,,,
(徐州工程學(xué)院食品工程學(xué)院,江蘇徐州 221000)
加工工藝條件對(duì)果蔬汁的品質(zhì)影響研究
陳學(xué)紅,秦衛(wèi)東,馬利華,戴曉娟
(徐州工程學(xué)院食品工程學(xué)院,江蘇徐州 221000)
果蔬汁的加工過(guò)程一般包括破碎、熱燙、酶解、榨汁、澄清、均質(zhì)、濃縮、殺菌及包裝貯藏等單元操作,這些加工單元操作均對(duì)果蔬汁的品質(zhì)產(chǎn)生不同程度的影響。本文綜述了國(guó)內(nèi)外果蔬汁加工研究的最新進(jìn)展,分析了不同加工工藝條件對(duì)果蔬汁品質(zhì)所產(chǎn)生的影響,并提出了今后進(jìn)一步的研究方向。
果蔬汁,加工條件,品質(zhì)
水果和蔬菜是特殊類型的植物性食品,含有人體所需要的多種營(yíng)養(yǎng)成分和活性物質(zhì)。與其它食物相比,它們不但是人體維生素、礦物質(zhì)的重要來(lái)源,而且還具有特殊的藥理作用,不少水果和蔬菜屬藥食同源類物質(zhì)。隨著人們生活水平的提高,消費(fèi)者對(duì)營(yíng)養(yǎng)和保健越來(lái)越重視,天然健康食品的消費(fèi)量增加,果蔬汁飲料即順應(yīng)了這一潮流的發(fā)展。從世界范圍看,飲料消費(fèi)總量在不斷增加,碳酸飲料等嗜好性飲料的比重逐漸下降,果蔬汁飲料、蛋白飲料等受到更多消費(fèi)者的青睞[1]。果蔬汁的加工過(guò)程一般包括破碎、熱燙、酶解、榨汁、澄清、均質(zhì)、濃縮、殺菌及包裝貯藏等單元操作。研究表明,果蔬汁的理化性質(zhì)及其活性成分(如維生素C、花青素、多酚等)會(huì)因這些工藝條件而發(fā)生變化[2]。對(duì)于果蔬汁的每一個(gè)加工環(huán)節(jié),國(guó)內(nèi)外學(xué)者致力于研究不同的加工工藝條件對(duì)果蔬汁營(yíng)養(yǎng)活性成分的影響,以期尋求最大限度保存果蔬汁中天然營(yíng)養(yǎng)成分和功能性成分的適宜條件。為此,本文重點(diǎn)介紹國(guó)內(nèi)外果蔬汁的加工研究現(xiàn)狀,對(duì)不同加工工藝條件下果蔬汁的理化性質(zhì)和活性成分的變化進(jìn)行綜述,并對(duì)未來(lái)研究進(jìn)行展望,以期對(duì)果蔬汁加工工藝條件的確定有所幫助。
果蔬汁加工前的熱燙處理,其主要目的是鈍化酶,避免因酶促褐變而引起果蔬汁色澤和品質(zhì)的變化。其次,熱燙還可通過(guò)軟化果蔬組織提高成品的出汁率。由于過(guò)氧化物酶(POD)具有很強(qiáng)的耐熱性,且在大多數(shù)果蔬中普遍存在,因此常被用作熱燙處理的指標(biāo)酶。然而,不適宜的熱燙處理也會(huì)對(duì)果蔬的品質(zhì)如色澤、質(zhì)構(gòu)、營(yíng)養(yǎng)成分產(chǎn)生不良的影響。因此,G?kmen等[3]認(rèn)為在對(duì)果蔬進(jìn)行熱燙處理時(shí)要盡可能地減少對(duì)其品質(zhì)所產(chǎn)生的不良影響,同時(shí)又要將POD鈍化至適當(dāng)殘留的水平(10%),80℃、2min的熱燙處理能將豌豆中的POD活性鈍化90%,同時(shí)保持了較高的維生素C和葉綠素含量。80℃、6min的熱燙處理,可以將胡蘿卜中POD的活性鈍化90%,同時(shí)又能保持良好的色澤和較高的總酚含量[4]。沸水熱燙5min,有效地抑制了甘蔗汁的脫綠和褐變,降低了多酚氧化酶(PPO)的活性[5]。
此外,微波熱燙技術(shù)因可縮短對(duì)果蔬的加熱時(shí)間,保存果蔬的天然營(yíng)養(yǎng)成分,同時(shí)具有降低能耗、節(jié)約成本的特點(diǎn)[6],在果蔬汁上的應(yīng)用研究也日益增多。將甜菜紅浸漬在水中,采用250~450W的微波熱燙處理,能將POD活性鈍化90%,且可避免失重及萎縮的發(fā)生[7]。微波熱燙可誘導(dǎo)辣椒酚類衍生物的形成,增強(qiáng)辣椒的抗氧化活性[8]。900W、30s的微波預(yù)處理可抑制綠蘆筍熱燙期間維生素C的降解,加速POD活性的鈍化[9]。
近年來(lái),蒸汽熱燙技術(shù)在果蔬上的應(yīng)用也受到廣泛關(guān)注。蒸汽熱燙7min可完全鈍化芒果POD和PPO活性[10],10min可有效保存大豆熱處理期間的可溶性糖含量[11]。蒸汽熱燙增加了西蘭花的總酚和總黃酮含量,增強(qiáng)其抗氧化活性[12]。
由此可見(jiàn),對(duì)于不同的果蔬,采用不同的熱燙技術(shù),選用適宜的溫度時(shí)間組合,即可達(dá)到鈍化酶活的目的,但如何選用合適的工藝條件保持果蔬汁的營(yíng)養(yǎng)品質(zhì)、活性成分及穩(wěn)定的理化性質(zhì)是關(guān)鍵。
榨汁是果蔬汁加工的必需單元操作,傳統(tǒng)的榨汁技術(shù)有直接破碎榨汁和熱燙破碎榨汁,新型的榨汁技術(shù)主要指酶解輔助榨汁技術(shù)。這是由于果蔬大都含有淀粉、纖維素、半纖維素和果膠等多糖類物質(zhì),這些物質(zhì)使得果蔬出汁困難,而采用酶解處理可在一定程度上將這些大分子物質(zhì)降解,從而提高果蔬的出汁率。采用的榨汁工藝不同,果蔬汁的品質(zhì)會(huì)受到不同的影響。熱燙破碎榨汁有利于保護(hù)蘆筍汁的色澤,提高維生素C的穩(wěn)定性;纖維素酶解榨汁有利于提高蘆筍汁的可溶性固形物、總糖及總黃酮含量[13]。采用直接榨汁法制取黑莓果汁,雖然出汁率和可溶性固形物含量較高,但果汁渾濁,且果渣與果汁不易分離,榨汁困難;采用果膠酶處理黑莓果漿泥的酶解實(shí)驗(yàn)表明,果膠酶用量0.04%~0.06%,處理時(shí)間1~2h,處理溫度45~55℃,果汁出汁率高,在80%以上,果汁澄清,質(zhì)量好,透光率在90%左右,可溶性固形物含量高,且黑莓漿果經(jīng)酶解后,果渣與果汁易分離,榨汁容易[15]。當(dāng)果膠酶量為1.73mL/kg、酶解溫度為46℃、酶解時(shí)間為2.3h時(shí),酸櫻桃果漿出汁率為86.2%、透光率為90.5%、濁度為2.67;酶解后的酸櫻桃清汁出汁率、透光率、花色苷顯著增高,濁度降低,可溶性固形物略有增加,pH變化不明顯[14]。由此可見(jiàn),不同榨汁工藝所制得的果蔬汁物理性狀各不相同。為此,在果蔬汁的實(shí)際加工過(guò)程中應(yīng)根據(jù)具體條件選用合適的榨汁技術(shù),如生產(chǎn)含果肉的渾濁果汁,可采用直接榨汁或熱燙破碎榨汁;如生產(chǎn)澄清型果汁,則可選用酶解榨汁。
