(cè)特別是OEC的受傷有關(guān),即K點的熒光強度增加越大,OEC的傷害程度越大[31–33],J點熒光強度的增加則表明電子由QA向QB傳遞受阻[34]。干旱21 d時,煙草幼苗葉片的OJIP曲線上K點和J點熒光強度均明顯增加,說明干旱脅迫對煙草幼苗葉片PSⅡ電子供體側(cè)和受體側(cè)均有影響。已有研究證明,光合電子傳遞鏈上電子傳遞能力的降低與D1蛋白有密切關(guān)系,其中D1蛋白的第190位His殘基與原初電子供體中的Mn原子相結(jié)合,D1蛋白的含量會影響水解過程中的電荷分離[35],因此D1蛋白的降解勢必會造成OEC的傷害,即對電子傳遞鏈電子供體側(cè)產(chǎn)生影響;另外D1蛋白的降解與細胞內(nèi)活性氧的濃度有關(guān),特別是H2O2會攻擊D1蛋白上的His殘基而引起D1蛋白的降解,還會造成與Mn原子和QB的結(jié)合程度而影響電子傳遞[36–38],Prxs恰好具有較高的H2O2親和力,增強2–Cys Prx基因表達可有效調(diào)節(jié)葉綠體內(nèi)的ROS水平[39],因此,干旱脅迫第21天時,轉(zhuǎn)2–Cys Prx基因煙草幼苗葉片K點熒光增加程度明顯低于CK,并且整個干旱脅迫過程中VJ和Mo及Ψo的變化幅度也小于CK,VJ和Mo是反映電子由QA向QB傳遞情況的重要指標,而Ψo受PSⅡ供體側(cè)的電子供應(yīng)能力和受體側(cè)(包括PS I)接收電子的能力制約[40],因此,干旱脅迫對轉(zhuǎn)2–Cys Prx基因煙草幼苗葉片無論是供體側(cè)還是受體側(cè)的電子傳遞抑制程度均小于CK,其原因可能與2–Cys Prx基因的表達增加,有效降低了煙草幼苗葉片中的活性氧水平而防止D1蛋白降解有關(guān),但有關(guān)2–Cys Prx基因與D1蛋白合成和降解之間的關(guān)系還有待進一步研究。

細胞內(nèi)ROS濃度的增加是引發(fā)植物光抑制的直接誘因之一[41–42],PIABS反映PSⅡ活性的變化較Fv/Fm更具有代表性[43]。本試驗結(jié)果發(fā)現(xiàn),干旱脅迫下,轉(zhuǎn)2–Cys Prx基因煙草幼苗葉片PIABS和Fv/Fm的降低幅度均明顯小于CK,說明增強2–Cys Prx基因的表達,有效降低了煙草幼苗葉片在干旱脅迫下的光抑制程度。隨著干旱脅迫時間的增加,轉(zhuǎn)2–Cys Prx基因煙草幼苗葉片的φEo降低幅度明顯小于非轉(zhuǎn)基因煙草,且φDo的上升幅度明顯小于非轉(zhuǎn)基因煙草,這說明隨著干旱脅迫的加劇,PSⅡ電荷分離能力和電子受傳遞能力的降低,熱耗散的增加會導致光合電子傳遞鏈上的能量不足,進而造成同化力(ATP和NADPH)積累量和光合碳同化能力的降低,煙草幼苗抗旱能力降低。轉(zhuǎn)2–Cys Prx基因煙草幼苗葉片在干旱脅迫下的光合電子傳遞能量比例明顯大于CK,保證了煙草幼苗干旱脅迫下的碳同化力需求,對提高其抗旱性提供了能量上的保證。

綜上所述,增強2–Cys Prx基因的表達,不但提高了煙草幼苗葉片的葉綠素含量,緩解了干旱脅迫下葉綠素的降解,而且還相對增加了干旱脅迫下煙草幼苗葉片的PSⅡ光化學活性,保證了PSⅡ電子供體側(cè)OEC的電荷分離能力和受體側(cè)的電子傳遞能力,增加了光合電子傳遞鏈上的能量比例,減輕了PSⅡ的光抑制程度,因此增強2–Cys Prx基因的表達,可以提高煙草幼苗葉片的抗旱性。

[1] 譚偉,李慶亮,羅音,等.外源 CaCl2預(yù)處理對高溫脅迫煙草葉片光合作用的影響[J].中國農(nóng)業(yè)科學,2009,42(11):3871–3879.

[2] Hayakawa T,Kanematsu S,Asada K,et al.Occurrence of Cu,Zn-superoxide dismutase in the intrathylakoid space of Spinach chloroplasts[J].Plant and Cell Physiology,1984,25(6):883–889.

