国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

DNA損傷修復(fù)蛋白XRCC1的研究進(jìn)展

2014-09-12 03:15徐誠(chéng)嚴(yán)麗鋒王心如顧愛(ài)華
關(guān)鍵詞:復(fù)合體突變體結(jié)構(gòu)域

徐誠(chéng),嚴(yán)麗鋒,王心如,顧愛(ài)華

(南京醫(yī)科大學(xué) 公共衛(wèi)生學(xué)院,江蘇 南京 211100)

1 XRCC1結(jié)構(gòu)

1.1 基因結(jié)構(gòu)

人類(lèi)XRCC1基因是參與DNA單鏈斷裂修復(fù)(single- strand break repair,SSBR)過(guò)程中被克隆的第一個(gè)基因,位于19號(hào)染色體長(zhǎng)臂1區(qū)3帶2亞帶,有31.9 kb大小,包含了17個(gè)外顯子[1];其小鼠同源基因位于7號(hào)染色體,有26 kb大小[2],外顯子的位置與人類(lèi)的相似[1]。XRCC1基因在人類(lèi)和小鼠有84%相同的編碼區(qū)域,并且外顯子和內(nèi)含子高度保守,編碼的蛋白有86%相同的氨基酸序列。

1.2 蛋白質(zhì)結(jié)構(gòu)

目前,人類(lèi)XRCC1蛋白發(fā)現(xiàn)有三個(gè)活性結(jié)構(gòu)域,一個(gè)核定位信號(hào)區(qū)域和一個(gè)酪蛋白激酶(CK2)磷酸化位點(diǎn)[3]。具體是氨基端結(jié)構(gòu)域(NTD,1- 183氨基酸區(qū)域),乳腺癌易感基因羧基端1(BRCT1, 315- 403氨基酸區(qū)域),乳腺癌易感基因羧基端2(BRCT2, 538- 633氨基酸區(qū)域),核定位信號(hào)(NLS,nuclear localization signal)區(qū)域和酪蛋白激酶(CK2)磷酸化位點(diǎn)(圖1)。其中,NTD對(duì)DNA聚合酶β(POLβ)具有高度的親和力[4- 6],可形成一個(gè)包繞有缺口DNA的“三明治”結(jié)構(gòu)。BRCT結(jié)構(gòu)域主要是在參與DNA損傷應(yīng)答的蛋白質(zhì)中被發(fā)現(xiàn),功能類(lèi)似于磷酸化依賴(lài)蛋白相互作用結(jié)構(gòu)域[7]。BRCT1是DNA損傷后的修復(fù)及復(fù)制所必需的[8- 9],可與多聚ADP核糖聚合酶1(PARP1)和多聚ADP核糖聚合酶2(PARP2)相互作用[10- 11],并且能夠維持高效率SSBR和細(xì)胞存活[8]。NTD和BRCT1之間的連接區(qū)域被證實(shí)是可以和其他蛋白相互作用的結(jié)構(gòu)域,即核定位信號(hào)區(qū)域,比如能與脫嘌呤/脫嘧啶核酸內(nèi)切酶(APE1)、羥基鳥(niǎo)嘌呤糖苷酶1(OGG1)[12]和增殖細(xì)胞核抗原(PCNA)結(jié)合[13]。CK2在染色體DNA斷裂修復(fù)和維持基因的完整性方面有著直接作用,并且這個(gè)功能是通過(guò)與XRCC1磷酸化而實(shí)現(xiàn)[3]。

2 XRCC1的功能

2.1 XRCC1相關(guān)蛋白復(fù)合體的組成成分

研究認(rèn)為XRCC1與POLβ和LIG3有較強(qiáng)的親和力,提示XRCC1作為支架蛋白或臨時(shí)對(duì)接平臺(tái)來(lái)參與堿基切除修復(fù)(BER)這個(gè)過(guò)程。然而,體外實(shí)驗(yàn)觀察到XRCC1能構(gòu)成二聚體和異四聚體,提示XRCC1復(fù)合物可能包含更多的因子[13- 16]。體內(nèi)研究顯示BER過(guò)程中的酶能結(jié)合到DNA,進(jìn)而充當(dāng)修復(fù)中間物來(lái)防止細(xì)胞遺傳毒性和致突變毒性的發(fā)生,直到傳遞到下一個(gè)修復(fù)酶[17]。