澄清處理是生產(chǎn)澄清型果蔬汁必不可少的加工單元操作。不同澄清方法對(duì)果蔬汁的品質(zhì)有不同的影響。
3.1酶澄清
酶澄清處理是果蔬汁加工中應(yīng)用最廣泛的澄清方法,常用的酶有纖維素酶和果膠酶。果膠酶可顯著改善蘋(píng)果汁、棕櫚果汁、葡萄汁及草莓汁的澄清度[16]。由于不同酶有其不同的作用機(jī)制,因此在果蔬汁的澄清工藝中廣泛采用幾種酶協(xié)同處理以提高澄清效果。纖維素酶和果膠酶協(xié)同處理可顯著改善黑加侖汁的出汁率,增加酚類物質(zhì)的含量[17],顯著提高綠蘆筍汁的出汁率,改善澄清度,有效保持蘆筍汁的品質(zhì)和抗氧化活性[18]。聚半乳糖醛酸酶和果膠酶協(xié)同處理可顯著提高黑加侖汁和李子汁的出汁率,降低濁度,有效保持花青素含量[19]。蛋白酶和果膠酶可有效降低櫻桃汁的濁度[20]。果膠酶與果漿復(fù)合酶協(xié)同處理,可顯著改善黑莓汁的出汁率,增加可溶性固形物、花色苷含量和酸度[21]。由此,采用酶法澄清果蔬汁時(shí),復(fù)合酶的澄清效果顯著,而如何優(yōu)化復(fù)合酶的作用條件以保持果蔬汁的營(yíng)養(yǎng)活性成分至關(guān)重要。
3.2殼聚糖澄清
殼聚糖是一種有效的果蔬汁澄清劑。300ppm殼聚糖能有效提高百香果汁的澄清度,降低其濁度和粘度[22]。在香蕉汁中添加0.30g/L的殼聚糖,40℃靜置10h,可使其透光率達(dá)95%以上[23]。而有效降低櫻桃汁濁度,增加可溶性固形物含量的殼聚糖用量為0.60g/L,作用條件為44℃、35min[24]。在葡萄汁中加入0.80g/L的殼聚糖,于60℃作用50min,澄清度可達(dá)92.3%,可溶性固形物含量基本不變,果膠和蛋白質(zhì)大量除去,葡萄汁的穩(wěn)定性顯著得到提高[25]。由此可見(jiàn),采用殼聚糖對(duì)果蔬汁進(jìn)行澄清處理時(shí),不同果蔬汁所需的殼聚糖用量及作用條件均有所不同。通過(guò)優(yōu)化殼聚糖的作用條件,增加果蔬汁澄清度的同時(shí),需大量保持果蔬汁中的天然營(yíng)養(yǎng)物質(zhì)和活性成分。
3.3膜澄清
隨著食品工業(yè)技術(shù)的發(fā)展,膜分離技術(shù)在果蔬汁澄清方面的應(yīng)用日趨廣泛。根據(jù)所用膜的性質(zhì)不同,有微濾和超濾兩種。微濾和超濾均可去除果蔬汁中的懸浮顆粒,有效提高果蔬汁的澄清度。Cassano等[26]研究了微濾和超濾技術(shù)對(duì)仙人掌汁的澄清效果,采用聚偏氟乙烯膜,調(diào)整膜壓為0.22MPa、進(jìn)料流量為500L/h時(shí),有效地提高了仙人掌汁的澄清度,且保留了豐富的維生素C、多酚、糖、氨基酸和礦物質(zhì)含量。此外,聚偏氟乙烯膜對(duì)石榴汁[27]和蕃茄汁[28]也有顯著的澄清效果,通過(guò)選擇適宜厚度的膜,調(diào)整合適的膜參數(shù)即可有效保持果蔬汁的品質(zhì)。Laorko等[29]研究認(rèn)為0.2μm的聚砜中空纖維膜適宜于菠蘿汁的微濾澄清,澄清處理對(duì)菠蘿汁的pH、還原糖和酸度無(wú)影響,但能有效保持菠蘿汁的維生素C、總酚含量和抗氧化活性。曾堅(jiān)賢等[30]采用陶瓷膜微濾澄清柑桔汁,發(fā)現(xiàn)當(dāng)溫度30℃、壓差0.16MPa及膜面流速4m/s,膜通量為22.4L/(m2·h)時(shí),澄清度高達(dá)99.93%,且有效保持了主要營(yíng)養(yǎng)成分。聚醚醚酮膜和聚砜膜兩種膜均能有效去除柑橘汁中的懸浮顆粒,改善其色澤和澄清度,有效保持可溶性固形物和檸檬酸含量,但聚醚醚酮膜可顯著提高柑橘汁的滲透流量,保留較高的抗氧化活性物質(zhì)[31]。由于不同的膜有其不同的特點(diǎn),對(duì)常規(guī)膜進(jìn)行適當(dāng)?shù)母男曰驅(qū)咧M(jìn)行超濾時(shí)與其它方法協(xié)同作用,可明顯提高澄清效果。Saha等[32]將聚砜膜和聚醚砜膜進(jìn)行改性處理后,有效地增加了甘蔗汁的膜通量,減少污染,提高了甘蔗汁的澄清度。聚偏氟乙烯膜中添加5%的聚乙烯吡咯烷酮可顯著提高檸檬汁的澄清效率,增加滲透流量,并有效保持檸檬汁的品質(zhì)[33]。在用陶瓷膜超濾蘋(píng)果汁時(shí),使果膠酶循環(huán)通過(guò)陶瓷膜,可顯著提高滲透流量,增加蘋(píng)果汁的澄清度和稠度[34]。在脈沖電場(chǎng)輔助的情況下,錯(cuò)流超濾柑橘汁可顯著改善滲透流量,提高澄清度[35]。
綜上所述,果蔬汁的澄清有多種方法,不同澄清方法對(duì)不同果蔬汁的澄清效果不同,對(duì)果蔬汁品質(zhì)所產(chǎn)生的影響也不盡相同。因此,在對(duì)果蔬汁進(jìn)行澄清處理時(shí),應(yīng)根據(jù)果蔬汁原料的成分組成及澄清果汁產(chǎn)品的品質(zhì)要求確定澄清方法,綜合考慮成本,合理地組合澄清方法。
均質(zhì)是使懸浮液體系中的分散相顆粒分散化、均勻化的處理過(guò)程,可以同時(shí)起到降低分散顆粒的尺度和提高分散顆粒分布均勻性的作用,使固體與液體的分布與排列狀況得到改善,成為一個(gè)均一體,以得到具有合適貯存穩(wěn)定性的產(chǎn)品。通過(guò)均質(zhì),使果蔬汁中的漿、汁、液充分細(xì)化、混合,大大提高了產(chǎn)品的均勻度和細(xì)度。目前果蔬汁的均質(zhì)普遍采用高壓均質(zhì)機(jī),且為了最大限度地保持果蔬汁的營(yíng)養(yǎng)和感官品質(zhì),均質(zhì)處理一般在常溫下進(jìn)行。均質(zhì)壓力對(duì)懸浮顆粒的大小有明顯影響。0~30MPa的一次均質(zhì)有利于維持低果肉柑橘汁的穩(wěn)定性,隨著壓力的增加果肉顆粒直徑減少,且更有利于功能性活性成分溶入果汁[36]。20MPa的一次均質(zhì)適合于低果肉橙汁的加工處理,并使果汁呈現(xiàn)良好色澤[37]。100MPa的高壓均質(zhì)處理可有效降低番茄汁中固體顆粒的直徑,維持番茄汁的穩(wěn)定性,并有利于番茄紅素溶入番茄汁,從而有效地改善番茄汁的色澤和功能性質(zhì)[38]。