[3] Hayakawa T,Kanematsu S,Asada K,et al.Purification and characterization of thylakoid-bound Mn-superoxide dismutase in Spinach chloroplasts[J].Planta,1985,166(1):111–116.

[4] Aran M,F(xiàn)errero D S,Pagano E,et al.Typical 2–Cys peroxiredoxins-modulation by covalent transformations and non covalent interactions[J].The Febs Journal,2009, 276(9):2478–2483.

[5] Asada K.The water-water cycle as alternative photon and electron sinks[J].Philosophical Transactions of the Royal Society Biological Sciences,2000,355(10):1419–1430.[6] Dietz K J,Horling F,Konig J,et al.The function of the chloroplast 2–cysteine peroxiredoxin in peroxide detoxification and its regulation[J].Journal of Experimental Botany,2002,53(2):1321–1329.

[7] Dietz K J.Plant peroxiredoxins[J].Annual Review of Plant Biology,2003,54(1):93–107.

[8] Santos C V D,Rey P.Plant thioredoxins are key actors in the oxidative stress response[J].Trends in Plant Science,2006,11(7):329–334.

[9] Rouhier N,Jacquot J P.Plant peroxiredoxins:Alternative hydroperoxide scavenging enzymes[J].Photosynth Research,2002,74(3):259–268.

[10] Pena-Ahumada A,Kahmann U,Dietz K J,et al. Regulation of peroxiredoxin expression versus expression of Halliwell-Asada-Cycle enzymes during early seedling development of Arabidopsis thaliana[J].Photosynthesis Research,2006,89(2):99–112.

[11] 張海燕,李國田,王曉杰,等.小麥過氧化物還原酶基因TaPrx的克隆與功能初步分析[J].中國農(nóng)業(yè)科學,2009,42(4):1222–1229.

[12] HorlingF,Baier M,Dietz K J.Redox-regulation of the expression of the peroxide-detoxifying chloroplast 2–Cys peroxiredoxin in the liverwort Riccia fluitans[J].Planta,2001,214(2):304–313.

[13] Jang H H,Kim S Y,Park S K,et al.Phosphorylation and concomitant structural changes in human 2–Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular chaperone function[J].FEBS Letters,2006,508(1):351–355.

[14] Baier M,Dietz K J.Protective function of chloroplast 2–cysteine peroxiredoxin in photosynthesis.Evidence from transgenic Arabidopsis[J].Plant Physiology,1999,119(4):1407–1414.

[15] Baier M,Noctor G,F(xiàn)oyer C H,et al.Antisense Suppression of 2–cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism[J].Plant Physiology,2000,124(2):823–832.

[16] Baier M,Dietz K J.Primary structure and expression of plant homologues of animal and fungal thioredoxindependent peroxide reductases and bacterial alkyl hydroper-oxide reductases[J].Plant Molecular Biology,1996,31(3):553–564.

[17] Bhatt I,Tripathi B N.Plant peroxiredoxins:Catalytic mechanisms,functional significance and future perspectives[J].Biotechnology Advances,2011,29(6):850–859.

[18] Brehelin C,Meyer E H,De Souris J P,et al.Resemblance and dissemblance of Arabidopsis type II peroxiredoxins:Similar sequences for divergent gene expression,protein localization,and activity[J].Plant Physiology,2003,132(4):2045–2057.

[19] K?nig J,Lotte K,Plessow R,et al.Reaction Mechanism of Plant 2–Cys Peroxiredoxin.Role of the C terminus and the quaternary structure[J].The Journal of Biological Chemistry,2003,278(27):24409–24420.

[20] Wood Z A,Poole L B,Karohs P A.Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling[J].Science,2003,300(8):650–653.

[21] Contreras L,Moenne A,Gaillard F,et al.Proteomic analysis and identification of copper stress–regulated proteins in the marine alga Scytosiphon gracilis (Phaeophyceae) [J].Aquatic Toxicology,2010,96(2):85–89.

[22] Lim J C,Chio H I,Park Y S.Irreversible oxidation of the active-site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity[J]. Journal of Biological Chemistry,2008,283(43):28873–28880.

[23] Rhee S G,Jeong W,Chang T S,et al.Sulfiredoxin,the cysteine sulfinic acid reductase specific to 2–Cys peroxiredoxin:Its discovery,mechanism of action,and biological significance[J].Kidney International,2007,72(6):23–28.

[24] 康瑞霞,劉震西,劉蕓,等.Prx1對細胞信號轉(zhuǎn)導過程的調(diào)控[J].現(xiàn)代生物醫(yī)學進展,2012,12(11):2186–2190.

[25] Lee W,Choi K S,Riddell J,et al.Human peroxiredoxin 1 and 2 are not duplicate proteins:The unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2[J].Journal of Biological Chemistry,2007,282(30):22011–22022.

