祁玉璟綜述,郭雪婭審校
心房顫動(dòng)生物學(xué)標(biāo)記物的研究進(jìn)展
祁玉璟綜述,郭雪婭審校
心房顫動(dòng)(房顫)是一種可發(fā)生在多種病理生理過(guò)程中的心律失常,在形態(tài)學(xué)和心電生理方面的改變相互促進(jìn)其發(fā)生,且隨著年齡的增加,神經(jīng)體液的激活等引起 “心房重構(gòu)”,使得房顫更易于發(fā)生及維持。既往的研究顯示許多生物學(xué)因子在心血管事件的發(fā)生甚至死亡等方面有一定的預(yù)測(cè)作用。結(jié)合最新的研究進(jìn)展,現(xiàn)將與房顫有關(guān)的生物學(xué)標(biāo)記物從炎癥因子、氧化應(yīng)激、腎素—血管緊張素—醛固酮系統(tǒng)、血管內(nèi)皮功能及附壁血栓形成、神經(jīng)體液激素、遺傳因素6個(gè)方面進(jìn)行綜述。
心房顫動(dòng);生物學(xué)標(biāo)記物
心房顫動(dòng)(房顫)是一種常見(jiàn)的心律失常。流行病學(xué)資料顯示,60歲以上人群中患病率達(dá)到6%,80歲以上人群中房顫的患病率則達(dá)8%以上[1]。研究發(fā)現(xiàn)房顫患者發(fā)生卒中的風(fēng)險(xiǎn)是正常人的5倍,發(fā)生心力衰竭風(fēng)險(xiǎn)是正常人的3倍[1,2],且獨(dú)立于其他心血管病危險(xiǎn)因素,死亡率是其他因素的兩倍[3]。AFFIRM研究表明成功維持竇性心律的房顫患者,可以獲得更長(zhǎng)的生存期[4]。
房顫是一種可發(fā)生在多種病理生理過(guò)程中的心律失常,房性心動(dòng)過(guò)速和房顫本身就縮短了心房的不應(yīng)期,造成了心房收縮力的減低[5,6]。既往的研究顯示許多生物學(xué)因子在心血管事件的發(fā)生甚至死亡等方面有一定的預(yù)測(cè)作用[7]。
結(jié)合最新的研究進(jìn)展,現(xiàn)將與房顫有關(guān)的生物學(xué)標(biāo)記物從炎癥因子、氧化應(yīng)激、腎素—血管緊張素—醛固酮系統(tǒng)(RAAS)、血管內(nèi)皮功能及附壁血栓、神經(jīng)體液激素、遺傳因素6個(gè)方面分別進(jìn)行綜述。
早期的臨床觀察中發(fā)現(xiàn)經(jīng)體外循環(huán)術(shù)后的患者會(huì)發(fā)生與炎癥反應(yīng)相關(guān)的房顫,手術(shù)帶來(lái)的炎癥反應(yīng)過(guò)程包括補(bǔ)體系統(tǒng)的激活和促炎細(xì)胞因子的釋放[8]。在持續(xù)性和永久性的房顫電復(fù)律患者中發(fā)現(xiàn),白細(xì)胞介素6(IL-6)及C反應(yīng)蛋白(CRP)水平與房顫持續(xù)時(shí)間和左心房大小呈正相關(guān)性,與左心功能呈負(fù)相關(guān)[9]。GISSI試驗(yàn)[10]說(shuō)明高敏C反應(yīng)蛋白(hsCRP)與IL-6在電復(fù)律后復(fù)發(fā)房顫組與保持竇性心律組基線(xiàn)水平無(wú)顯著性的統(tǒng)計(jì)學(xué)差異,在隨訪6個(gè)月的時(shí)間中,IL-6與CRP在房顫組升高,且hsCRP的升高與房顫持續(xù)時(shí)間相關(guān)。這說(shuō)明hsCRP水平與房顫電復(fù)律后竇性心律的維持具有相關(guān)性。為了進(jìn)一步確定hsCRP與房顫之間的關(guān)系,Marott等[11]經(jīng)過(guò)CRP基因多態(tài)性檢測(cè),升高的hsCRP水平與房顫的風(fēng)險(xiǎn)增加呈顯著相關(guān)性。然而,因CRP基因亞型不同使個(gè)體自身hsCRP水平升高卻沒(méi)有增加房顫的風(fēng)險(xiǎn)。進(jìn)一步證實(shí)了炎癥反應(yīng)參與心房重構(gòu)過(guò)程,且明確了以hsCRP及IL-6為代表的炎癥因子,在房顫發(fā)生、發(fā)展及電復(fù)律后維持竇性心律的臨床意義。