XRCC1在復(fù)制灶(foci)能夠與細(xì)胞周期蛋白A免疫共沉淀,提示XRCC1參與DNA修復(fù)中的復(fù)制過(guò)POLβ:DNA聚合酶β;PCNA:增殖細(xì)胞核抗原;APE1:脫嘌呤/脫嘧啶核酸內(nèi)切酶1;PARP1:聚腺苷酸二磷酸核糖轉(zhuǎn)移酶1;PARP2:聚腺苷酸二磷酸核糖轉(zhuǎn)移酶2;PNKP:多聚合苷酸激酶3磷酸化酶;APLF:aprataxin和PNKP樣因子;Lig3:DNA連接酶Ⅲ;APTX:aprataxin;N- terminal domain:氨基段結(jié)構(gòu)域;NLS(nuclear localization signal):核定位信號(hào);BRCT1:乳腺癌抑癌基因1羧基端;BRCT2:乳腺癌抑癌基因2羧基端;CK2:酪蛋白激酶程[13,18]。從S期細(xì)胞中分離出與XRCC1和尿嘧啶DNA糖苷酶(UNG2)相關(guān)的蛋白復(fù)合體。共定位實(shí)驗(yàn)顯示在復(fù)制灶的內(nèi)部和外部均有XRCC1,多聚合苷酸激酶3磷酸化酶(PNKP)和POLβ,而UNG2只與復(fù)制機(jī)制相關(guān)。因此,不同復(fù)合體的BER效率也是不同的。在BER過(guò)程中,XRCC1復(fù)合體比UNG2復(fù)合體更高效,提示S期存在獨(dú)特的BER復(fù)合體[19- 20]。

A).XRCC1蛋白和其他蛋白相互作用的區(qū)域;B).XRCC1蛋白結(jié)構(gòu)域;C).3個(gè)常見(jiàn)的XRCC1突變體

圖1XRCC1蛋白結(jié)構(gòu)簡(jiǎn)示圖

XRCC1和LIG3較強(qiáng)的相互作用以及發(fā)現(xiàn)少量XRCC1復(fù)合體具有AP核酸內(nèi)切酶活性,提示該復(fù)合體除了PNKP和POLβ,也包含LIG3和APE1[19- 22]。當(dāng)損傷的程度達(dá)到一定的閾值后,該復(fù)合體能在DNA復(fù)制、LP(long patch) BER和其他修復(fù)通路中發(fā)揮作用。

PCNA在DNA復(fù)制和LP BER過(guò)程中起到中心支架蛋白的作用,另外一些BER蛋白已被證實(shí)能和PCNA免疫共沉淀[13,23- 24]。研究顯示,PCNA能具體結(jié)合到XRCC1的氨基酸166- 310區(qū)域,但在細(xì)胞S期卻未發(fā)現(xiàn)。XRCC1通過(guò)BRCT1結(jié)構(gòu)域和PCNA在氨基酸310- 436區(qū)域存在復(fù)制灶的共定位,提示在復(fù)制灶上XRCC1可能與其他蛋白相互作用,而不是PCNA[13,25]。另外,在復(fù)制灶發(fā)現(xiàn)XRCC1氨基酸310- 436區(qū)域與PARP1、N- 烷基嘧啶DNA糖基化酶(MPG)、UNG2和PCNA相互作用[19,23,26- 29]。

2.2 生物體中XRCC1的功能

XRCC1基因全身敲除的小鼠表現(xiàn)胚胎致死,可能是SSBR能力的缺失和隨后的細(xì)胞凋亡發(fā)生所導(dǎo)致[30]。單倍劑量不足的敲基因小鼠在正常飼養(yǎng)條件下,表現(xiàn)出生命周期、體重、器官功能、血細(xì)胞形態(tài)、染色體狀態(tài)等正常,并且未觀察到自發(fā)腫瘤的明顯增加和不完整的染色體結(jié)構(gòu)[31],提示在無(wú)毒害環(huán)境下大約50%的XRCC1蛋白足夠維持動(dòng)物基因組的完整。而且之前研究顯示大約10%蛋白水平足夠維持胚胎發(fā)育和分娩后發(fā)育,并且通過(guò)非定量差的細(xì)胞毒性檢測(cè)發(fā)現(xiàn),這些轉(zhuǎn)基因小鼠的成纖維細(xì)胞對(duì)甲磺甲酸酯呈現(xiàn)很少或基本沒(méi)有敏感性的增加[32]。進(jìn)一步評(píng)價(jià)這些轉(zhuǎn)基因動(dòng)物發(fā)現(xiàn),與同窩出生的比較,體重表現(xiàn)出大約25%的下降,因而XRCC1缺失對(duì)生物體影響的具體機(jī)制仍不明確[33]。

