趙建元,丁寄葳,米澤云,魏濤,岑山
人類免疫缺陷病毒初始傳播病毒的鑒別及其表型特征
趙建元1,2,丁寄葳2,米澤云2,魏濤1,岑山2
1. 北京聯(lián)合大學(xué)應(yīng)用文理學(xué)院,北京 100192;2. 中國醫(yī)學(xué)科學(xué)院/北京協(xié)和醫(yī)學(xué)院醫(yī)藥生物技術(shù)研究所,北京 100050
人類免疫缺陷病毒(Human immunodeficiency virus type 1, HIV-1)簡稱艾滋病病毒,在粘膜傳播過程中,病毒的遺傳多樣性是顯著減少的。絕大多數(shù)的HIV-1粘膜感染由一個或者少數(shù)幾個病毒建立并最終發(fā)展為系統(tǒng)感染,上述病毒稱為初始傳播病毒(Transmitted/founder virus, T/F virus)。通過對初始傳播病毒表型特征的研究,可進(jìn)一步了解病毒在新宿主體內(nèi)成功復(fù)制的關(guān)鍵特性,為艾滋病疫苗的發(fā)展、暴露前預(yù)防及其他治療性干預(yù)措施提供更好的策略。文章綜述了初始傳播病毒的發(fā)現(xiàn)、進(jìn)化特征以及感染后初期宿主的免疫反應(yīng)等,以期為深入研究初始傳播病毒的特征提供理論基礎(chǔ)。
人類獲得性免疫缺損病毒;病毒傳播;急性感染期;初始傳播病毒
人類免疫缺陷病毒(Human immunodeficiency virus type 1, HIV-1)引起的人獲得性免疫缺陷綜合征(Acquired immunodeficiency syndrome, AIDS)(簡稱艾滋病),是一種危害嚴(yán)重的病毒傳染性疾病[1,2]。據(jù)聯(lián)合國規(guī)劃署估計,2012年,約有3530萬名患者,其中新增感染為230萬人,另有160萬人死于與相關(guān)的疾病[3]。盡管高效抗逆轉(zhuǎn)錄病毒治療(Highly active antiretroviral therapy, HAART)提高了艾滋病患者的生活質(zhì)量,延長了患者的生命[4]。但由于HIV-1高變異等問題[5~7],到目前為止還沒有治愈艾滋病的方法和疫苗。
自HIV-1發(fā)現(xiàn)以來,了解病毒的傳播機(jī)制、發(fā)展阻斷傳播與感染的策略是廣泛關(guān)注的焦點。研究表明,絕大多數(shù)的HIV-1感染是在粘膜表面發(fā)生的[8],且不同的暴露模式會影響感染的機(jī)率[9]。最新研究發(fā)現(xiàn),HIV-1在粘膜傳播過程中,病毒的遺傳多樣性是顯著減少的。在絕大多數(shù)粘膜傳播過程中,這種多樣性會減少到一個或少數(shù)幾個病毒。這些病毒會首先建立感染,并最終發(fā)展成為系統(tǒng)感染,上述病毒被稱為初始傳播病毒(Transmitted/founder virus, T/F virus)[3,10~14],該發(fā)現(xiàn)為闡明病毒傳播過程中嚴(yán)重的“遺傳瓶頸(Genetic bottleneck)”效應(yīng)和有限的早期進(jìn)化現(xiàn)象提供了重要的理論支撐。鑒別與枚舉初始傳播病毒的特征將促進(jìn)人們了解病毒在新宿主體內(nèi)成功復(fù)制的關(guān)鍵特性,同時為艾滋病相關(guān)疫苗的發(fā)展、臨床治療及其他的暴露前預(yù)防措施提供更好的策略。本文將主要從初始傳播病毒的發(fā)現(xiàn)、初始傳播病毒的進(jìn)化特征以及感染后初期宿主的免疫反應(yīng)等3方面進(jìn)行了綜述,以期為相關(guān)研究提供一定的參考。
近年來,大容量聚合酶鏈反應(yīng)(PCR)擴(kuò)增對開展從血漿或受感染的細(xì)胞進(jìn)行病毒準(zhǔn)種測序的相關(guān)研究起到非常重要的作用。特別是新近發(fā)展的單基因組擴(kuò)增測序技術(shù)(SGA),提高了病毒測序的精度,為HIV-1病毒傳播及早期進(jìn)化研究提供了新的技術(shù)方法。SGA是基于有限稀釋法的原理,在PCR擴(kuò)增和直接測序之前,將原病毒DNA或合成互補(bǔ)DNA稀釋至每個孔里只有一個病毒基因組,再次擴(kuò)增后進(jìn)行測序并進(jìn)行準(zhǔn)種分析。實驗時可通過稀釋法來確保反應(yīng)體系中只有一個擴(kuò)增模板[15~17],或可使用實時PCR來預(yù)測終點的稀釋度[18]。與傳統(tǒng)的測序方法相比,SGA有3方面的優(yōu)點:(1)減少了PCR反應(yīng)中因基因多態(tài)性引起的突變。傳統(tǒng)的PCR使用通用引物以減少偏差,其中每一病毒基因組有同等的機(jī)會被擴(kuò)增及測序。SGA測序時由于只有一個病毒基因組,因此可有效減少因基因多態(tài)性引起的突變;(2)沒有酶誘導(dǎo)的點突變。因為SGA測序是單一的基因組進(jìn)行擴(kuò)增,如果酶引起的突變是在PCR的第一或第二輪反應(yīng)中,則測序色譜儀將出現(xiàn)多態(tài)性,因此可排除該序列。通常情況下,PCR法擴(kuò)增后期由酶誘導(dǎo)的額外突變由于含量較低一般很難被檢測到。另外,如果反應(yīng)體系含有兩個不同的模板,則測序色譜儀也可將其排除;(3)沒有體外重組。因為每個反應(yīng)中只有單一的擴(kuò)增模板,體外重組就不可能發(fā)生。SGA這些理論上的優(yōu)勢已被許多研究者所證實[15~17, 19~23],能夠確保被分析的序列等同于體內(nèi)存在的序列。