濃縮果蔬汁由于體積小,重量輕,可以減少儲(chǔ)藏、包裝和運(yùn)輸費(fèi)用,因而在國(guó)際國(guó)內(nèi)市場(chǎng)廣受歡迎。濃縮果蔬汁除直接飲用外,還是如今國(guó)內(nèi)外果蔬汁飲料制造的重要原料。
5.1真空濃縮
真空濃縮是國(guó)內(nèi)外加工濃縮果蔬汁普遍采用的方法之一。真空濃縮加速了檸檬汁抗壞血酸的降解[39],增強(qiáng)了櫻桃汁的抗氧化活性[40],而對(duì)胡蘿卜汁的pH、總酸和β-胡蘿卜素含量無(wú)明顯影響[41]??梢?jiàn),真空濃縮對(duì)不同果蔬汁的品質(zhì)會(huì)產(chǎn)生不同的影響。
5.2冷凍濃縮
冷凍濃縮有利于保持蘋(píng)果汁和梨汁的品質(zhì)[42],在濃縮荔枝汁時(shí)也起到了顯著的效果,3級(jí)濃縮汁的可溶性固形物含量達(dá)45.3°Brix,且濃縮汁復(fù)原后pH、總酸、還原糖和蛋白質(zhì)含量與原汁十分接近,維生素C保存率為85%[43]。冷凍濃縮杏汁和櫻桃汁的芳香物質(zhì)和維生素C含量均高于熱蒸發(fā)濃縮果汁[44]。不同濃度的果蔬汁冰點(diǎn)不同,Auleda等[45]經(jīng)研究認(rèn)為冰點(diǎn)與果蔬汁中存在的糖(葡萄糖、果糖或蔗糖)有密切關(guān)系,確立了冰點(diǎn)與果蔬汁中糖濃度之間的關(guān)系曲線,并在蘋(píng)果汁、梨汁和櫻桃汁上得到了驗(yàn)證。
5.3膜技術(shù)濃縮
膜技術(shù)濃縮可在室溫下實(shí)現(xiàn)對(duì)果蔬汁的濃縮,對(duì)果蔬汁的品質(zhì)和風(fēng)味影響較小。反滲透濃縮工藝在世界上已廣泛用于濃縮果蔬汁的生產(chǎn)。反滲透濃縮工藝在有效增加果蔬汁固形物含量的同時(shí),有效地保持了橙汁的感官、營(yíng)養(yǎng)品質(zhì)和風(fēng)味[46],增加了葡萄汁的可滴定酸、多酚和花青素的含量[47]。但反滲透濃縮只能將果蔬汁的固形物含量濃縮至25~35°Brix,因而常作為果蔬汁的預(yù)濃縮工藝。滲透蒸發(fā)是進(jìn)一步的改進(jìn)技術(shù),它可將果蔬汁濃縮至55~65°Brix。蘋(píng)果汁微濾澄清后經(jīng)反滲透預(yù)濃縮和滲透蒸發(fā),其固形物含量可達(dá)53%[48]。黑加侖汁采用酶處理后經(jīng)微濾、反滲透預(yù)濃縮和滲透蒸發(fā),固形物含量可達(dá)58.2°Brix,濃縮汁的總酸和花青素含量與固形物含量成正比[49]。
這種在解決某一具體分離目標(biāo)時(shí),綜合利用幾個(gè)膜過(guò)程,使之各盡所長(zhǎng)的過(guò)程稱之為集成膜過(guò)程。利用集成膜技術(shù),可以克服單一膜的缺點(diǎn),不僅解決濃縮倍數(shù)的限制,而且節(jié)約成本[50]。Cassano等成功研制了兩步膜技術(shù)濃縮石榴汁,第一步采用中空纖維超濾膜澄清石榴汁,第二步用滲透蒸餾濃縮石榴汁,可使?jié)饪s汁的固形物含量達(dá)到52%,同時(shí)保持了較高的花青素和總酚含量[51]。血橙汁經(jīng)超濾澄清后,再經(jīng)兩步濃縮:反滲透預(yù)濃縮和滲透蒸餾,其固形物含量可達(dá)60°Brix,并保持了較高的維生素C、總酚含量和抗氧化活性[52]。新鮮蘋(píng)果汁(12°Brix)經(jīng)超濾后再進(jìn)行滲透蒸餾,固形物含量可達(dá)65°Brix,并有效地保持了蘋(píng)果汁的品質(zhì)和怡人的芳香,維持了較高的酚類物質(zhì)和有機(jī)酸含量[53]。黑加侖汁(15~18°Brix)經(jīng)微濾澄清,再進(jìn)行反滲透預(yù)濃縮和滲透蒸餾,固形物含量可達(dá)63~72°Brix,且花青素含量是原汁的3倍[54]。
由此可見(jiàn),濃縮方法對(duì)果蔬汁的濃度及品質(zhì)產(chǎn)生顯著影響。冷凍濃縮雖有利于保持果蔬汁中的天然營(yíng)養(yǎng)成分和風(fēng)味物質(zhì),但需要消耗相當(dāng)大的能量。而膜分離技術(shù)尤其是集成膜技術(shù)可在室溫下實(shí)現(xiàn)對(duì)果蔬汁的有效濃縮,且對(duì)果蔬汁的品質(zhì)和風(fēng)味影響較小。因此,針對(duì)不同的果蔬汁組分,通過(guò)選用適宜的膜,合理地調(diào)控膜參數(shù),采用集成膜技術(shù)即可實(shí)現(xiàn)對(duì)果蔬汁的有效濃縮。
6.1熱力殺菌
殺菌是保證果蔬汁飲用安全的最有效途徑。殺菌的目的是為了殺死存活于食品中的微生物(尤其是致病菌、病原菌),鈍化食品中的酶,從而保證食品的安全性,延長(zhǎng)食品的貯藏壽命。長(zhǎng)期以來(lái),熱力殺菌是保證食品食用安全性和延緩貯藏壽命最常用的方法[55]。果蔬汁加工中常用的熱殺菌處理方式有:巴氏殺菌和超高溫瞬時(shí)殺菌等。95℃、11s的熱殺菌處理能夠有效延長(zhǎng)西柚汁的貯藏壽命,保證產(chǎn)品的貯藏穩(wěn)定性,但也導(dǎo)致了檸檬酸和抗壞血酸含量的下降[56];90℃、30s/60s的熱殺菌處理能使草莓汁在4℃條件下貯藏63d,但也對(duì)草莓汁的色澤產(chǎn)生了不良影響[57],同樣條件下處理的番茄汁在4℃可存放90d,但番茄紅素和維生素C含量下降較快[58]。由此,熱殺菌處理在保證食品安全性延長(zhǎng)其貯藏壽命的同時(shí)也在一定程度上破壞了食品的營(yíng)養(yǎng)價(jià)值,這種破壞程度隨著加熱溫度的升高和加熱時(shí)間的延長(zhǎng)而加劇。