3 XRCC1突變體

XRCC1作為BER過(guò)程中的支架蛋白維持基因組的穩(wěn)定,常見(jiàn)的3個(gè)XRCC1多態(tài)性Arg194Trp(rs1799782)、Arg280His(rs25489)和Arg399Gln(rs25487)與疾病相關(guān)聯(lián)。研究發(fā)現(xiàn)Arg194Trp突變體能保護(hù)由DNA損傷誘導(dǎo)劑引起基因組紊亂,而另兩個(gè)突變體與降低基因組的穩(wěn)定有關(guān)[34]。XRCC1多態(tài)性的變異影響B(tài)ER的效率可能因?yàn)橛绊懥说鞍着c蛋白的相互作用,具體表現(xiàn)為影響了XRCC1的募集能力,或間接改變了BER酶活性。體外實(shí)驗(yàn)顯示,EM9細(xì)胞,一種XRCC1蛋白缺陷細(xì)胞株和構(gòu)建XRCC1多態(tài)性的細(xì)胞證實(shí)Arg280His和Arg399Gln分別能積累更少或解離由長(zhǎng)波黑斑效應(yīng)紫外線誘導(dǎo)的DNA損傷。單細(xì)胞凝膠電泳顯示這些突變體對(duì)于過(guò)氧化氫誘導(dǎo)的氧化損傷在修復(fù)水平有微弱的差別,支持了XRCC1的細(xì)微改變可能影響DNA的修復(fù),進(jìn)而影響基因組的穩(wěn)定[25,35]。

4 XRCC1和疾病

堿基損傷、無(wú)堿基位點(diǎn)和單鏈斷裂可以由內(nèi)源性活性物質(zhì)和DNA錯(cuò)配復(fù)制持續(xù)產(chǎn)生。XRCC1改變可能改變基因組的穩(wěn)定性,進(jìn)而導(dǎo)致疾病或癌癥。XRCC1的3個(gè)突變體與癌癥的關(guān)聯(lián)有廣泛報(bào)道。然而,流行病學(xué)薈萃分析至今也沒(méi)有得出XRCC1變異與癌癥明確發(fā)生與否的結(jié)論[36- 38]。這可能與研究中人群樣本的數(shù)目和基因SNP顯著的不同有關(guān)。比如,在亞洲人群突變純合子Arg280His觀察到與乳腺癌有關(guān),但在高加索人群中沒(méi)有被發(fā)現(xiàn)[39]。突變純合子Arg194Trp在亞洲人群中能增加罹患肺癌的風(fēng)險(xiǎn),但在高加索人群中能降低這種風(fēng)險(xiǎn)[40]。另外,Arg399Gln多態(tài)性與晚期非小細(xì)胞肺癌患者對(duì)鉑類(lèi)藥物化療的敏感性相關(guān)[41],有可能成為鉑類(lèi)藥物化療后生存期的預(yù)測(cè)指標(biāo)[42]。

XRCC1能作為酶的輔因子來(lái)影響DNA單鏈損傷末端修復(fù)進(jìn)程,XRCC1功能的改變能導(dǎo)致疾病。神經(jīng)元條件敲除XRCC1的小鼠能影響神經(jīng)的發(fā)育和導(dǎo)致DNA鏈斷裂的積累,初步認(rèn)為XRCC1突變體能導(dǎo)致神經(jīng)退行性疾病和膠質(zhì)瘤的發(fā)生[43]。最近的流行病學(xué)研究提示XRCC1的Arg399Gln突變體和帕金森病、散發(fā)型肌萎縮側(cè)索硬化和膠質(zhì)瘤有關(guān)[44- 47],而Arg194Trp突變體發(fā)現(xiàn)能降低膠質(zhì)瘤的風(fēng)險(xiǎn)[48]。

XRCC1的突變體可能改變XRCC1形成蛋白復(fù)合體的功能,進(jìn)而影響DNA損傷時(shí)復(fù)合體的募集以及相互作用蛋白酶的活性,這都可能導(dǎo)致癌癥的發(fā)生。

