焦巍 彭莉
[摘要] 目的 觀察real time PCR在血流感染病原體檢測中的敏感性和特異性,并與常規(guī)血培養(yǎng)對比,探討其臨床應用價值。方法 以該院各臨床科室收集的108份膿毒血癥患者血液標本進行real time PCR檢測,同時進行常規(guī)血培養(yǎng),比較兩種方法的特異性和敏感性。結果 108份標本當中,兩種方法檢測出12種病原微生物。Real time PCR共檢測出陽性標本25份,陰性標本83份。其中與血培養(yǎng)共同陽性標本9份,共同陰性標本78份。兩方法的一致性為80.6%。Real time PCR的陰性預測值是0.94,敏感性64%,特異性83%。16例標本real time PCR陽性而血培養(yǎng)陰性,5例標本血培養(yǎng)陽性而real time PCR陰性。同時,有2病標超出real time PCR的檢測范圍,而血培養(yǎng)陽性。此外,real time PCR無法檢測光滑念珠菌。結論 real time PCR雖然能快速檢測血液感染中病原微生物,但依然不能完全替代血培養(yǎng)。
[關鍵詞] 實時定量PCR;血流感染;血培養(yǎng)
[中圖分類號] R4 [文獻標識碼] A [文章編號] 1674-0742(2014)05(c)-0031-02
[Abstract] Objective To observe the sensitivity and specificity of real-time PCR in the detection of unknown pathogen in bloodstream infection, and compare that with conventional blood culture, and thus to investigate its clinic application value in pathogen detection. Methods A total of 108 blood samples of patients with sepsis from the clinic departments in our hospital were collected for real-time PCR detection and conventional blood culture. And the sensitivity and specificity of these two methods were compared. Results Of the 108 samples, 12 kinds of pathogens were detected. 25 positive and 83 negative samples were detected by real-time PCR. 9 samples were positive, and 78 samples were negative in both real-time PCR and blood culture assays. The agreement rate of blood culture system and real-time PCR was 80.6%. The negative predictive value of real-time PCR was 0.94, sensitivity was 64%, and specificity 83%. In 16 samples where a positive real-time PCR and a negative blood culture system result were obtained. In 5 samples, the blood culture assay was positive whereas the real-time PCR yielded negative results. In 2 of these cases, the pathogens involved were not included in the real-time PCR detection list but positive in blood culture assay. In addition, real-time PCR failed to detect Candida glabrata. Conclusion Real-time PCR is a rapid and valuable tool for rapid diagnosis of pathogens in the bloodstream, but it cannot be recommended as the replacement for the blood culture test.
[Key words] Real-time PCR; Bloodstream infection; Blood culture
對于膿毒血癥患者而言,準確快速快速血流病原體,是指導抗生素治療最有效的措施[1]。盡管經(jīng)驗性使用抗生素可及時挽救患者生命,但由于耐藥菌逐年增多,因此對于抗生素療效甚微的患者,有必要根據(jù)病原體的類型調(diào)整治療手段[2]。傳統(tǒng)診斷血流感染的方式是血培養(yǎng),雖然目前全自動的儀器已經(jīng)廣泛應用與臨床,但最終的培養(yǎng)結果往往是需要等待12~48 h。對于生長緩慢且營養(yǎng)需求復雜的病原體(如酵母菌)可能需要更長的時間。更為重要的是,若患者先前使用過抗生素,血培養(yǎng)的陽性率一般更低[3]。隨著分子生物學技術的發(fā)展和應用,直接從血液標本中對細菌或真菌的核酸進行擴增是鑒定病原體感染的有效手段[4-5]。該研究2013年1—8月間通過熒光定量PCR檢測血流感染患者中的病原體,并與常規(guī)血培養(yǎng)進行對比,旨在評價其在臨床中的應用價值。