微波殺菌處理是與傳統(tǒng)熱殺菌處理不同的加熱方法,也用于對(duì)食品加熱、滅酶、殺菌等各種不同的加工過(guò)程中。900W,30s的微波殺菌處理較傳統(tǒng)巴氏殺菌更有利于保存西柚汁中的維生素C、總酚含量和抗氧化活性[56]。
6.2冷殺菌技術(shù)
隨著食品工業(yè)技術(shù)的發(fā)展和人們生活水平的提高及保健意識(shí)的增強(qiáng),人們逐漸要求食品加工者不僅要保證食品的安全性和穩(wěn)定性,而且還要盡量保持其原有營(yíng)養(yǎng)成分和新鮮度。因此,國(guó)際食品界對(duì)非熱食品加工技術(shù)倍加關(guān)注,相繼出現(xiàn)了一系列新的非熱殺菌技術(shù),即冷殺菌技術(shù)。超高壓、脈沖電場(chǎng)、超聲波、紫外線、臭氧、膜技術(shù)等冷殺菌技術(shù)在果蔬汁上有廣泛的應(yīng)用研究。
6.2.1 超高壓殺菌 超高壓殺菌技術(shù)是指利用100MPa以上的壓力,破壞微生物,鈍化酶,而食品天然風(fēng)味與營(yíng)養(yǎng)價(jià)值等幾乎不受影響的一種食品處理方法。400~600MPa/5,10min的超高壓處理能夠完全鈍化石榴汁中的微生物,有效地保存天然花青素,加深石榴汁的紅色,改善石榴汁的品質(zhì)[2]。400~600MPa/15min的超高壓處理可有效保存血橙汁中抗壞血酸和花青素[59]。200~600MPa/5~15min的超高壓處理使得藍(lán)莓汁中維生素C的保存率高達(dá)92%以上,200MPa的高壓處理增加了總酚的含量[60]。由此,超高壓殺菌技術(shù)在有效鈍化果蔬汁中微生物的同時(shí),更有效地保持了果蔬汁中的天然營(yíng)養(yǎng)成分。
6.2.2 高壓脈沖電場(chǎng)殺菌 高壓脈沖電場(chǎng)能鈍化果蔬汁中的微生物,延長(zhǎng)果蔬汁的貯藏時(shí)間,保持果蔬汁的品質(zhì)[61-62]。Cortés等[63]認(rèn)為電場(chǎng)強(qiáng)度為30kV/cm,脈沖時(shí)間為100μs的高強(qiáng)度脈沖電場(chǎng),能較熱殺菌更有效地保持橙汁的色澤,抑制非酶褐變的發(fā)生和羥甲基糠醛的產(chǎn)生,維持橙汁在貯藏期間的色澤穩(wěn)定性。脈沖頻率、脈沖寬度及脈沖極性顯著影響草莓汁的抗氧化活性,當(dāng)電場(chǎng)強(qiáng)度為35kV/cm,脈沖時(shí)間為1000μs時(shí),232Hz的脈沖頻率,1μs的雙極脈沖能使草莓汁維持最高的維生素C和花青素含量,保持最高的抗氧化活性[64]。脈沖電場(chǎng)強(qiáng)度28kV/cm,脈沖時(shí)間為100μs時(shí),2μs的雙極脈沖能有效保持柑橘汁的理化性質(zhì)及感官品質(zhì)[65]。由此可見(jiàn),維持不同果蔬汁品質(zhì)及保證殺菌效果的脈沖電場(chǎng)條件各不相同。
6.2.3 超聲波殺菌 超聲波處理能有效鈍化番茄汁中的微生物(主要是酵母菌),維持番茄汁的理化性質(zhì),振幅及處理時(shí)間是影響超聲效果的關(guān)鍵因素[66]。最大振幅(100%)、10min的超聲波處理能保存黑莓汁中95%的矢車菊素-3-葡萄糖苷含量,并有效維持其色澤[67]。超聲波處理也有效地保存了葡萄汁中的花青素含量,維持其色澤[68]。1500W,20Hz的超聲波處理,在振幅為40μm時(shí)能有效抑制橙汁非酶褐變的發(fā)生和維生素C的損失[69]。
6.2.4 臭氧殺菌 Patil等[70]首先在新鮮的橙汁及去除了少量果肉的橙汁上接種106CFU·mL-1大腸桿菌EscherichiacoliATCC 25922和 NCTC 12900,然后采用75~78μg/mL臭氧對(duì)橙汁進(jìn)行殺菌處理,發(fā)現(xiàn)將大腸桿菌減少5個(gè)對(duì)數(shù)級(jí),前者需15~18min,而后者只需6min,這表明橙汁中所含的有機(jī)物質(zhì)會(huì)干擾臭氧的抗菌效果。Patil等[71]將同樣兩種菌株接種于蘋(píng)果汁,采用0.048mg/mL臭氧對(duì)其進(jìn)行殺菌處理,結(jié)果表明果汁的pH顯著影響臭氧對(duì)大腸桿菌的鈍化能力,在低pH時(shí)將大腸桿菌減少5個(gè)對(duì)數(shù)級(jí)需4min,在較高pH時(shí)則需18min,這說(shuō)明保證蘋(píng)果汁安全性所需的臭氧量取決于它的酸度水平。而臭氧處理在保證有效殺菌效果的同時(shí),也會(huì)導(dǎo)致果蔬汁的色澤和花青素降解[72-73]、酚類物質(zhì)的損失[74]及維生素C含量的降低[75]。臭氧濃度和時(shí)間是影響臭氧殺菌效果及果蔬汁品質(zhì)的關(guān)鍵因素。因此,在用臭氧對(duì)果蔬汁進(jìn)行殺菌處理時(shí),應(yīng)采用適宜的臭氧濃度和時(shí)間,在保證殺菌效果的同時(shí),需兼顧考慮它對(duì)果蔬汁品質(zhì)所產(chǎn)生的影響。
6.2.5 紫外線照射殺菌 23.72J/mL的紫外線照射新鮮橙汁3min,協(xié)同55℃的加熱處理,可將大腸桿菌減少5個(gè)對(duì)數(shù)級(jí)以上,且有效保存了84%的維生素C含量,鈍化了64%的果膠甲酯酶活性[76]。紫外線照射能夠?qū)⑹裰写竽c桿菌減少6.15個(gè)對(duì)數(shù)級(jí),菌落總數(shù)減少1.8個(gè)對(duì)數(shù)級(jí),酵母菌和霉菌減少1.45個(gè)對(duì)數(shù)級(jí),有效地保存了花青素和總酚的含量,維持了石榴汁的抗氧化能力[77]。36.09J/mL劑量的紫外線輻照能夠?qū)⒊戎械木淇倲?shù)減少2.8個(gè)對(duì)數(shù)級(jí),酵母菌和霉菌減少0.34個(gè)對(duì)數(shù)級(jí),大腸桿菌減少5.72個(gè)對(duì)數(shù)級(jí),有效地保存了維生素C、總酚和有機(jī)酸的含量,維持了橙汁的抗氧化性和風(fēng)味,并延長(zhǎng)了橙汁的貯藏壽命[78]。紫外線殺菌有效地鈍化了蘋(píng)果汁中的PPO和POD活性,維持了不同蘋(píng)果汁的pH、可溶性固形物、糖和總酚的含量及色澤[79]。