5 結(jié) 語(yǔ)

XRCC1作為在DNA修復(fù)過(guò)程中的支架蛋白,對(duì)DNA修復(fù)過(guò)程有著重要影響,但是具體的分子機(jī)制還沒(méi)有研究透徹。另外,流行病學(xué)研究也沒(méi)有明確得出人群中XRCC1的突變體與疾病是否有關(guān)聯(lián)。動(dòng)物和細(xì)胞模型均在不同角度和不同程度揭示了XRCC1在生物體中的作用,但仍需更多研究。研究XRCC1多態(tài)性和疾病易感特征的聯(lián)系有助于從分子和細(xì)胞水平提高疾病的早期診斷率、治療有效率和預(yù)后,對(duì)于篩查易感人群、早期預(yù)防及臨床治療有重要意義。

[1] LAMERDIN J E,MONTGOMERY M A,STILWAGEN S A,et al.Genomic sequence comparison of the human and mouse XRCC1 DNA repair gene regions[J].Genomics,1995,25(2):547- 554.

[2] BROOKMAN K W,TEBBS R S,ALLEN S A,et al.Isolation and characterization of mouse Xrcc- 1,a DNA repair gene affecting ligation[J].Genomics,1994,22(1):180- 188.

[3] LOIZOU J I,EL- KHAMISY S F,ZLATANOU A,et al.The protein kinase CK2 facilitates repair of chromosomal DNA single- strand breaks[J].Cell,2004,117(1):17- 28.

[4] CALDECOTT K W,AOUFOUCHI S,JOHNSON P,et al.XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP- ribose) polymerase,and DNA ligase III is a novel molecular “nick- sensor”invitro[J].Nucleic Acids Res,1996,24(22):4387- 4394.

[5] KUBOTA Y,NASH R A,KLUNGLAND A,et al.Reconstitution of DNA base excision- repair with purified human proteins:interaction between DNA polymerase beta and the XRCC1 protein[J].EMBO J,1996,15(23):6662- 6670.

[6] DIANOVA,I I,SLEETH K M,ALLINSON S L,et al.XRCC1- DNA polymerase beta interaction is required for efficient base excision repair[J].Nucleic Acids Res,2004,32(8):2550- 2555.

[7] BORK P,HOFMANN K,BUCHER P,et al.A superfamily of conserved domains in DNA damage- responsive cell cycle checkpoint proteins[J].FASEB J,1997,11(1):68- 76.

[8] TAYLOR R M,THISTLETHWAITE A,CALDECOTT K W.Central role for the XRCC1 BRCT I domain in mammalian DNA single- strand break repair[J].Mol Cell Biol,2002,22(8):2556- 2563.

[9] KUBOTA Y,HORIUCHI S.Independent roles of XRCC1’s two BRCT motifs in recovery from methylation damage[J].DNA Repair (Amst),2003,2(4):407- 415.

[10] PLESCHKE J M,KLECZKOWSKA H E,STROHM M,et al.Poly(ADP- ribose) binds to specific domains in DNA damage checkpoint proteins[J].J Biol Chem,2000,275(52):40974- 40980.

[11] SCHREIBER V,AME J C,DOLLE P,et al.Poly(ADP- ribose) polymerase- 2 (PARP- 2) is required for efficient base excision DNA repair in association with PARP- 1 and XRCC1[J].J Biol Chem,2002,277(25):23028- 23036.

[12] MARSIN S,VIDAL A E,SOSSOU M,et al.Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG1[J].J Biol Chem,2003,278(45):44068- 44074.

[13] FAN J,OTTERLEI M,WONG H K,et al.XRCC1 co- localizes and physically interacts with PCNA[J].Nucleic Acids Res,2004,32(7):2193- 2201.

[14] BEERNINK P T,HWANG M,RAMIREZ M,et al.Specificity of protein interactions mediated by BRCT domains of the XRCC1 DNA repair protein[J].J Biol Chem,2005,280(34):30206- 30213.

[15] LEVY N,MARTZ A,BRESSON A,et al.XRCC1 is phosphorylated by DNA- dependent protein kinase in response to DNA damage[J].Nucleic Acids Res,2006,34(1):32- 41.

