?
腫瘤淋巴結(jié)轉(zhuǎn)移相關(guān)MicroRNAs的研究進(jìn)展
張莉向作林
(復(fù)旦大學(xué)附屬中山醫(yī)院放療科,上海200032)
Research Progress of MicroRNAs Associated with Tumor Node Metastasis
ZHANGLiXIANGZuolinDepartmentofRadiotherapy,ZhongshanHospital,FudanUniversity,Shanghai200032,China
1MicroRNAs概述
微小RNA(microRNAs,miRNAs)是一類包含20~24個(gè)核苷酸的高度保守的非編碼小分子RNA,可以調(diào)節(jié)mRNA的翻譯[1]。miRNA結(jié)合到多種基因的mRNA的3’-非編碼區(qū),導(dǎo)致靶向mRNA的降解及轉(zhuǎn)錄的終止[2]。miRNA作為信號(hào)通路的樞紐,參與多種生理病理過(guò)程,如細(xì)胞增殖、凋亡及腫瘤轉(zhuǎn)移[3-4]。越來(lái)越多的研究[5-6]表明,miRNAs可以發(fā)揮癌基因或者抑癌基因的作用,它們?cè)诙喾N腫瘤中的異常表達(dá)對(duì)腫瘤的侵襲和轉(zhuǎn)移有著重要的影響。因此,異常表達(dá)的miRNA有望成分預(yù)測(cè)腫瘤侵襲及轉(zhuǎn)移的生物標(biāo)志物。本文綜述了腫瘤淋巴結(jié)轉(zhuǎn)移相關(guān)miRNAs的研究進(jìn)展。
2miRNA與腫瘤淋巴結(jié)轉(zhuǎn)移
2.1miRNA與頭頸部腫瘤淋巴結(jié)轉(zhuǎn)移Wang等[7]研究表明,EB病毒核抗原1(EBNA1)蛋白在鼻咽癌組織中高表達(dá),并且通過(guò)轉(zhuǎn)化生長(zhǎng)因子-β1的介導(dǎo)抑制miR-200a和miR-200b的表達(dá),從而導(dǎo)致鼻咽癌淋巴結(jié)轉(zhuǎn)移的發(fā)生。Luo等[8]發(fā)現(xiàn),高表達(dá)的miR-18a與晚期鼻咽癌的淋巴結(jié)轉(zhuǎn)移相關(guān)。Huang等[9]發(fā)現(xiàn),miR-491-5p 低表達(dá)與口腔鱗狀細(xì)胞癌淋巴結(jié)轉(zhuǎn)移有關(guān)。Lu等[10]研究發(fā)現(xiàn),miR-196a/b在腫瘤組織中高度表達(dá),并且與口腔癌淋巴結(jié)轉(zhuǎn)移密切相關(guān)。Yang等[11]研究表明,miR-181可以作為口腔鱗狀細(xì)胞癌淋巴結(jié)轉(zhuǎn)移的生物標(biāo)志物。Abraham 等[12]發(fā)現(xiàn),miR-183 和miR-375的超表達(dá)與甲狀腺髓樣癌的對(duì)側(cè)淋巴結(jié)轉(zhuǎn)移相關(guān)(P<0.001、P=0.001)。Chou等[13]研究發(fā)現(xiàn),miR-146b可以顯著增加甲狀腺乳頭狀癌細(xì)胞的遷移和侵襲。Wang等[14]發(fā)現(xiàn),miR-2861和miR-451的低表達(dá)上調(diào)與甲狀腺髓樣癌淋巴結(jié)轉(zhuǎn)移密切相關(guān)。