6.2.6 膜除菌 膜除菌技術(shù)既能有效濾除果蔬汁中的有害微生物,又能提高果蔬汁的澄清度,同時(shí)也利于保存果蔬汁的營(yíng)養(yǎng)成分和風(fēng)味物質(zhì)[80-81]。無(wú)機(jī)陶瓷微濾膜由于化學(xué)穩(wěn)定性好,機(jī)械強(qiáng)度大,抗微生物破壞能力強(qiáng),因而在果蔬汁的澄清和除菌方面有廣泛應(yīng)用。在哈密瓜汁上的微濾除菌效果表明,當(dāng)陶瓷膜孔徑為0.2μm,操作壓力為0.2MPa,進(jìn)料溫度為25℃時(shí),哈密瓜汁透光度可達(dá)98.8%,菌落總數(shù)為13CFU·mL-1,其中大腸菌群、霉菌、酵母菌均未檢出[81]。在石榴汁上的除菌過(guò)濾效果表明,用于石榴汁過(guò)濾除菌的陶瓷微濾膜的適宜孔徑為0.22μm,最佳工藝參數(shù)為過(guò)濾壓力0.20MPa、料液溫度20℃。在此條件下,陶瓷微濾膜有較高的滲透流量,可有效去除石榴汁中的懸浮物和有害微生物,并有效地保持石榴汁的營(yíng)養(yǎng)成分,維持石榴汁在貯藏期間的色澤穩(wěn)定性[82]。
包裝材料不同,食品在貯藏期間品質(zhì)會(huì)發(fā)生不同程度的變化。玻璃瓶和聚對(duì)苯二甲酸乙二醇酯(PET)瓶常被用來(lái)保存液態(tài)食品。不同包裝容器材料對(duì)O2的通透性不同,玻璃瓶的透O2率最低,其次是PET瓶[83]。而果蔬汁中O2含量的多少直接影響著果蔬汁的品質(zhì)。Murator等[84]研究了不同包裝容器中橙汁的品質(zhì),發(fā)現(xiàn)玻璃瓶裝的橙汁維生素C含量顯著高于PET瓶裝的橙汁。單層PET瓶裝的橙汁中維生素C含量顯著低于多層PET瓶、玻璃瓶裝的橙汁[83]。紙盒包裝容器比玻璃瓶的透O2率高,盛裝在紙盒中的石榴汁的花青素?fù)p失較多,顏色變化較大,而無(wú)色的酚類物質(zhì)和沒(méi)食子酸在整個(gè)貯藏期間十分穩(wěn)定,抗氧化活性不受包裝材料的影響[85]。Zerdin等[86]研究了包裝在含有O2清除劑的膜質(zhì)材料和O2屏障膜質(zhì)材料中的橙汁維生素C含量的變化,發(fā)現(xiàn)前者維生素C的損失及褐變程度顯著低于后者,O2的快速去除能有效保持貯藏期間橙汁中維生素C含量。
果蔬汁的品質(zhì)在貯藏期間會(huì)發(fā)生不同程度的變化。橙汁在冷藏期間維生素C和花青素含量逐漸降低,隨著貯藏時(shí)間的延長(zhǎng),聚合體色澤和褐變指數(shù)逐漸增大[87]。貯藏溫度是影響新鮮果蔬采后貯藏壽命的最重要的因素,溫度控制是延長(zhǎng)和維持果蔬貯藏壽命的最有效途徑[88]。隨著貯藏溫度的升高和貯藏時(shí)間的延長(zhǎng),石榴汁的花青素含量發(fā)生顯著變化,色素的降解遵循一級(jí)動(dòng)力學(xué)反應(yīng),可溶性固形物和pH顯著增加,低溫貯藏能有效保持石榴汁的品質(zhì)[89]。隨著貯藏時(shí)間的延長(zhǎng),橙汁維生素C和總酚含量下降,抗氧化活性降低,黃酮含量不發(fā)生變化,低溫有利于維持橙汁的品質(zhì)和抗氧化活性[90]。
綜上所述,對(duì)果蔬汁的每一個(gè)加工環(huán)節(jié),不同的加工工藝條件均會(huì)對(duì)果蔬汁的理化性質(zhì)、營(yíng)養(yǎng)品質(zhì)和活性成分產(chǎn)生不同程度的影響。因此,研究果蔬汁在不同加工工藝條件下品質(zhì)的變化,對(duì)保持果蔬汁的天然營(yíng)養(yǎng)成分和功能性質(zhì)有著極其重要的意義。傳統(tǒng)熱燙技術(shù)可有效鈍化果蔬汁中的POD活性,但如處理不當(dāng)易造成果蔬營(yíng)養(yǎng)成分的損失,微波熱燙技術(shù)對(duì)果蔬的加熱時(shí)間短,可有效保存果蔬的天然營(yíng)養(yǎng)成分,低能耗、低成本,因此對(duì)于不同的果蔬,可依據(jù)果蔬營(yíng)養(yǎng)品質(zhì)的變化確定適宜的微波熱燙參數(shù)從而達(dá)到熱燙的目的。酶解輔助榨汁技術(shù)有利于降解果蔬所含有的淀粉、纖維素、半纖維素和果膠等大分子物質(zhì),從而提高果蔬的出汁率。澄清方法對(duì)果蔬汁品質(zhì)所產(chǎn)生的影響各不相同,在對(duì)果蔬汁進(jìn)行澄清處理時(shí),應(yīng)根據(jù)果蔬汁原料的成分組成及產(chǎn)品的品質(zhì)要求確定適宜的澄清方法。膜分離技術(shù)尤其是集成膜技術(shù)可在室溫下實(shí)現(xiàn)對(duì)果蔬汁的有效濃縮,且對(duì)果蔬汁的品質(zhì)和風(fēng)味影響較小,因而在果蔬汁上具有廣闊的應(yīng)用前景。冷殺菌技術(shù)相對(duì)于傳統(tǒng)熱殺菌處理對(duì)保持果蔬汁的天然營(yíng)養(yǎng)成分及活性物質(zhì)起到良好的效果,因而有望成為代替?zhèn)鹘y(tǒng)熱殺菌技術(shù)而廣泛應(yīng)用在果蔬汁的加工中。但如何在食品工業(yè)中有效推廣這些技術(shù)的商業(yè)化運(yùn)用,實(shí)現(xiàn)產(chǎn)品的商業(yè)化生產(chǎn),進(jìn)而降低生產(chǎn)成本費(fèi)用是亟待解決的問(wèn)題。隨著科學(xué)技術(shù)的發(fā)展,不斷有更先進(jìn)的材料、加工設(shè)備及控制技術(shù)出現(xiàn),有望開(kāi)發(fā)出更為有效的技術(shù)方法保持果蔬汁的營(yíng)養(yǎng)品質(zhì)和活性成分,生產(chǎn)出高品質(zhì)的果蔬汁。
[1]單楊. 中國(guó)果蔬加工產(chǎn)業(yè)現(xiàn)狀及發(fā)展戰(zhàn)略思考[J]. 中國(guó)食品學(xué)報(bào),2010,10(1):1-9.