[16] CUNEO M J,GABEL S A,KRAHN J M,et al.The structural basis for partitioning of the XRCC1/DNA ligase III- alpha BRCT- mediated dimer complexes[J].Nucleic Acids Res,2011,39(17):7816- 7827.

[17] PRASAD R,SHOCK D D,BEARD W A,et al.Substrate channeling in mammalian base excision repair pathways:passing the baton[J].J Biol Chem,2010,285(52):40479- 40488.

[18] PARLANTI E,LOCATELLI G,MAGA G,et al.Human base excision repair complex is physically associated to DNA replication and cell cycle regulatory proteins[J].Nucleic Acids Res,2007,35(5):1569- 1577.

[19] AKBARI M,SOLVANG- GARTEN K,HANSSEN- BAUER A,et al.Direct interaction between XRCC1 and UNG2 facilitates rapid repair of uracil in DNA by XRCC1 complexes[J].DNA Repair (Amst),2010,9(7):785- 795.

[20] HANSSEN- BAUER A,SOLVANG- GARTEN K,SUNDHEIM O,et al.XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage[J].Environ Mol Mutagen,2011,52(8):623- 635.

[21] CALDECOTT K W,MCKEOWN C K,TUCKER J D,et al.An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase Ⅲ[J].Mol Cell Biol,1994,14(1):68- 76.

[22] AKBARI M,KROKAN H E.Base excision repair efficiency and mechanism in nuclear extracts are influenced by the ratio between volume of nuclear extraction buffer and nuclei- implications for comparative studies[J].Mutat Res,2012,736(1- 2):33- 38.

[23] OTTERLEI M,WARBRICK E,NAGELHUS T A,et al.Post- replicative base excision repair in replication foci[J].EMBO J,1999,18(13):3834- 3844.

[24] EISSENBERG J C,AYYAGARI R,GOMES X V,et al.Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon[J].Mol Cell Biol,1997,17(11):6367- 6378.

[25] HANSSEN- BAUER A,SOLVANG- GARTEN K,GILLJAM K M,et al.The region of XRCC1 which harbours the three most common nonsynonymous polymorphic variants,is essential for the scaffolding function of XRCC1[J].DNA Repair (Amst),2012,11(4):357- 366.

[26] MASSON M,NIEDERGANG C,SCHREIBER V,et al.XRCC1 is specifically associated with poly(ADP- ribose) polymerase and negatively regulates its activity following DNA damage[J].Mol Cell Biol,1998,18(6):3563- 3571.

[27] CAMPALANS A,MARSIN S,NAKABEPPU Y,et al.XRCC1 interactions with multiple DNA glycosylases:a model for its recruitment to base excision repair[J].DNA Repair (Amst),2005,4(7):826- 835.

[28] XIA L,ZHENG L,LEE H W,et al.Human 3- methyladenine- DNA glycosylase:effect of sequence context on excision,association with PCNA,and stimulation by AP endonuclease[J].J Mol Biol,2005,346(5):1259- 1274.

[29] BRYANT H E,PETERMANN E,SCHULTZ N,et al.PARP is activated at stalled forks to mediate Mre11- dependent replication restart and recombination[J].EMBO J,2009,28(17):2601- 2615.

[30] TEBBS R S,F(xiàn)LANNERY M L,MENESES J J,et al.Requirement for the Xrcc1 DNA base excision repair gene during early mouse development[J].Dev Biol,1999,208(2):513- 529.

[31] MCNEILL D R,LIN P C,MILLER M G,et al.XRCC1 haploinsufficiency in mice has little effect on aging,but adversely modifies exposure- dependent susceptibility[J].Nucleic Acids Res,2011,39(18):7992- 8004.

[32] TEBBS R S,THOMPSON L H,CLEAVER J E.Rescue of Xrcc1 knockout mouse embryo lethality by transgene- complementation[J].DNA Repair (Amst),2003,2(12):1405- 1417.

[33] LADIGES W C.Mouse models of XRCC1 DNA repair polymorphisms and cancer[J].Oncogene,2006,25(11):1612- 1619.

[34] GINSBERG G,ANGLE K,GUYTON K,et al.Polymorphism in the DNA repair enzyme XRCC1:utility of current database and implications for human health risk assessment[J].Mutat Res,2011,727(1- 2):1- 15.