2.2miRNA與胸部腫瘤淋巴結(jié)轉(zhuǎn)移有研究[15-17]表明,高表達(dá)的miR-21與食管鱗狀細(xì)胞癌的淋巴結(jié)轉(zhuǎn)移顯著相關(guān)。Huang等[18]發(fā)現(xiàn),miR-98和 miR-214的表達(dá)水平與食管鱗狀細(xì)胞癌淋巴結(jié)轉(zhuǎn)移呈負(fù)相關(guān)。Zhang等[19]研究表明,發(fā)生淋巴結(jié)轉(zhuǎn)移的食管鱗狀細(xì)胞癌患者中miR-200b表達(dá)顯著下降。Wang等[20]發(fā)現(xiàn),miR-196a的高表達(dá)與食管鱗狀細(xì)胞癌淋巴結(jié)轉(zhuǎn)移相關(guān)。Chen等[21]發(fā)現(xiàn),miR-92a高表達(dá)的食管鱗狀細(xì)胞癌患者較低表達(dá)者更容易發(fā)生淋巴結(jié)轉(zhuǎn)移。
在非小細(xì)胞肺癌的研究中,Meng 等[22]應(yīng)用全基因組測(cè)序證實(shí)表達(dá)上調(diào)的miR-31可以預(yù)測(cè)肺腺癌患者淋巴結(jié)轉(zhuǎn)移,而且提示預(yù)后不良。Yu 等[23]發(fā)現(xiàn),miR-193a-3p/5p低表達(dá)與非小細(xì)胞肺癌的TNM分期和淋巴結(jié)轉(zhuǎn)移明顯相關(guān)。Wang等[24]用基因芯片分析了非小細(xì)胞肺癌組織中miRNA的表達(dá)譜,發(fā)現(xiàn)了40個(gè)異常表達(dá)的miRNA,其中下調(diào)最明顯的miR-451與非小細(xì)胞肺癌的分化程度,病理分期和淋巴結(jié)轉(zhuǎn)移顯著相關(guān)。Roth 等[25]發(fā)現(xiàn),肺癌患者血清中高表達(dá)的miR-10b與淋巴結(jié)轉(zhuǎn)移相關(guān)(P<0.03)。Wang等[26]的研究表明,miR-451的低表達(dá)水平與非小細(xì)胞肺癌的淋巴結(jié)轉(zhuǎn)移相關(guān)。Chen等[27]的研究表明,miR-148a的低表達(dá)與非小細(xì)胞肺癌的淋巴結(jié)轉(zhuǎn)移有關(guān)。Li等[28]發(fā)現(xiàn),miR-339-5p可以抑制非小細(xì)胞肺癌的淋巴結(jié)轉(zhuǎn)移相關(guān)。
Chan等[29]首次發(fā)現(xiàn),低表達(dá)的miR-149與乳腺癌患者的淋巴結(jié)轉(zhuǎn)移有密切關(guān)系。Yigit 等[30]提出,通過(guò)下調(diào)miR-10b的表達(dá),可以阻止乳腺癌發(fā)生淋巴結(jié)轉(zhuǎn)移。Chen等[31]也發(fā)現(xiàn),miR-10b 和miR-373可作為預(yù)測(cè)乳腺癌淋巴結(jié)轉(zhuǎn)移的生物標(biāo)志物。Yang等[32]發(fā)現(xiàn),miR-34可以抑制乳腺癌的侵襲和淋巴結(jié)轉(zhuǎn)移。研究[33-34]發(fā)現(xiàn),發(fā)生淋巴結(jié)轉(zhuǎn)移的乳腺癌患者miR-200b表達(dá)下調(diào)。Gravgaard等[35]運(yùn)用原位雜交實(shí)驗(yàn)證實(shí)miR-200家族和miR-9參與了乳腺癌的遠(yuǎn)處轉(zhuǎn)移。Zhang等[36]研究表明,miR-30a與乳腺癌患者的淋巴結(jié)轉(zhuǎn)移和肺轉(zhuǎn)移程度呈負(fù)相關(guān)。Corcoran等[37]發(fā)現(xiàn),miR-21高表達(dá)與乳腺癌淋巴結(jié)轉(zhuǎn)移相關(guān)。Chu等[38]認(rèn)為,miR-190a通過(guò)多種途徑抑制乳腺癌淋巴結(jié)轉(zhuǎn)移。Li等[39]研究證實(shí),miR-720通過(guò)直接靶向下調(diào)TWIST1而抑制乳腺癌的轉(zhuǎn)移。