Mihm等[12]最早通過(guò)右心耳處取竇性心律及房顫心律心房肌細(xì)胞檢測(cè)并比較與氧化應(yīng)激密切相關(guān)的肌纖維肌酸激酶(MM-CK)含量,證實(shí)房顫過(guò)程中的心房機(jī)械和電重構(gòu)有氧化應(yīng)激作用的參與。血漿銅藍(lán)蛋白是一種亞急性期反應(yīng)蛋白,它通過(guò)使用循環(huán)中的鐵分子作為自由基介導(dǎo)催化脂質(zhì)過(guò)氧化作用[13]。在隨訪25年的人群隊(duì)列研究中發(fā)現(xiàn)血漿銅藍(lán)蛋白是和房顫發(fā)病率正相關(guān)的血漿蛋白[14]。同型半胱氨酸是另一種常用的與氧化應(yīng)激有關(guān)的心血管生物學(xué)標(biāo)記物,其血漿水平與腦卒中相關(guān)[15]。高同型半胱氨酸也是房顫腦卒中的危險(xiǎn)因素[16,17],在Shimano等[18]進(jìn)行的臨床對(duì)照試驗(yàn)表明,雖然房顫經(jīng)射頻消融術(shù)后維持竇性心律與復(fù)發(fā)兩組間基線(xiàn)同型半胱氨酸含量無(wú)顯著差異,但高水平的同型半胱氨酸與持續(xù)性房顫相關(guān),且是房顫患者心力衰竭和缺血性卒中的危險(xiǎn)因素。
高血壓與房顫有密切的聯(lián)系,約一半以上的房顫患者合并高血壓[19]。RAAS的激活是兩者的共同基礎(chǔ)。研究發(fā)現(xiàn)超聲心動(dòng)圖檢測(cè)到的左心室厚度和(或)左心房?jī)?nèi)徑增加,房顫風(fēng)險(xiǎn)也增加,這在心電圖與磁共振成像提示的心臟左心室肥厚增加房顫風(fēng)險(xiǎn)也得到證實(shí)[20]。Dixen等[21]進(jìn)行了158例房顫患者為期2.6年的隨訪中,93例患者保持了竇性心律,研究結(jié)果說(shuō)明,在持續(xù)性房顫的患者中,醛固酮水平升高。Zhang等[22]對(duì)26個(gè)隨機(jī)對(duì)照試驗(yàn)進(jìn)行了系統(tǒng)評(píng)價(jià),結(jié)果表明血管緊張素轉(zhuǎn)換酶抑制劑(ACEIs)和血管緊張素受體拮抗劑(ARBs)對(duì)于房顫的發(fā)生和復(fù)律后房顫的復(fù)發(fā)有明顯的預(yù)防作用,預(yù)防效果在心力衰竭患者中更加明顯。Li等[23]的研究也得出了相同的結(jié)論。因此在房顫患者中進(jìn)行RAAS檢查,對(duì)指導(dǎo)后續(xù)治療有著非常重要的意義。
早期的Famingham研究指出房顫可增加5倍的腦卒中發(fā)生率[24],進(jìn)一步研究發(fā)現(xiàn),房顫占所有卒中原因中的20%~25%,房顫患者的抗血栓及降低收縮壓等措施顯著降低了房顫相關(guān)腦卒中的發(fā)病率[25]。Verdejo等[26]進(jìn)行的一項(xiàng)針對(duì)144例體外循環(huán)心臟手術(shù)患者的研究表明,術(shù)后72 h保持竇性心律與發(fā)生房顫患者的血漿血管細(xì)胞黏附因子-1(VCAM-1)與可溶性血栓調(diào)節(jié)蛋白的基線(xiàn)水平在術(shù)后發(fā)展為房顫者顯著升高,且左心耳VCAM-1表達(dá)與血漿VCAM-1水平無(wú)關(guān),房顫是一種系統(tǒng)性的內(nèi)皮功能損壞而不僅僅是心房組織的改變??扇苄匝ㄕ{(diào)節(jié)蛋白的升高與其他原因的腦卒中相比與心源性血栓性腦卒中有明顯相關(guān)性[27],口服抗凝藥的房顫患者,電復(fù)律后可溶性血栓調(diào)節(jié)蛋白水平無(wú)升高。進(jìn)一步證明了抗凝藥物的應(yīng)用對(duì)于房顫患者的潛在獲益[28]。D-二聚體升高是纖維溶解蛋白酶亢進(jìn)的一個(gè)標(biāo)志,可以反映急性血栓形成事件。在Krarup等[29]的試驗(yàn)中發(fā)現(xiàn), D-二聚體與卒中的發(fā)展、再發(fā),急性卒中以及房顫無(wú)關(guān)。但在Marin等[30]對(duì)新發(fā)急性房顫進(jìn)行電復(fù)律患者的臨床觀察發(fā)現(xiàn)在復(fù)律后30 d內(nèi)可持續(xù)觀察到內(nèi)皮功能損害,急性房顫較慢性房顫相比D-二聚體濃度較高(P=0.038)。
