(重慶師范大學(xué)數(shù)學(xué)學(xué)院,重慶 401331)
(重慶師范大學(xué)數(shù)學(xué)學(xué)院,重慶 401331)
給出了經(jīng)典Ekeland變分原理的一個(gè)推廣,完善并改進(jìn)了已有文獻(xiàn)的證明,并把它推廣到了擬度量空間上.
Ekeland變分原理;近似極小點(diǎn);擬度量;序集通用準(zhǔn)則
1974年,Ekeland在文獻(xiàn)[1]中首次提出了經(jīng)典的Ekeland變分原理,即
設(shè)(X,d)是完備度量空間,f:X→R∪{+∞}為下半連續(xù)、下有界的真函數(shù),設(shè)ε>0,存在u∈X滿足f(u)≤infχ∈Xf(χ)+ε.則存在ν∈X,使得
自Ekeland變分原理理論提出以來,在優(yōu)化等領(lǐng)域中得到了進(jìn)一步發(fā)展,眾多學(xué)者對(duì)Ekeland變分原理理論進(jìn)行了深入的研究,在一定條件下,得出Ekeland變分原理的一些等價(jià)形式及其應(yīng)用,并對(duì)Ekeland變分原理從不同方面、不同角度進(jìn)行了推廣[2-5].
在文獻(xiàn)[2]中,Z.L.Wu在完備度量空間中利用Ekeland變分原理證明了Takahashiε-條件的等價(jià)定理,以及在弱尖極小及不動(dòng)點(diǎn)等中的應(yīng)用.在文獻(xiàn)[5]中,Yousuke把Ekeland變分原理推廣到了向量優(yōu)化.文獻(xiàn)[8]中,Ansari給出了向量形式的Ekeland變分原理,并給出了其在向量均衡問題及不動(dòng)點(diǎn)中的應(yīng)用.而文獻(xiàn)[4]則把函數(shù)f在X上下有界的條件弱化為f在X的每個(gè)有界子集上有下界.而此處則完善并改進(jìn)了文獻(xiàn)[4]中定理1的證明并把它推廣到了完備擬度量空間上.
眾所周知,文獻(xiàn)[6]中的經(jīng)典序集通用準(zhǔn)則蘊(yùn)含了Ekeland變分原理.而此處將用文獻(xiàn)[7]中的廣義序集通用準(zhǔn)則來證明此處的主要結(jié)果.
定義1[9]設(shè)X為非空集合,映射d:X×X→R+,使得對(duì)任意的χ,y,z∈X,滿足(1)d(χ,y)≥0.
(2)d(χ,y)=0當(dāng)且僅當(dāng)χ=y.
(3)d(χ,y)≤d(χ,z)+d(z,y).
則稱映射d是X上的擬度量,(X,d)稱為擬度量空間.
引理1(廣義序集通用準(zhǔn)則)[7]設(shè)X是一個(gè)偏序集并且是一個(gè)Housdorff拓?fù)淇臻g,同時(shí)滿足
(1)?χ∈X,{y∈X l y>χ}是序列閉集.
(2)若χ1<χ2<…<χn<…,則{χn}有收斂子列.
(3)存在Ψ:X→R滿足χ∈X,y∈X,χ<y,χ≠y?Ψ(χ)<Ψ(y).
則X有極大元.
由引理1可以推出下面的定理,并且改進(jìn)并完善了文獻(xiàn)[4]中的證明.
定理1[4]設(shè)(X,d)是一個(gè)完備擬度量空間,設(shè)f:X→R∪{+∞}為下半連續(xù),并且在任意有界集上下有界的真函數(shù).若存在χ0∈X,滿足
[1]EKELAND I.On the Variational Principle[J].JMath Anal Appl,1974(47):324-353
[2]WU Z L.Equivalent Formulations of Ekeland’s Variational Principle[J].JNonliear Analysis,2003(53):609-615
[3]SUZUKIT.The Strong Ekeland Variational Principle[J].JMath Anal Appl,2006(320):784-794
[4]SUN JL.A Generalization of Ekeland Variational Principle and Its Applications[J].Journal of NanJing Normal University:Natural Science,2004,27(4):705-707
[5]ARAYA Y.Ekeland's Variational Princip le and Its Equivalent Theorems in Vector Optimization[J].JMath Anal Appl,2008(346):9-16
[6]BREZISH,BROWER F E.A General Principle On Ordered Sets in Nonlinear Functional Analysis[J].JSys Sciand Math Scis,1976(3):355-364
[7]SUN JX.A Generalization of General Principle On Ordered Sets in Nonlinear Functional Analysis[J].JSys Sciand Math Scis,1990(3):228-232
[8]ANSARIQ H.Vectorial Form of Ekeland-type Variational Principle with Applications to Vector Equilibrium Problems and Fixed Point Theory[J].JMath Anal Appl,2007(334):561-575
[9]AL-HOMIDAN S,ANSARI Q H,YAO J C.Some Generalizations of Ekeland-type Variational Principle with Applications to Equilibrium Problems and Fixed Point Theory[J].JNonliear Analysis,2008(69):126-139
廣義Ekeland變分原理的推廣
周 麗
Generalized Ekeland Variational Principle
ZHOU Li
(School of Mathematics,Chongqing Normal University,Chongqing 401331,China)
This paper gives a generalization of classical Ekeland Variational Principle,perfects and improves the proofs of the existed literatures and extends it into quasi-metric space.
Ekeland Variational Principle;approximately minimal point;quasi-metric;general principle on ordered sets
李翠薇
O177.4
A
1672-058X(2014)02-0019-04
2013-06-19;
2013-09-16.
周麗(1988-),女,四川儀隴縣人,碩士研究生,從事向量優(yōu)化及應(yīng)用研究.
book=22,ebook=25