[26] K?nig J,Baier M,Horling F,et al.The plant-specific function of 2–Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux[J].PNAS,2002,99(8):5738–5743.

[27] Broin M,Cuine S,Eymery F,et al.The plastidic 2–cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage[J].Plant Cell,2002,14(6):1417–1432.

[28] Zhang L T,Gao H Y,Zhang Z S,et al.Multiple effects of inhibition of mitochondrial alternative oxidase pathway on photosynthetic apparatus in Rumex K–1 leaves[J].Biologia Plantarum,2012,56(2):365–368.

[29] Strasser R J,Srivastava A,Govindjee.Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J].Photochemistry and Photobiology,1995,61(1):32–42.

[30] Ludewig F,Sonnewald U.High CO2-mediated downregulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulation[J].FEBS Letters,2000,479(1):19–24.

[31] Li P M,Cheng L L,Gao H Y,et al.Heterogeneous behavior of PSII in soybean(Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments[J].Journal of Plant Physiology,2009,166(15):1607–1615.

[32] 李慶亮,譚偉,薛明.B型煙粉虱危害對煙草葉片光系統(tǒng)II的影響[J].中國農(nóng)業(yè)科學,2012,45(19):3988–3995.

[33] Strasser B J.Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients[J]. Photosynthesis Research,1997,52(2):147–155.

[34] 張子山,李耕,高輝遠,等.玉米持綠與早衰品種葉片衰老過程中光化學活性的變化[J].作物學報,2013,39(1):93–100.

[35] 匡廷云.光合作用原初光能轉(zhuǎn)化過程的原理與調(diào)控[M].南京:江蘇科學技術(shù)出版社,2003:112–116.

[36] Zhang L T,Zhang Z S,Gao H Y,et al.Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K–1 leaves[J]. Physiologia Plantarum,2011,143(4):396–407.

[37] Nadia A A,Dewez D,Didur O,et al.Inhibition of photosystem photochemistry by Cr is caused by the

Ⅱalteration of both D1 protein and oxygen evolving complex[J].Photosynthesis Research,2006,89(2):81–87.

[38] Suzuki N,Koussevitzky S,Mittler R,et al.ROS and redox signalling in the response of plants to abiotic stress[J].Plant Cell & Environment,2012,35(2):259–270.

[39] 李慧玉,董京祥,姜靜,等.2個檉柳Prx基因的克隆及表達分析[J].北京林業(yè)大學學報,2012,34(3):48–52.

[40] 李耕,高輝遠,趙斌,等.灌漿期干旱脅迫對玉米葉片光系統(tǒng)活性的影響[J].作物學報,2009,35(10):1916–1922.

[41] 張會慧,張秀麗,許楠,等.鹽脅迫下桑樹葉片D1蛋白周轉(zhuǎn)和葉黃素循環(huán)對PSⅡ的影響[J].林業(yè)科學,2013,49(1):99–106.

[42] Murata N,Takahashi S,Nishiyama Y,et al. Photoinhibition of photosystem II under environmental stress[J].Biochimica et Biophysica Acta Bioener-getics,2007,1767(6):414–421.

[43] 孫山,王少敏,王家喜,等.黑暗中脫水對“金太陽”杏離體葉片PSⅠ和PSⅡ功能的影響[J].園藝學報,2008,35(1):1–6.

責任編輯:羅慧敏

英文編輯:羅 維

Response of PSⅡ photochemistry activity of F1progeny of transgenic tobacco seedlings with 2–Cys Prx to drought stress

HU Ju-wei1, ZHANG Hui-hui1,2, PANG Hao-sheng1, SUN Guang-yu1*
(1.College of Life Science, Northeast Forest University, Harbin, Heilongjiang, 150040; 2.Institute of Natural Resources, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, 150040)

Transgenic tobacco plants with 2–Cys Prx (Longjiang911) was chosen to investigate the photochemical activity of transgenic tobacco plants under drought stress. The results showed that the relative fluorescence intensity in K and J point of OJIP curve in leaves of the transgenic tobacco plants with 2–Cys Prx were lower than those of the non transgenic tobacco (CK) under drought stress, but opening degree of surplus active reaction center (Ψo) at 2 ms was significantly higher than that of CK. Improved 2–Cys Prx expression could increase the photocatalytic activity of OEC in PSⅡelectron donor and the electron transport from QAto QBin acceptor side under drought stress. The electron transport chain beyond QA–(φEo) in leaves of the transgenic tobacco plants with 2–Cys Prx were higher compared to the CK, but best quantum yield of non-photochemical quenching (φDo) were less compared to the CK. 2–Cys Prx could increase drought-resistant ability of the transgenic tobacco plants by improving photochemical activity and changing absorbed light allocation in leaves of tobacco seedlings.

tobacco; 2–Cys Prx (gene); drought stress; chlorophyll a fluorescence transient; photoreaction