2.3miRNA與腹部腫瘤淋巴結(jié)轉(zhuǎn)移Zheng等[40]發(fā)現(xiàn),miR-148a下調(diào)將會(huì)導(dǎo)致胃癌患者發(fā)生淋巴結(jié)轉(zhuǎn)移。Tang 等[41]發(fā)現(xiàn),miR-200b、 miR-200c下調(diào)與胃癌的淋巴結(jié)轉(zhuǎn)移有關(guān)。有研究[42]表明,miR-146a表達(dá)降低對(duì)胃癌淋巴結(jié)轉(zhuǎn)移的發(fā)生起著重要的作用。Zheng 等[43]運(yùn)用基因芯片和生物信息學(xué)分析證實(shí),miR-409可以抑制胃癌細(xì)胞發(fā)生淋巴結(jié)轉(zhuǎn)移。Zhao等[44]發(fā)現(xiàn),miR-7參與了胃癌上皮間質(zhì)轉(zhuǎn)化及淋巴結(jié)轉(zhuǎn)移等生物學(xué)行為。Xu等[45]發(fā)現(xiàn),miR-335的低表達(dá)和胃癌淋巴結(jié)轉(zhuǎn)移明顯相關(guān)。Feng等[46]發(fā)現(xiàn),miR-126在胃癌淋巴結(jié)轉(zhuǎn)移中起著腫瘤抑制基因的作用。Shin 等[47]發(fā)現(xiàn),miR-135a可以抑制胃癌淋巴結(jié)轉(zhuǎn)移。Xu等[48]發(fā)現(xiàn),miR-21可以作為預(yù)測(cè)胃癌淋巴結(jié)轉(zhuǎn)移的生物標(biāo)志物。Chen等[49]發(fā)現(xiàn),miR-10a參與了胃癌淋巴結(jié)轉(zhuǎn)移的發(fā)生。
Yuan等[50]研究表明,在結(jié)直腸癌細(xì)胞中,miR-221和miR-224的表達(dá)水平與其淋巴結(jié)轉(zhuǎn)移以及腫瘤分期呈負(fù)相關(guān)。Siemens等[51]發(fā)現(xiàn),miR-34a啟動(dòng)子甲基化與結(jié)腸癌的遠(yuǎn)處轉(zhuǎn)移有關(guān)。Toiyama等[52]發(fā)現(xiàn),血清中高表達(dá)的miR-200c是結(jié)直腸癌淋巴結(jié)轉(zhuǎn)移的獨(dú)立預(yù)測(cè)因子(P=0.0005)。此外,Paterson等[53]也發(fā)現(xiàn),高表達(dá)的miR-200家族參與了結(jié)直腸癌的淋巴結(jié)轉(zhuǎn)移。Chen等[54]研究發(fā)現(xiàn),miR-103/107可以促進(jìn)結(jié)直腸癌淋巴結(jié)轉(zhuǎn)移及遠(yuǎn)處轉(zhuǎn)移。Yuan等[55]發(fā)現(xiàn),miR-145表達(dá)上調(diào)在結(jié)直腸癌淋巴結(jié)轉(zhuǎn)移中起著重要的作用。Wang等[56]研究表明,miR-195 表達(dá)下降與結(jié)直腸癌淋巴結(jié)轉(zhuǎn)移及預(yù)后差有關(guān)。
Chen等[57]發(fā)現(xiàn),發(fā)生淋巴結(jié)轉(zhuǎn)移患者的肝癌組織中,miR-100表達(dá)降低。Guo等[58]發(fā)現(xiàn),在體外miR-34a的異常表達(dá)可以抑制Hepa1-6和HCa-F細(xì)胞的生長(zhǎng)和侵襲;此外,miR-34a可以引起G1期阻滯,并且下調(diào)Hepa1-6 細(xì)胞中cyclinD1和CDK6的表達(dá);而且該研究進(jìn)一步發(fā)現(xiàn)miR-34a可以降低Hca-F細(xì)胞黏附到局域淋巴結(jié)的能力,進(jìn)而抑制肝癌淋巴結(jié)轉(zhuǎn)移。