[2]Ferrari G,Maresca P,Ciccarone R. The application of high hydrostatic pressure for the stabilization of functional foods:Pomegranate juice[J]. Journal of Food Engineering,2010,100(2):245-253.
[5]Mao L C,Xu Y Q,Que F. Maintaining the quality of sugarcane juice with blanching and ascorbic acid[J]. Food Chemistry,2007,104(2):740-745.
[6]Patricia C M,Bibiana D Y,José P M. Evaluation of microwave technology in blanching of broccoli(BrassicaoleraceaL.varBotrytis)as a substitute for conventional blanching[J]. Procedia Food Science,2011,1,426-432.
[7]Latorre M E,Bonelli P R,Rojas A M,etal. Microwave inactivation of red beet(betavulgarisL. var. conditiva)peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality[J]. Journal of Food Engineering,2012,109(4):676-684.
[8]Dorantes-Alvarez L,Jaramillo-Flores E,González K,etal. Blanching peppers using microwaves[J]. Procedia Food Science,2011,1:178-183.
[9]Zheng H,Lu H. Effect of microwave pretreatment on the kinetics of ascorbic acid degradation and peroxidase inactivation in different parts of green asparagus(AsparagusofficinalisL.)during water blanching[J]. Food Chemistry,2011,128(4):1087-1093.
[10]Ndiaye C,Xu SY,Wang Z. Steam blanching effect on polyphenoloxidase,peroxidase and colour of mango(MangiferaindicaL.)slices[J]. Food Chemistry,2009,113(1):92-95.
[11]Saldivar X,Wang Y J,Chen P,etal. Effects of blanching and storage conditions on soluble sugar contents in vegetable soybean[J]. LWT-Food Science and Technology,2010,43(9):1368-1372.
[12]Roy M K,Juneja L R,Isobe S,etal. Steam processed broccoli(Brassicaoleracea)has higher antioxidant activity in chemical and cellular assay systems[J]. Food Chemistry,2009,114(1):263-269.
[13]陳學(xué)紅,秦衛(wèi)東,馬利華,等.不同制汁工藝對(duì)綠蘆筍汁理化成分和抗氧化活性的影響[J].食品工業(yè)科技,2012,33(13):224-227.
[14]吳文龍,王小敏,李維林,等.不同加工工藝對(duì)黑莓漿果出汁率及果汁品質(zhì)的影響[J].食品科學(xué),2008,29(3):172-175.
[15]高佳,王寶剛,馮曉元,等.商業(yè)果膠酶對(duì)酸櫻桃果漿酶解效果的優(yōu)化[J].食品科學(xué),2012,33(8):60-65.
[16]Sandri I G,Fontana R C,Barfknecht D M,etal. Clarification of fruit juices by fungal pectinases[J]. LWT-Food Science and Technology,2011,44(10):2217-2222.
[17]Laaksonen O,Sandell M,Nordlund E,etal. The effect of enzymatic treatment on blackcurrant(Ribes nigrum)juice flavour and its stability[J]. Food Chemistry,2012,130(1):31-41.
[18]Chen X,Xu F,Qin W,etal. Optimization of enzymatic clarification of green asparagus juice using response surface methodology[J]. Journal of Food Science,2012,77(6):C665-C670.
[20]Pinelo M,Zeuner B,Meyer A S. Juice clarification by protease and pectinase treatments indicates new roles of pectin and protein in cherry juice turbidity[J]. Food and Bioproducts Processing,2010,88(2):259-265.
[21]張麗霞,周劍忠,劉紅錦,等.雙酶水解制備黑莓澄清汁的工藝優(yōu)化[J].農(nóng)業(yè)工程學(xué)報(bào),2010,26(10):372-376.
[22]Domingues R C C,Faria Junior S B,Silva R B,etal. Clarification of passion fruit juice with chitosan:Effects of coagulation process variables and comparison with centrifugation and enzymatic treatments[J]. Process Biochemistry,2012,47(3):467-471.
[23]倪燕,吳月仙,章飛.3種澄清劑對(duì)香蕉汁的澄清效果[J].熱帶農(nóng)業(yè)科學(xué),2010,30(5):33-35.
[24]張圓圓,王寶剛,馮曉元,等.殼聚糖對(duì)酸櫻桃果汁的澄清效果[J].食品與發(fā)酵工業(yè),2012,38(10):91-95.
[25]劉崑,高婷婷,楊柳.殼聚糖對(duì)葡萄汁的澄清作用[J].食品與發(fā)酵工業(yè),2011,37(3):118-121.
[26]Cassano A,Conidi C,Drioli E. Physico-chemical parameters of cactus pear(Opuntiaficus-indica)juice clarified by microfiltration and ultrafiltration processes[J]. Desalination,2010,250(3):1101-1104.
[27]Mirsaeedghazi H,Emam-Djomeh Z,Mousavi S M,etal. Clarification of pomegranate juice by microfiltration with PVDF membranes[J]. Desalination,2010,264(3):243-248.