10.13331/j.cnki.jhau.2014.06.006

投稿網(wǎng)址:http://www.hunau.net/qks

S572.01

A

1007?1032(2014)06?0593?06

逆境下植物葉綠體的捕光色素復(fù)合體所吸收的光能超過光合器官所需的量時,會產(chǎn)生光能過剩,在光系統(tǒng)Ⅱ(PSⅡ)光化學效率降低的情況下,會導致葉綠體內(nèi)形成超氧陰離子(O2·–)[1]。葉綠體內(nèi)的ROS清除酶系統(tǒng)中,超氧化物歧化酶(SOD)的歧化作用可將O2·–還原為H2O2和O2[1–2],但葉綠體內(nèi)不含有清除H2O2的過氧化氫酶(CAT)[3–4],而是通過抗壞血酸過氧化物酶(APX)介導的Mehler反應(yīng)催化H2O2,生成H2O和單脫氫抗壞血酸(MDA)。強氧化環(huán)境下APX不能有效降低葉綠體內(nèi)的H2O2,進而抑制植物的光合作用[6–8]。在植物葉綠體內(nèi)APX活性降低的情況下,雙半胱氨酸型硫氧還蛋白過氧化物酶(2–Cys Prx)可以起到清除H2O2的作用[9],Prxs是一類不含結(jié)合金屬離子輔基,通過保守的半胱氨酸殘基(–Cys)的氧化實現(xiàn)清除生物體內(nèi)ROS的一類蛋白[10–13]。在高等植物中,2–Cys Prx是由核基因編碼的一類葉綠體蛋白[14–15],定位于葉綠體的類囊體膜上[16–19]。Wood等[20]研究發(fā)現(xiàn),2–Cys Prx可通過短暫的可逆性氧化失活來調(diào)節(jié)H2O2濃度,即2–Cys Prx 對H2O2的清除具有選擇性。研究[21–23]發(fā)現(xiàn),非生物逆境會誘導2–Cys Prx基因的表達,參與植物體內(nèi)多種與氧化相關(guān)的生理病理過程[24–25]。雖然有研究認為增強2–Cys Prx基因的表達,可以有效提高植物對非生物逆境的抵抗能力[26–27],但2–Cys Prx基因?qū)Ω珊得{迫下植物葉片光化學活性,特別是電子傳遞和能量分配利用方面的作用機理尚不明確。鑒于快速葉綠素熒光動力學技術(shù)可以快速、無損傷地分析逆境下PSⅡ電子供體側(cè)、受體側(cè)以及PSⅡ反應(yīng)中心功能的變化,筆者以轉(zhuǎn)2–Cys Prx基因煙草F1幼苗為材料,研究了煙草F1幼苗葉片光化學活性對干旱脅迫的響應(yīng),以期為深入研究2–Cys Prx基因的功能提供基礎(chǔ)數(shù)據(jù)。

2014–06–22

黑龍江省自然科學基金項目(ZD2011–05);哈爾濱市科技創(chuàng)新人才研究專項(2013RFXXJ063)

胡舉偉(1988—),男,山東臨沂人,博士研究生,主要從事植物生理生態(tài)學研究,1697534031@qq.com;*通信作者,sungy@ vip.sina.com

猜你喜歡
光化學葉綠體葉綠素
光化學蒸汽發(fā)生法在分析化學實驗教學中的應(yīng)用
云南化工(2021年9期)2021-12-21 07:44:10
提取葉綠素
桃樹葉綠素含量與SPAD值呈極顯著正相關(guān)
葉綠素家族概述
生物學教學(2017年9期)2017-08-20 13:22:32
南方紅豆杉葉綠體非編碼序列PCR體系優(yōu)化及引物篩選
由松針制取三種葉綠素鈉鹽及其穩(wěn)定性的研究
中國化學會第29屆學術(shù)年會——來自光化學分會場的報道
BiFeO3空間選擇性光化學還原Ag及光催化活性
乳糜血對亞甲藍光化學法制備病毒滅活血漿的影響
茶樹葉綠體DNA的PCR-RFLP反應(yīng)體系優(yōu)化
食品科學(2013年6期)2013-03-11 18:20:13
钟山县| 饶平县| 高雄县| 顺平县| 舟曲县| 仪陇县| 扶风县| 灯塔市| 洪江市| 凯里市| 岢岚县| 天门市| 弥渡县| 垣曲县| 武宁县| 湘乡市| 云阳县| 娄底市| 平原县| 浮梁县| 青田县| 紫云| 延长县| 宣汉县| 双桥区| 镇雄县| 平远县| 栖霞市| 宕昌县| 微山县| 千阳县| 阳东县| 大同市| 平南县| 藁城市| 广汉市| 尉犁县| 栾城县| 中阳县| 武宁县| 铅山县|