Caponi等[59]研究發(fā)現(xiàn),高表達(dá)的miR-21與胰腺導(dǎo)管乳頭狀瘤淋巴結(jié)陽(yáng)性相關(guān)(P=0.03)。He等[60]發(fā)現(xiàn),miR-218和 ROBO-1 信號(hào)通路參與胰腺癌淋巴結(jié)轉(zhuǎn)移。
2.4miRNA與泌尿生殖系統(tǒng)腫瘤淋巴結(jié)轉(zhuǎn)移Brase等[61]發(fā)現(xiàn),在前列腺癌淋巴結(jié)陽(yáng)性患者的血清中,miR-375和miR-141水平升高。Spahn等[62]研究表明,低表達(dá)的miR-221有望成為預(yù)測(cè)前列腺癌淋巴結(jié)轉(zhuǎn)移的生物標(biāo)志物。Chen等[63]發(fā)現(xiàn),血清中的6個(gè)microRNAs :miR-1246、miR-20a、miR-2392、miR-3147、miR-3162-5p、miR-4484,可預(yù)測(cè)早期宮頸癌的淋巴結(jié)轉(zhuǎn)移。Zhao 等[64]發(fā)現(xiàn),可以根據(jù)血清中高表達(dá)的miR-20a和低表達(dá)的miR-203篩選出發(fā)生淋巴結(jié)轉(zhuǎn)移的早期宮頸癌患者。Yeh等[65]研究表明,miR-138低表達(dá)和SOX4高表達(dá)的卵巢癌患者更容易發(fā)生淋巴結(jié)轉(zhuǎn)移,且腫瘤分級(jí)較高,也更易出現(xiàn)腹水。de Melo等研究[66]發(fā)現(xiàn),miR-223-5p和miR-19-b1-5p的下調(diào)與外陰腫瘤的淋巴結(jié)轉(zhuǎn)移相關(guān),miR-100-3p 和miR-19-b1-5p的下調(diào)與外陰腫瘤的侵襲有關(guān),miR-519b和miR-133a與其FIGO晚期有關(guān)。
3小結(jié)
近年來(lái),miRNA與腫瘤淋巴結(jié)轉(zhuǎn)移的研究取得了較大進(jìn)展,為腫瘤的基因診斷、治療提供了新靶點(diǎn)。然而,腫瘤淋巴結(jié)轉(zhuǎn)移的機(jī)制還不完全明了。如果能通過(guò)建立腫瘤淋巴結(jié)轉(zhuǎn)移的預(yù)測(cè)模型來(lái)預(yù)測(cè)淋巴結(jié)轉(zhuǎn)移的發(fā)生,篩選出腫瘤淋巴結(jié)轉(zhuǎn)移的高危人群,就能早期對(duì)其淋巴引流區(qū)進(jìn)行預(yù)防性治療,降低淋巴結(jié)轉(zhuǎn)移,提高患者的生活質(zhì)量,延長(zhǎng)無(wú)瘤生存期。這將從根本上改變腫瘤淋巴結(jié)轉(zhuǎn)移的治療,即由出現(xiàn)淋巴結(jié)轉(zhuǎn)移后的姑息性被動(dòng)治療轉(zhuǎn)變?yōu)榉e極預(yù)防淋巴結(jié)轉(zhuǎn)移的主動(dòng)治療。因此,篩選腫瘤淋巴結(jié)轉(zhuǎn)移相關(guān)的miRNA、建立腫瘤淋巴結(jié)轉(zhuǎn)移的預(yù)測(cè)模型具有非常重要的意義,有助于指導(dǎo)個(gè)體化治療策略的制定。
參考文獻(xiàn)
[1]Calin GA, Croce CM. MicroRNA signatures in human cancers[J]. Nat Rev Cancer, 2006,6(11):857-866.
[2]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001,294(5543):853-858.
[3]Ambros V. The functions of animal microRNAs[J]. Nature, 2004,431(7006):350-355.