[28]Razi B,Aroujalian A,Fathizadeh M. Modeling of fouling layer deposition in cross-flow microfiltration during tomato juice clarification[J]. Food and Bioproducts Processing,2012,90(4):841-848.
[29]Laorko A,Li Z,Tongchitpakdee S,etal. Effect of membrane property and operating conditions on phytochemical properties and permeate flux during clarification of pineapple juice[J]. Journal of Food Engineering,2010,100(3):514-521.
[30]曾堅(jiān)賢,鄭立鋒,劉俊峰.柑桔汁陶瓷膜微濾澄清和污染阻力實(shí)驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2010,26(1):353-358.
[31]Cassano A,Tasselli F,Conidi C,etal. Ultrafiltration of Clementine mandarin juice by hollow fibre membranes[J]. Desalination,2009,241(1):302-308.
[32]Saha N,Balakrishnan M,Ulbricht M. Fouling control in sugarcane juice ultrafiltration with surface modified polysulfone and polyethersulfone membranes[J]. Desalination,2009,249(3):1124-1131.
[33]Chornomaz P,Pagliero C,Marchese J,etal. Impact of structural and textural membrane properties on lemon juice clarification[J]. Food and Bioproducts Processing,2013,91(2):67-73.
[34]Echavarria A,Pagán J,Ibarz A. Effect of previous enzymatic recirculation treatment through a tubular ceramic membrane on ultrafiltration of model solution and apple juice[J]. Journal of Food Engineering,2011,102(4):334-339.
[35]Sarkar B,DasGupta S,De S. Flux decline during electric field-assisted cross-flow ultrafiltration of mosambi(Citrussinensis(L.)Osbeck)juice[J]. Journal of Membrane Science,2009,331(1):75-83.
[36]Betoret E,Sentandreu E,Betoret N,etal. Homogenization pressures applied to citrus juice manufacturing. Functional properties and application[J]. Journal of Food Engineering,2012,111(1):28-33.
[37]Sentandreu E,Gurrea M C,Betoret N,etal. Changes in orange juice characteristics due to homogenization and centrifugation[J]. Journal of Food Engineering,2011,105(2):241-245.
[38]Kubo M T K,Augusto P E,Cristianini M. Effect of high pressure homogenization(HPH)on the physical stability of tomato juice[J]. Food Research International,2013,51(1):170-179.
[39]Al-Zubaidy M M I,Khalil R A. Kinetic and prediction studies of ascorbic acid degradation in normal and concentrate local lemon juice during storage[J]. Food Chemistry,2007,101(1):254-259.
[40]Liyana-Pathirana C M,Shahidi F,Alasalvar C. Antioxidant activity of cherry laurel fruit(LaurocerasusofficinalisRoem.)and its concentrated juice[J]. Food Chemistry,2006,99(1):121-128.
[41]黃誠(chéng),周長(zhǎng)春,尹紅.濃縮胡蘿卜汁加工工藝研究[J].食品科學(xué),2009,30(10):282-285.
[42]Hernández E,Raventós M,Auleda J,etal. Concentration of apple and pear juices in a multi-plate freeze concentrator[J]. Innovative Food Science & Emerging Technologies,2009,10(3):348-355.
[43]曾楊,曾新安.冷凍濃縮處理對(duì)荔枝汁品質(zhì)的影響[J].食品科學(xué),2010,31(3):91-93.
[44]Aider M,de Halleux D. Production of concentrated cherry and apricot juices by cryoconcentration technology[J]. LWT-Food Science and Technology,2008,41(10):1768-1775.
[45]Auleda J M,Raventós M,Sánchez J,etal. Estimation of the freezing point of concentrated fruit juices for application in freeze concentration[J]. Journal of Food Engineering,2011,105(2):289-294.
[46]Jesus D,Leite M,Silva L,etal. Orange(Citrussinensis)juice concentration by reverse osmosis[J]. Journal of Food Engineering,2007,81(2):287-291.
[47]Gurak P D,Cabral L,Rocha-Le?o M H M,etal. Quality evaluation of grape juice concentrated by reverse osmosis[J]. Journal of Food Engineering,2010,96(3):421-426.
[48]Aguiar I B,Miranda N G M,Gomes F S,etal. Physicochemical and sensory properties of apple juice concentrated by reverse osmosis and osmotic evaporation[J]. Innovative Food Science and Emerging Technologies,2012,16:137-142.
[49]Kozák á,Békássy-Molnár E,Vatai G. Production of black-currant juice concentrate by using membrane distillation[J]. Desalination,2009,241(13):309-314.
[50]薛淑靜,程薇,關(guān)健,等.膜集成技術(shù)在濃縮果汁中的應(yīng)用研究進(jìn)展[J].安徽農(nóng)業(yè)科學(xué),2008,36(30):13384-13387.
[51]Cassano A,Conidi C,Drioli E. Clarification and concentration of pomegranate juice(PunicagranatumL.)using membrane processes[J]. Journal of Food Engineering,2011,107(3):366-373.
[52]Galaverna G,Di Silvestro G,Cassano A,etal. A new integrated membrane process for the production of concentrated blood orange juice:Effect on bioactive compounds and antioxidant activity[J]. Food Chemistry,2008,106(3):1021-1030.
[53]Onsekizoglu P,Bahceci K S,Acar M J. Clarification and the concentration of apple juice using membrane processes:A comparative quality assessment[J]. Journal of Membrane Science,2010,352(1):160-165.
[54]Kozák á,Bánv?lgyi S,Vincze I,etal. Comparison of integrated large scale and laboratory scale membrane processes for the production of black currant juice concentrate[J]. Chemical Engineering and Processing:Process Intensification,2008,47(7):1171-1177.
[55]Awuah G B,Ramaswamy H S,Economides A. Thermal processing and quality:Principles and overview[J]. Chemical Engineering and Processing:Process Intensification,2007,46(6):584-602.
[56]Igual M,García-Martínez E,Camacho M M,etal. Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice[J]. Food Chemistry,2010,118(2):291-299.
[57]Aguiló-Aguayo I,Oms-Oliu G,Soliva-Fortuny R,etal. Changes in quality attributes throughout storage of strawberry juice processed by high-intensity pulsed electric fields or heat treatments[J]. LWT-Food Science and Technology,2009,42(4):813-818.
[58]Odriozola-Serrano I,Soliva-Fortuny R,Martín-Belloso O. Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments[J]. Innovative Food Science &Emerging Technologies,2008,9(3):272-279.
[59]Torres B,Tiwari B K,Patras A,etal. Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage[J]. Innovative Food Science and Emerging Technologies,2011,12(2):93-97.
[60]Barba F J,Esteve M J,Frigola A. Physicochemical and nutritional characteristics of blueberry juice after high pressure processing[J]. Food Research International,2011,doi:10.1016/j.foodres.2011.02.038.
[61]Mosqueda-Melgar J,Raybaudi-Massilia R M,Martín-Belloso O. Microbiological shelf life and sensory evaluation of fruit juices treated by high-intensity pulsed electric fields and antimicrobials[J]. Food and Bioproducts Processing,2012,90(2):205-214.