房顫與心力衰竭是相互促進(jìn)的過(guò)程。在一項(xiàng)以門(mén)診患者為調(diào)查對(duì)象的流行病學(xué)研究顯示,心力衰竭患者中38%合并房顫,且分布與紐約心臟協(xié)會(huì)(NYHA)心功能分級(jí)相關(guān)[31]。Shin 等[32]發(fā)現(xiàn)在保持正常左心室射血分?jǐn)?shù)的房顫患者氨基末端腦鈉肽前體(NT-proBNP)水平升高,在電復(fù)律保持竇性心律后水平降低,房顫復(fù)發(fā)后又會(huì)升高。Schnabel等[33]進(jìn)行的隊(duì)列研究發(fā)現(xiàn),腦鈉肽(BNP)和CRP對(duì)于房顫的發(fā)生有預(yù)測(cè)作用但其預(yù)測(cè)作用無(wú)疊加效果。這一結(jié)論與Smith等[34]同年發(fā)表的研究心力衰竭與房顫生物標(biāo)記物的研究結(jié)論相一致。Dixen等[21]研究結(jié)果提示在持續(xù)房顫的患者中NT-proBNP和氨基末端心房鈉尿肽前體(NT-proANP)水平均升高且NT-proBNP的升高與左心室射血分?jǐn)?shù)的降低有相關(guān)性。血中NT-proBNP和心房鈉尿肽前體中肽段(MR-proANP)明顯降低,說(shuō)明這兩種生物學(xué)標(biāo)記物與房顫復(fù)律后是否復(fù)發(fā)有顯著相關(guān)性。且基線(xiàn)資料的NT-proBNP和MR-proANP升高是電復(fù)律后首次房顫復(fù)發(fā)的獨(dú)立預(yù)測(cè)因素,NT-proBNP HR=1.24 (95%可信區(qū)間1.11~1.39),(P=0.0001),MR-proANP HR=1.15 (95%可信區(qū)間1.01~1.30), (P=0.04)[35]。在口服抗凝劑的房顫患者中NT-proBNP仍然有全因死亡的預(yù)測(cè)作用[36],可用于房顫患者臨床危險(xiǎn)分層。
房顫與遺傳因素有著密切的關(guān)系。1997年,Brugada發(fā)現(xiàn)了房顫第一個(gè)基因座10q22-q24,但未能找到致病基因。Chen等[37]對(duì)房顫家系的基因研究首次發(fā)現(xiàn)了房顫致病基因KCNQ1,開(kāi)啟了學(xué)術(shù)界對(duì)心臟離子通道在房顫中的研究。房顫與多個(gè)基因的多態(tài)性有關(guān),且不同離子通道基因之間的交互作用和環(huán)境對(duì)基因的表達(dá)水平影響非常復(fù)雜。目前按照房顫致病基因的通道類(lèi)型可分為:鉀離子通道基因KCNQ1、KCNJ2、KCNH2、KCNA5,鈉離子通道基因SCN1B、SCN2B、SCN3B、SCN5A,鈣離子通道基因KCNN3,縫隙鏈接蛋白基因GJA5、Connexin43,核孔蛋白基因NPPA、NUP155,以及非離子通道基因CYP11B2、eNOSG894T、ZFHX3等。Zhou等[38]利用基因芯片技術(shù),發(fā)現(xiàn)較正常心臟相比房顫心臟中一些基因表達(dá)下調(diào)而另一些基因表達(dá)則上調(diào)。在目前臨床醫(yī)療工作中,應(yīng)用廣泛的血漿生物學(xué)因子仍是重要的檢測(cè)手段,相對(duì)于基因檢測(cè),其具有較強(qiáng)的可操作性且具有經(jīng)濟(jì)學(xué)意義。
對(duì)上述生物學(xué)因子的研究旨在進(jìn)一步明確房顫與其他心血管疾病的相關(guān)性以及進(jìn)一步的對(duì)房顫進(jìn)行治療及評(píng)估。根據(jù)房顫的發(fā)生機(jī)制推薦的上游治療藥物ACEIs和ARBs,醛固酮受體拮抗劑,他汀類(lèi),多不飽和脂肪酸[2]也需要相關(guān)的上述生物學(xué)標(biāo)記物的檢測(cè)更進(jìn)一步的明確其有效性和安全性,以期為此種心律失常的治療帶來(lái)新的更有效的方法。
[1] Camm AJ, Lip GY, De Caterina R, et al. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation--developed with the special contribution of the European Heart Rhythm Association. Europace, 2012, 14: 1385-1413.