[4]Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction[J]. Nat Rev Mol Cell Biol, 2010,11(4):252-263.
[5]Slack FJ, Weidhaas JB. MicroRNA in cancer prognosis[J]. N Engl J Med, 2008,359(25):2720-2722.
[6]Cheng CJ, Slack FJ. The duality of oncomiR addiction in the maintenance and treatment of cancer[J]. Cancer J, 2012,18(3):232-237.
[7]Wang L, Tian WD, Xu X, et al. Epstein-Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial-mesenchymal transition in nasopharyngeal carcinoma cells[J]. Cancer, 2014,120(3):363-372.
[8]Luo Z, Dai Y, Zhang L, et al. miR-18a promotes malignant progression by impairing microRNA biogenesis in nasopharyngeal carcinoma[J]. Carcinogenesis, 2013,34(2):415-425.
[9]Huang WC, Chan SH, Jang TH, et al. miRNA-491-5p and GIT1 serve as modulators and biomarkers for oral squamous cell carcinoma invasion and metastasis[J]. Cancer Res, 2014,74(3):751-764.
[10]Lu YC, Chang JT, Liao CT, et al. OncomiR-196 promotes an invasive phenotype in oral cancer through the NME4-JNK-TIMP1-MMP signaling pathway[J]. Mol Cancer, 2014,13:218.
[11]Yang CC, Hung PS, Wang PW, et al. miR-181 as a putative biomarker for lymph-node metastasis of oral squamous cell carcinoma[J]. J Oral Pathol Med, 2011,40(5):397-404.
[12]Abraham D, Jackson N, Gundara JS, et al. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets[J]. Clin Cancer Res, 2011,17(14):4772-4781.
[13]Chou CK, Yang KD, Chou FF, et al. Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma[J]. J Clin Endocrinol Metab, 2013,98(2):E196-E205.
[14]Wang Z, Zhang H, Zhang P, et al. Upregulation of miR-2861 and miR-451 expression in papillary thyroid carcinoma with lymph node metastasis[J]. Med Oncol, 2013,30(2):577.
[15]Sakai NS, Samia-Aly E, Barbera M, et al. A review of the current understanding and clinical utility of miRNAs in esophageal cancer[J]. Semin Cancer Biol, 2013,23(6 Pt B):512-521.
[16]Hiyoshi Y, Kamohara H, Karashima R, et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma[J]. Clin Cancer Res, 2009,15(6):1915-1922.
[17]Tanaka Y, Kamohara H, Kinoshita K, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma[J]. Cancer, 2013,119(6):1159-1167.
[18]Huang SD, Yuan Y, Zhuang CW, et al. MicroRNA-98 and microRNA-214 post-transcriptionally regulate enhancer of zeste homolog 2 and inhibit migration and invasion in human esophageal squamous cell carcinoma[J]. Mol Cancer, 2012,11:51.
[19]Zhang HF, Zhang K, Liao LD, et al. miR-200b suppresses invasiveness and modulates the cytoskeletal and adhesive machinery in esophageal squamous cell carcinoma cells via targeting Kindlin-2[J]. Carcinogenesis, 2014,35(2):292-301.
[20]Wang K, Li J, Guo H, et al. MiR-196a binding-site SNP regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis[J]. Carcinogenesis, 2012,33(11):2147-2154.
[21]Chen ZL, Zhao XH, Wang JW, et al. microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin[J]. J Biol Chem, 2011,286(12):10725-10734.
[22]Meng W, Ye Z, Cui R, et al. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma[J]. Clin Cancer Res, 2013,19(19):5423-5433.
[23]Yu T, Li J, Yan M, et al. MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway[J]. Oncogene, 2014.
[24]Wang R, Wang ZX, Yang JS, et al. MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14)[J]. Oncogene, 2011,30(23):2644-2658.
[25]Roth C, Kasimir-Bauer S, Pantel K, et al. Screening for circulating nucleic acids and caspase activity in the peripheral blood as potential diagnostic tools in lung cancer[J]. Mol Oncol, 2011,5(3):281-291.