[35] BERQUIST B R,SINGH D K,F(xiàn)AN J,et al.Functional capacity of XRCC1 protein variants identified in DNA repair- deficient Chinese hamster ovary cell lines and the human population[J].Nucleic Acids Res,2010,38(15):5023- 5035.

[36] XUE H,NI P,LIN B,et al.X- ray repair cross- complementing group 1 (XRCC1) genetic polymorphisms and gastric cancer risk:A HuGE review and meta- analysis[J].Am J Epidemiol,2011,173(4):363- 375.

[37] HUANG J,ZHANG J,ZHAO Y,et al.The Arg194Trp polymorphism in the XRCC1 gene and cancer risk in Chinese Mainland population:a meta- analysis[J].Mol Biol Rep,2011,38(7):4565- 4573.

[38] GSUR A,BERNHART K,BAIERL A,et al.No association of XRCC1 polymorphisms Arg194Trp and Arg399Gln with colorectal cancer risk[J].Cancer Epidemiol,2011,35(5):e38- 41.

[39] LI H,HA T C,TAI B C.XRCC1 gene polymorphisms and breast cancer risk in different populations:a meta- analysis[J].Breast,2009,18(3):183- 191.

[40] JIANG J,LIANG X,ZHOU X,et al.DNA repair gene X- ray repair cross complementing group 1 Arg194Trp polymorphism on the risk of lung cancer:a meta- analysis on 22 studies[J].J Thorac Oncol,2010,5(11):1741- 1747.

[41] 劉歡年,劉永萍,薛宏波,等.修復(fù)基因多態(tài)性與晚期肺癌順鉑化療近期療效的研究[J].現(xiàn)代醫(yī)學(xué),2013,41(9):659- 661.

[42] 成紅艷,陳寶安,孫新臣,等.ERCC1、XRCC1單核苷酸多態(tài)性與非小細(xì)胞肺癌鉑類(lèi)藥物化療預(yù)后關(guān)系的研究[J].東南大學(xué)學(xué)報(bào):醫(yī)學(xué)版,2011,30(5):717- 721.

[43] LEE Y,KATYAL S,LI Y,et al.The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1[J].Nat Neurosci,2009,12(8):973- 980.

[44] WEI X,CHEN D,LV T.A functional polymorphism in XRCC1 is associated with glioma risk:evidence from a meta- analysis[J].Mol Biol Rep,2013,40(1):567- 572.

[45] GENCER M,DASDEMIR S,CAKMAKOGLU B,et al.DNA repair genes in Parkinson’s disease[J].Genet Test Mol Biomarkers,2012,16(6):504- 507.

[46] COPPEDE F,MIGHELI F,LO GERFO A,et al.Association study between XRCC1 gene polymorphisms and sporadic amyotrophic lateral sclerosis[J].Amyotroph Lateral Scler,2010,11(1- 2):122- 124.

[47] YOSUNKAYA E,KUCUKYURUK B,ONARAN I,et al.Glioma risk associates with polymorphisms of DNA repair genes,XRCC1 and PARP1[J].Br J Neurosurg,2010,24(5):561- 565.

[48] RAJARAMAN P,HUTCHINSON A,WICHNER S,et al.DNA repair gene polymorphisms and risk of adult meningioma,glioma,and acoustic neuroma[J].Neuro Oncol,2010,12(1):37- 48.

猜你喜歡
復(fù)合體突變體結(jié)構(gòu)域
革蘭氏陽(yáng)性菌蛋白結(jié)構(gòu)域特征分析
蛋白質(zhì)結(jié)構(gòu)域劃分方法及在線服務(wù)綜述
RAB37直接與ATG5相互作用并通過(guò)調(diào)控ATG5-12-16復(fù)合體裝配促進(jìn)自噬體形成
一個(gè)粳稻早熟突變體的遺傳分析及育種應(yīng)用潛力的初步評(píng)價(jià)
老年人顴骨復(fù)合體骨折20例臨床分析
CLIC1及其點(diǎn)突變體與Sedlin蛋白的共定位研究
重組綠豆BBI(6-33)結(jié)構(gòu)域的抗腫瘤作用分析
SHP2不同突變體對(duì)乳腺癌細(xì)胞遷移和侵襲能力的影響
CoFe2O4/空心微球復(fù)合體的制備與吸波性能
泛素結(jié)合結(jié)構(gòu)域與泛素化信號(hào)的識(shí)別