[2] Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Europace, 2010, 12: 1360-1420.
[3] Kirchhof P, Auricchio A, Bax J, et al. Outcome parameters for trials in atrial fibrillation: executive summary. Eur Heart J, 2007, 28: 2803-2817.
[4] Corley SD, Epstein AE, DiMarco JP, et al. Relationships between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) Study. Circulation, 2004, 109: 1509-1513.
[5] Greiser M, Neuberger HR, Harks E, et al. Distinct contractile and molecular differences between two goat models of atrial dysfunction: AV block-induced atrial dilatation and atrial fibrillation. J Mol Cell Cardiol, 2009, 46: 385-394.
[6] 丁紹祥. 心房顫動(dòng)時(shí)心房肌結(jié)構(gòu)重構(gòu)和電重構(gòu)的作用及意義. 中國(guó)循環(huán)雜志, 2014, 29: 155-157.
[7] Wang TJ, Gona P, Larson MG, et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med, 2006, 355: 2631-2639.
[8] Smit MD, Van Gelder IC. Is inflammation a risk factor for recurrent atrial fibrillation? Europace, 2009, 11: 138-139.
[9] Psychari SN, Apostolou TS, Sinos L, et al. Relation of elevated C-reactive protein and interleukin-6 levels to left atrial size and duration of episodes in patients with atrial fibrillation. Am J Cardiol, 2005, 95: 764-767.
[10] Masson S, Aleksova A, Favero C, et al. Predicting atrial fibrillation recurrence with circulating inflammatory markers in patients in sinus rhythm at high risk for atrial fibrillation: data from the GISSI atrial fibrillation trial. Heart, 2010, 96: 1909-1914.
[11] Marott SC, Nordestgaard BG, Zacho J, et al. Does elevated C-reactive protein increase atrial fibrillation risk? A Mendelian randomization of 47, 000 individuals from the general population. J Am Coll Cardiol, 2010, 56: 789-795.
[12] Mihm MJ, Yu F, Carnes CA, et al. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation, 2001, 104: 174-180.
[13] Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr, 2002, 22: 439-458.
[14] Adamsson Eryd S, Smith JG, Melander O, et al. Inflammation-sensitive proteins and risk of atrial fibrillation: a population-based cohort study. Eur J Epidemiol, 2011, 26: 449-455.
[15] Okura T, Miyoshi K, Irita J, et al. Hyperhomocysteinemia is one of the risk factors associated with cerebrovascular stiffness in hypertensive patients, especially elderly males. Sci Rep, 2014, 4: 5663.
[16] Marcucci R, Betti I, Cecchi E, et al. Hyperhomocysteinemia and vitamin B6 deficiency: new risk markers for nonvalvular atrial fibrillation? Am Heart J, 2004, 148: 456-461.
[17] Loffredo L, Violi F, Fimognari FL, et al. The association between hyperhomocysteinemia and ischemic stroke in patients with nonvalvular atrial fibrillation. Haematologica, 2005, 90: 1205-1211.
[18] Shimano M, Inden Y, Tsuji Y, et al. Circulating homocysteine levels in patients with radiofrequency catheter ablation for atrial fibrillation. Europace, 2008, 10: 961-966.
[19] Zoni-Berisso M, Filippi A, Landolina M, et al. Frequency, patient characteristics, treatment strategies, and resource usage of atrial fibrillation (from the Italian Survey of Atrial Fibrillation Management [ISAF] study). Am J Cardiol, 2013, 111: 705-711.