[62]Caminiti I M,Palgan I,Noci F,etal. The effect of pulsed electric fields(PEF)in combination with high intensity light pulses(HILP)on Escherichia coli inactivation and quality attributes in apple juice[J]. Innovative Food Science and Emerging Technologies,2011,12(2):118-123.
[63]Cortés C,Esteve M J,Frígola A. Color of orange juice treated by high intensity pulsed electric fields during refrigerated storage and comparison with pasteurized juice[J]. Food Control,2008,19(2):151-158.
[64]Odriozola-Serrano I,Soliva-Fortuny R,Martín-Belloso O. Impact of high-intensity pulsed electric fields variables on vitamin C,anthocyanins and antioxidant capacity of strawberry juice[J]. LWT-Food Science and Technology,2009,42(1):93-100.
[65]Hartyáni P,Dalmadi I,Cserhalmi Z,etal. Physical-chemical and sensory properties of pulsed electric field and high hydrostatic pressure treated citrus juices[J]. Innovative Food Science and Emerging Technologies,2011,12(3):255-260.
[66]Adekunte A O,Tiwari B K,Cullen P J,etal. Effect of sonication on colour,ascorbic acid and yeast inactivation in tomato juice[J]. Food Chemistry,2010,122(3):500-507.
[67]Tiwari B,O’Donnell C,Cullen P. Effect of sonication on retention of anthocyanins in blackberry juice[J]. Journal of Food Engineering,2009,93(2):166-171.
[68]Tiwari B K,Patras A,Brunton N,etal. Effect of ultrasound processing on anthocyanins and color of red grape juice[J]. Ultrasonics Sonochemistry,2010,17(3):598-604.
[69]Valdramidis V P,Cullen P J,Tiwari B K,etal. Quantitative modelling approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during ultrasound processing[J]. Journal of Food Engineering,2010,96(3):449-454.
[70]Patil S,Bourke P,Frias J,etal. Inactivation of Escherichia coli in orange juice using ozone[J]. Innovative Food Science and Emerging Technologies,2009,10(4):551-557.
[71]Patil S,Valdramidis V,Cullen P,etal. Inactivation of Escherichia coli by ozone treatment of apple juice at different pH levels[J]. Food Microbiology,2010,27(6):835-840.
[72]Tiwari B,O'donnell C,Muthukumarappan K,etal. Anthocyanin and colour degradation in ozone treated blackberry juice[J]. Innovative Food Science and Emerging Technologies,2009,10(1):70-75.
[73]. Tiwari B,O’Donnell C,Patras A,etal. Anthocyanins and color degradation in ozonated grape juice[J]. Food and Chemical Toxicology,2009,47(11):2824-2829.
[74]Torres B,Tiwari B,Patras A,etal. Effect of ozone processing on the colour,rheological properties and phenolic content of apple juice[J]. Food Chemistry,2011,124(3):721-726..
[75]Tiwari B,O’Donnell C,Patras A,etal. Effect of ozone processing on anthocyanins and ascorbic acid degradation of strawberry juice[J]. Food Chemistry,2009,113(4):1119-1126.
[76]Gayán E,Serrano M J,Monfort S,etal. Combining ultraviolet light and mild temperatures for the inactivation of Escherichia coli in orange juice[J]. Journal of Food Engineering,2012,113(4):598-605.
[77]Pala ? U,Toklucu A K. Effect of UV-C light on anthocyanin content and other quality parameters of pomegranate juice[J]. Journal of Food Composition and Analysis,2011,24(6):790-795.
[78]Pala ? U,Toklucu A K. Microbial,physicochemical and sensory properties of UV-C processed orange juice and its microbial stability during refrigerated storage[J]. LWT-Food Science and Technology,2013,50(2):426-431..
[79]Falguera V,Pagán J,Ibarz A. Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties[J]. LWT-Food Science and Technology,2011,44(1):115-119.
[80]陳晨,張琳,劉增根,等.白刺果汁生產(chǎn)工藝研究[J].食品工業(yè)科技,2011,32(11):289-291.
[81]張敬,艾拉熱合滿,買熱甫艾提亞古麗.陶瓷膜在哈密瓜汁微濾除菌工藝中的應(yīng)用研究[J].食品工業(yè)科技,2012,33(13):243-245.
[82]熱合滿,艾拉,張敬.不同孔徑陶瓷微濾膜對(duì)石榴汁除菌效果的影響[J].保鮮與加工,2012,12(3):24-28.
[83]Ros-Chumillas M,Belissario Y,Iguaz A,etal. Quality and shelf life of orange juice aseptically packaged in PET bottles[J]. Journal of Food Engineering,2007,79(1):234-242.
[84]Muratore G,Lanza C M,Baiano A,etal. The influence of using different packaging on the quality decay kinetics of Cuccìa[J]. Journal of Food Engineering,2006,73(3):239-245.
[85]Perez-Vicente A,Serrano P,Abellan P,etal. Influence of packaging material on pomegranate juice colour and bioactive compounds,during storage[J]. Journal of The Science of Food and Agriculture,2004,84(7):639-644.
[86]Zerdin K,Rooney M L,Vermu? J. The vitamin C content of orange juice packed in an oxygen scavenger material[J]. Food Chemistry,2003,82(3):387-395.
[87]Choi M H,Kim G H,Lee H S. Effects of ascorbic acid retention on juice color and pigment stability in blood orange(Citrus sinensis)juice during refrigerated storage[J]. Food Research International,2002,35(8):753-759.
[88]Lee H S,Coates G A. Effect of thermal pasteurization on Valencia orange juice color and pigments[J]. LWT-Food Science and Technology,2003,36(1):153-156.
[89]Alighourchi H,Barzegar M. Some physicochemical characteristics and degradation kinetic of anthocyanin of reconstituted pomegranate juice during storage[J]. Journal of Food Engineering,2009,90(2):179-185.
[90]Klimczak I,Maecka M,Szlachta M,etal. Effect of storage on the content of polyphenols,vitamin C and the antioxidant activity of orange juices[J]. Journal of Food Composition and Analysis,2007,20(34):313-322.
Effect of processing conditions on quality of fruit and vegetable juices
CHENXue-hong,QINWei-dong,MALi-hua,DAIXiao-juan
(College of Food Engineering,Xuzhou Institute of Technology,Xuzhou 221000,China)
Crashing,blanching,enzymatic degradation,squeezing,clarification,homogenization,concentration and pasteurization,package and storage are usual unit operations during fruit and vegetable juices processing. These unit operations affect the quality of fruit and vegetable juices. In this article the development of fruit and vegetable juices processing were reviewed. Meanwhile,the effect of different processing conditions on the quality of fruit and vegetable juices were discussed and the future research need was proposed.
fruit and vegetable juices;processing conditions;quality
2013-06-26
陳學(xué)紅(1975-),女,博士,副教授,主要從事農(nóng)產(chǎn)品貯藏與加工方面的研究。
TS255.3
:A
:1002-0306(2014)01-0355-08