[26]Wang XC, Tian LL, Jiang XY, et al. The expression and function of miRNA-451 in non-small cell lung cancer[J]. Cancer Lett, 2011,311(2):203-209.
[27]Chen Y, Min L, Zhang X, et al. Decreased miRNA-148a is associated with lymph node metastasis and poor clinical outcomes and functions as a suppressor of tumor metastasis in non-small cell lung cancer[J]. Oncol Rep, 2013,30(4):1832-1840.
[28]Li Y, Zhao W, Bao P, et al. miR-339-5p inhibits cell migration and invasion and may be associated with the tumor-node-metastasis staging and lymph node metastasis of non-small cell lung cancer[J]. Oncol Lett, 2014,8(2):719-725.
[29]Chan SH, Huang WC, Chang JW, et al. MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis[J]. Oncogene, 2014,33(36):4496-4507.
[30]Yigit MV, Ghosh SK, Kumar M, et al. Context-dependent differences in miR-10b breast oncogenesis can be targeted for the prevention and arrest of lymph node metastasis[J]. Oncogene, 2013,32(12):1530-1538.
[31]Chen W, Cai F, Zhang B, et al. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers[J]. Tumour Biol, 2013,34(1):455-462.
[32]Yang S, Li Y, Gao J, et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1[J]. Oncogene, 2013,32(36):4294-4303.
[33]Wee EJ, Peters K, Nair SS, et al. Mapping the regulatory sequences controlling 93 breast cancer-associated miRNA genes leads to the identification of two functional promoters of the Hsa-mir-200b cluster, methylation of which is associated with metastasis or hormone receptor status in advanced breast cancer[J]. Oncogene, 2012,31(38):4182-4195.
[34]Zhang X, Zhang B, Gao J, et al. Regulation of the microRNA 200b (miRNA-200b) by transcriptional regulators PEA3 and ELK-1 protein affects expression of Pin1 protein to control anoikis[J]. J Biol Chem, 2013,288(45):32742-32752.
[35]Gravgaard KH, Lyng MB, Laenkholm AV, et al. The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer[J]. Breast Cancer Res Treat, 2012,134(1):207-217.
[36]Zhang N, Wang X, Huo Q, et al. MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin[J]. Oncogene, 2014,33(24):3119-3128.
[37]Corcoran C, Friel A M, Duffy M J, et al. Intracellular and extracellular microRNAs in breast cancer[J]. Clin Chem, 2011,57(1):18-32.
[38]Chu HW, Cheng CW, Chou WC, et al. A novel estrogen receptor-microRNA 190a-PAR-1-pathway regulates breast cancer progression, a finding initially suggested by genome-wide analysis of loci associated with lymph-node metastasis[J]. Hum Mol Genet, 2014,23(2):355-367.
[39]Li LZ, Zhang CZ, Liu LL, et al. miR-720 inhibits tumor invasion and migration in breast cancer by targeting TWIST1[J]. Carcinogenesis, 2014,35(2):469-478.
[40]Zheng B, Liang L, Wang C, et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer[J]. Clin Cancer Res, 2011,17(24):7574-7583.
[41]Tang H, Deng M, Tang Y, et al. miR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression[J]. Clin Cancer Res, 2013,19(20):5602-5612.
[42]Kogo R, Mimori K, Tanaka F, et al. Clinical significance of miR-146a in gastric cancer cases[J]. Clin Cancer Res, 2011,17(13):4277-4284.
[43]Zheng B, Liang L, Huang S, et al. MicroRNA-409 suppresses tumour cell invasion and metastasis by directly targeting radixin in gastric cancers[J]. Oncogene, 2012,31(42):4509-4516.
[44]Zhao X, Dou W, He L, et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor[J]. Oncogene, 2013,32(11):1363-1372.
[45]Xu Y, Zhao F, Wang Z, et al. MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1[J]. Oncogene, 2012,31(11):1398-1407.