1 資料與方法
1.1 一般資料
該研究納入的膿毒血癥患者為該院各臨床科室收治的患者90例,共獲取標本108份。其中男52例,女38例,平均年齡(43.5±11.5)歲。其中60例患者(66.7%)來自ICU、麻醉科和腫瘤內(nèi)科,其他30例(33.3%)來自內(nèi)科和血液科。93例患者(86.1%)在采集血液時已經(jīng)接受過抗菌素治療。
1.2 研究方法
使用靜脈穿刺術獲取的血液樣本同時進行BC和SF。其中血培養(yǎng)采用Becton Dickinson公司生產(chǎn)的Bactec 9120血培養(yǎng)儀,在37 ℃培養(yǎng)1~5 d,并根據(jù)相應方法分離并鑒定微生物。同時,將靜脈穿刺得到的含有EDTA血液5 mL用于real time PCR分析。其步驟根據(jù)SeptiFast Lys、SeptiFast Prep和LightCycler SeptiFast試劑盒的操作進行。real time PCR儀器型號為LightCycler 2.0(Roche)。
1.3 結果分析
根據(jù)參考文獻提供的方法對微生物進行鑒定[6]。即,所有待檢病原體通過識別軟件識別特有的峰值,同時設立陽性對照。若對照為陽性,且待測標本無峰值時,結果判定為陰性。
1.4 分析指標
根據(jù)鑒定結果,計算real time PCR的靈敏度、特異性、陽性預測值(positive predictive values,PPV)、陰性預測值(negative predictive values,NPV),同時計算兩種方法的一致性。
1.5 統(tǒng)計方法
采用SPSS 19.0軟件處理數(shù)據(jù),并根據(jù)real time PCR結果計算其靈敏度、特異性、PPV、NPV和一致性。
2 結果
2.1 臨床標本中病原菌的分布情況
90例患者培養(yǎng)標本共分離獲得12株致病菌。其中革蘭陽性球菌6種,革蘭陰性桿菌5種,真菌1種。常見的細菌包括金大腸桿菌,黃色葡萄球菌,糞腸球菌,銅綠假單胞菌等。
2.2 兩種方法細菌檢出率比較
108例血液樣本中,兩種方法均檢測陰性79例,陽性7例。5例標本血培養(yǎng)陽性而real time PCR陰性。16例標本血培養(yǎng)陰性而real time PCR陽性。real time PCR與血培養(yǎng)的NPV是94%(78/83),敏感度是64%(9/14),特異度是83%(78/94)。在16例real time PCR陽性而血培養(yǎng)陰性標本中,包括埃希菌屬6例,腸球菌屬3例,腸桿菌屬3例,假單胞菌2例,金黃色葡萄球菌2例。見表1。
2.3 Real time PCR假陰性情況
該本研究中,有5例患者real time PCR陰性,而血培養(yǎng)陽性,假陰性率為4.6%(5/108),3例分別為包括多殺性巴氏桿菌2例,解沒食子酸鏈球菌1例。由于先前在real time PCR擴增列表中并未設定,因此未予以檢出。另2例real time PCR陰性的細菌為光滑念珠菌。
3 討論
由于real time PCR將PCR反應和檢測一次性完成,大大降低了污染的可能性,因此在臨床病原體中已經(jīng)得到了廣泛的應用[5,7]。但有關real time PCR用于血流感染中對病原微生物進行檢測,并能否代替常規(guī)血培養(yǎng),國內(nèi)報道非常少。其該研究通過將臨床上診斷為膿毒血癥患者的血液,通過real time PCR和血培養(yǎng)進行比較,結果發(fā)現(xiàn),real time PCR的敏感度性范圍為0.60~0.95,特異性為0.74~0.93。與國外報道相比,該研究的敏感性相對較低,但特異性更高[8]。
該研究當中,real time PCR陽性,而血培養(yǎng)陰性標本占14.8%,與國外報道有所不同[9]。該研究當中,對血培養(yǎng)陰性的患者,對身體其他部位的標本(如呼吸道分泌物)也進行了real time PCR檢測,其中有4例患者在這些部位檢測出病原體。因此,real time PCR相對而言更能反映出患者體內(nèi)真實的感染情況。此外,也有3例患者曾在數(shù)天前檢測出DNA陽性,而血培養(yǎng)陰性。這肯能與抗生素使用有關,當然也不能排除患者體內(nèi)僅存在這些病原體的DNA。有研究顯示,血液中的細菌DNA與SIRS的發(fā)生以及膿毒血癥之間可能存在一定關聯(lián),并且是ICU患者發(fā)生多器官功能衰竭的危險因素。因此,real time PCR不但可以用于未知病原體或其DNA的檢測,同時也能為臨床提供更為有價值的信息[10]。同時,該研究中,real time PCR的假陰性為4.6%。與國外研究接近[11]。但該研究的5例假陰性標本當中,3例是病原體未列入real time PCR擴增譜中,另2例是真菌感染。和國外研究相符[12],真菌也是real time PCR法檢出現(xiàn)假陰性的重要難題。其原因可能是PCR反應的抑制或自我擴增效率低下,這可能與擴增本菌時選取的ITS區(qū)域過大有關[4]。
綜上,real time PCR可快速、敏感地檢測血流感染病原體,尤其是對于有抗生素治療史的患者而言,real time PCR更加具有優(yōu)勢。盡管如此,real time PCR也具有一些不足:首先,real time PCR不像血培養(yǎng)一樣,可以獲得細菌耐藥相關資料;其次,real time PCR也受其檢測譜的限制,尤其是罕見病原體的檢測。因此在臨床應用時,常規(guī)細菌培養(yǎng)依然是real time PCR的重要補充。