[20] Chrispin J, Jain A, Soliman EZ, et al. Association of electrocardiographic and imaging surrogates of left ventricular hypertrophy with incident atrial fibrillation: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol, 2014, 63: 2007-2013.
[21] Dixen U, Ravn L, Soeby-Rasmussen C, et al. Raised plasma aldosterone and natriuretic peptides in atrial fibrillation. Cardiology, 2007, 108: 35-39.
[22] Zhang Y, Zhang P, Mu Y, et al. The role of renin-angiotensin system blockade therapy in the prevention of atrial fibrillation: a metaanalysis of randomized controlled trials. Clin Pharmacol Ther, 2010, 88: 521-531.
[23] Li TJ, Zang WD, Chen YL, et al. Renin-angiotensin system inhibitors for prevention of recurrent atrial fibrillation: a meta-analysis. Int J Clin Pract, 2013, 67: 536-543.
[24] Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 1991, 22: 983-988.
[25] 傅德建, 何劍, 張向陽(yáng). 非瓣膜性心房顫動(dòng)血栓形成危險(xiǎn)因素的分析. 中國(guó)循環(huán)雜志, 2012, 27: 282-284.
[26] Verdejo H, Roldan J, Garcia L, et al. Systemic vascular cell adhesion molecule-1 predicts the occurrence of post-operative atrial fibrillation. Int J Cardiol, 2011, 150: 270-276.
[27] Dharmasaroja P, Dharmasaroja PA, Sobhon P. Increased plasma soluble thrombomodulin levels in cardioembolic stroke. Clin Appl Thromb Hemost, 2012, 18: 289-293.
[28] Wozakowska-Kaplon B, Bartkowiak R, Grabowska U, et al. Persistent atrial fibrillation is not associated with thrombomodulin level increase in efficiently anticoagulated patients. Arch Med Sci, 2010, 6: 887-891. [29] Krarup LH, Sandset EC, Sandset PM, et al. D-dimer levels andstroke progression in patients with acute ischemic stroke and atrial fibrillation. Acta Neurol Scand, 2011, 124: 40-44.
[30] Marin F, Roldan V, Climent VE, et al. Plasma von Willebrand factor, soluble thrombomodulin, and fibrin D-dimer concentrations in acute onset non-rheumatic atrial fibrillation. Heart, 2004, 90: 1162-1166.
[31] Rewiuk K, Wizner B, Fedyk-Lukasik M, et al. Epidemiology and management of coexisting heart failure and atrial fibrillation in an outpatient setting. Pol Arch Med Wewn, 2011, 121: 392-399.
[32] Shin DI, Jaekel K, Schley P, et al. Plasma levels of NT-pro-BNP in patients with atrial fibrillation before and after electrical cardioversion. Z Kardiol, 2005, 94: 795-800.
[33] Schnabel RB, Larson MG, Yamamoto JF, et al. Relations of biomarkers of distinct pathophysiological pathways and atrial fibrillation incidence in the community. Circulation, 2010, 121: 200-207.
[34] Smith JG, Newton-Cheh C, Almgren P, et al. Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation. J Am Coll Cardiol, 2010, 56: 1712-1719.
[35] Latini R, Masson S, Pirelli S, et al. Circulating cardiovascular biomarkers in recurrent atrial fibrillation: data from the GISSI-atrial fibrillation trial. J Intern Med, 2011, 269: 160-171.
[36] Roldan V, Vilchez JA, Manzano-Fernandez S, et al. Usefulness of N-terminal pro-B-type natriuretic Peptide levels for stroke risk prediction in anticoagulated patients with atrial fibrillation. Stroke, 2014, 45: 696-701.
[37] Chen YH, Xu SJ, Bendahhou S, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science, 2003, 299: 251-254.
[38] Zhou J, Gao J, Liu Y,et al. Human atrium transcript analysis of permanent atrial fibrillation. Int Heart J,2014,55: 71-77.
2014-10-30)
(編輯:漆利萍)
甘肅省自然科學(xué)基金(1208RJZA218)
730030 甘肅省蘭州市,蘭州大學(xué)第二醫(yī)院 心內(nèi)科
祁玉璟 碩士研究生 研究方向?yàn)樾膬?nèi)科心電生理 Email: qiyj12@lzu.edu.cn 通訊作者:郭雪婭 Email:guoxueya2006@126.com
R541
A
1000-3614(2015)08-0816-04
10.3969/j.issn.1000-3614.2015.08.025