[46]Feng R, Chen X, Yu Y, et al. miR-126 functions as a tumour suppressor in human gastric cancer[J]. Cancer Lett, 2010,298(1):50-63.
[47]Shin JY, Kim YI, Cho SJ, et al. MicroRNA 135a suppresses lymph node metastasis through down-regulation of ROCK1 in early gastric cancer[J]. PLoS One, 2014,9(1):e85205.
[48]Xu Y, Sun J, Xu J, et al. miR-21 Is a Promising Novel Biomarker for Lymph Node Metastasis in Patients with Gastric Cancer[J]. Gastroenterol Res Pract, 2012,2012:640168.
[49]Chen W, Tang Z, Sun Y, et al. miRNA expression profile in primary gastric cancers and paired lymph node metastases indicates that miR-10a plays a role in metastasis from primary gastric cancer to lymph nodes[J]. Exp Ther Med, 2012,3(2):351-356.
[50]Yuan K, Xie K, Fox J, et al. Decreased levels of miR-224 and the passenger strand of miR-221 increase MBD2, suppressing maspin and promoting colorectal tumor growth and metastasis in mice[J]. Gastroenterology, 2013,145(4):853-864.
[51]Siemens H, Neumann J, Jackstadt R, et al. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer[J]. Clin Cancer Res, 2013,19(3):710-720.
[52]Toiyama Y, Hur K, Tanaka K, et al. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer[J]. Ann Surg, 2014,259(4):735-743.
[53]Paterson EL, Kazenwadel J, Bert AG, et al. Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression[J]. Neoplasia, 2013,15(2):180-191.
[54]Chen HY, Lin YM, Chung HC, et al. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4[J]. Cancer Res, 2012,72(14):3631-3641.
[55]Yuan W, Sui C, Liu Q, et al. Up-regulation of microRNA-145 associates with lymph node metastasis in colorectal cancer[J]. PLoS One, 2014,9(7):e102017.
[56]Wang X, Wang J, Ma H, et al. Downregulation of miR-195 correlates with lymph node metastasis and poor prognosis in colorectal cancer[J]. Med Oncol, 2012,29(2):919-927.
[57]Chen P, Zhao X, Ma L. Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in hepatocellular carcinoma[J]. Mol Cell Biochem, 2013,383(1-2):49-58.
[58]Guo Y, Li S, Qu J, et al. MiR-34a inhibits lymphatic metastasis potential of mouse hepatoma cells[J]. Mol Cell Biochem, 2011,354(1-2):275-282.
[59]Caponi S, Funel N, Frampton AE, et al. The good, the bad and the ugly: a tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms[J]. Ann Oncol, 2013,24(3):734-741.
[60]He H, Di Y, Liang M, et al. The microRNA-218 and ROBO-1 signaling axis correlates with the lymphatic metastasis of pancreatic cancer[J]. Oncol Rep, 2013,30(2):651-658.
[61]Brase JC, Johannes M, Schlomm T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer[J]. Int J Cancer, 2011,128(3):608-616.
[62]Spahn M, Kneitz S, Scholz CJ, et al. Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence[J]. Int J Cancer, 2010,127(2):394-403.
[63]Chen J, Yao D, Li Y, et al. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma[J]. Int J Mol Med, 2013,32(3):557-567.
[64]Zhao S, Yao D, Chen J, et al. Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer[J]. Genet Test Mol Biomarkers, 2013,17(8):631-636.
[65]Yeh YM, Chuang CM, Chao KC, et al. MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1alpha[J]. Int J Cancer, 2013,133(4):867-878.
[66]de Melo MB, Lavorato-Rocha AM, Rodrigues LS, et al. microRNA portraits in human vulvar carcinoma[J]. Cancer Prev Res (Phila), 2013,6(11):1231-1241.
通訊作者向作林,E-mail: Xiangzuolinmd@hotmail.com
基金項(xiàng)目:上海市衛(wèi)生局面上項(xiàng)目(編號(hào):20124208)
中圖分類號(hào)R73-37
文獻(xiàn)標(biāo)識(shí)碼A