[參考文獻]
[1] Chaidaroglou A, Manoli E, Marathias E, et al. Use of a multiplex polymerase chain reaction system for enhanced bloodstream pathogen detection in thoracic transplantation[J].J Heart Lung Transplant, 2013,32(7):707-713.
[2] Menezes LC, Rocchetti TT, Bauab KC, et al. Diagnosis by real-time polymerase chain reaction of pathogens and antimicrobial resistance genes in bone marrow transplant patients with bloodstream infections[J]. BMC Infect Dis, 2013,13:166.
[3] Loonen AJ, Bos MP, van Meerbergen B, et al. Comparison of pathogen DNA isolation methods from large volumes of whole blood to improve molecular diagnosis of bloodstream infections[J].PLoS One,2013,8(8):e72349.
[4] Horvath A, Peto Z, Urban E, et al. A novel, multiplex, real-time PCR-based approach for the detection of the commonly occurring pathogenic fungi and bacteria[J]. BMC Microbiol, 2013,13:300.
[5] Hansen WL, Beuving J, Bruggeman CA, et al. Molecular probes for diagnosis of clinically relevant bacterial infections in blood cultures[J].J Clin Microbiol, 2010,48(12):4432-4438.
[6] Lehmann LE, Hunfeld KP, Emrich T, et al. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples[J].Med Microbiol Immunol, 2008,197(3):313-324.
[7] Hansen WL, Beuving J, Verbon A, et al. One-day workflow scheme for bacterial pathogen detection and antimicrobial resistance testing from blood cultures[J]. J Vis Exp, 2012,(65):3254.
[8] Wallet F, Nseir S, Baumann L, et al. Preliminary clinical study using a multiplex real-time PCR test for the detection of bacterial and fungal DNA directly in blood[J]. Clin Microbiol Infect, 2010,16(6):774-779.
[9] Maubon D, Hamidfar-Roy R, Courby S, et al. Therapeutic impact and diagnostic performance of multiplex PCR in patients with malignancies and suspected sepsis[J]. J Infect, 2010,61(4):335-342.
[10] Kubelova M, Sedlak K, Panev A, et al. Conflicting results of serological, PCR and microscopic methods clarify the various risk levels of canine babesiosis in Slovakia: a complex approach to Babesia canis diagnostics[J]. Vet Parasitol, 2013,191(3-4):353-357.
[11] Lehmann LE, Hunfeld KP, Steinbrucker M, et al. Improved detection of blood stream pathogens by real-time PCR in severe sepsis[J]. Intensive Care Med, 2010,36(1):49-56.
[12] Kasper DC, Altiok I, Mechtler TP, et al. Molecular detection of late-onset neonatal sepsis in premature infants using small blood volumes: proof-of-concept[J]. Neonatology, 2013,103(4):268-273.
(收稿日期:2014-02-16)