傳播過程中多樣性下降僅是HIV-1病毒的一般特征,而利用早期病毒進(jìn)化的數(shù)學(xué)模型可清楚地鑒別出突變體的數(shù)目及每一突變體的核苷酸序列。在早期感染免疫選擇過程中,假定每一初始傳播病毒以恒定的速率積累隨機(jī)突變的后代,當(dāng)單個病毒被傳播時,則代表了初始傳播病毒所獲得的共有序列。當(dāng)兩個或多個病毒在同一宿主建立感染時,所得數(shù)據(jù)并不符合泊松分布;而對每組數(shù)據(jù)單獨分析時,它們各自又符合泊松分布,且通過每組的數(shù)據(jù)可以鑒別出不同的病毒。為了更好地了解已鑒別的初始傳播病毒的早期進(jìn)化,Lee等[24]利用數(shù)學(xué)模型和蒙特卡羅模擬評估了原發(fā)感染病毒整體的多樣性。目前,這一模型已準(zhǔn)確鑒別了人HIV-1感染者和獼猴SIV感染個體的單個或多個病毒[16,24,25]。此外,這一模型能夠靈敏到通過識別HIV-1基因組中基因(約2600 bp)的3個核苷酸從而將兩個病毒變異體區(qū)別開[13]。研究人員利用這種模型確定了感染HIV-1 A、B和C亞型初始傳播病毒的數(shù)量[15~19,26,27],并證明了約80%異性戀者的感染是由于性傳播后一種單一病毒引起的[15,19,28~32]。這些研究工作不僅證明了HIV-1傳播后病毒的多樣性在粘膜表面顯著減少,同時也對“遺傳瓶頸”效應(yīng)給予了精確評估。
目前對初始傳播病毒進(jìn)化特征的研究,主要集中于研究病毒傳播時所用的輔助受體以及病毒包膜蛋白的特性等。一般認(rèn)為初始傳播病毒利用C-C趨化因子受體5(CCR5)作為輔助受體[6]。與巨噬細(xì)胞相比,初始傳播病毒在CD4+T細(xì)胞中的復(fù)制效率更高,這可能與其包膜蛋白的含量更高(相對于長期感染病毒)、能更好的被樹突狀細(xì)胞和朗格漢斯細(xì)胞吸附與傳播有關(guān),同時初始傳播病毒利用輔助受體CCR5的方式與長期感染病毒也存在不同[33]。Parrish等[34]分別比較了HIV-1 B、C亞型初始傳播病毒與慢性感染病毒的表型特征,結(jié)果顯示初始傳播病毒的感染性約為慢性感染病毒的1.7倍,其中包膜蛋白的含量前者約為后者的1.9倍,且初始傳播病毒與受體細(xì)胞結(jié)合的能力也更強(qiáng)。這種現(xiàn)象在B亞型HIV-1中表現(xiàn)得更為明顯。盡管如此,Parrish等[35]分別比較了20株HIV-1 C亞型急性感染期和長期感染期病毒,發(fā)現(xiàn)HIV-1總體上的“遺傳瓶頸”效應(yīng)并不是由輔助受體的有效性造成的。Huang等[36]還發(fā)現(xiàn)初始傳播病毒可以利用CXCR4作為輔助受體或以CCR5和CXCR4共同作為輔助受體,進(jìn)一步支持了這個觀點。
目前,還有許多研究集中考察了初始傳播病毒的包膜蛋白,以期找到初始傳播病毒包膜蛋白的一些特性。例如,Sagar等[27]在對13名感染HIV-1 C亞型或D亞型患者的研究中發(fā)現(xiàn),病毒的V3環(huán)積累突變,envelope整體上更短及V3電荷較低。Tsai等[37]通過對獼猴感染初始傳播病毒、長期感染病毒和快速進(jìn)化病毒的研究中也發(fā)現(xiàn),初始傳播病毒的包膜蛋白介導(dǎo)病毒進(jìn)入單細(xì)胞源巨噬細(xì)胞的能力更強(qiáng)。Tsai等[37]和Wilen等[37,38]發(fā)現(xiàn)HIV-1 B亞型的初始傳播病毒的包膜蛋白對CD4結(jié)合位點的b12和VRC01抗體更敏感,同時對HIV-1免疫球蛋白也更為敏感,且這種增強(qiáng)的敏感性與包膜蛋白三聚體結(jié)合b12和VRC01的有效性相關(guān)。Go等[39]的研究中發(fā)現(xiàn),與長期感染病毒相比,初始傳播病毒包膜蛋白糖基化位點的使用率及復(fù)雜聚糖的數(shù)量存在明顯的不同[39]。Gnanakaran 等[33]對4181條初始傳播病毒和2882條長期感染病毒的序列信息進(jìn)行全面分析,發(fā)現(xiàn)兩者僅有兩個顯著的遺傳差異:第一個是位于gp160先導(dǎo)多肽的第12位氨基酸,初始傳播病毒此位置為堿性氨基酸,它的存在顯著影響包膜蛋白的糖基化進(jìn)程和包膜蛋白的成熟;另外,在包膜蛋白上CCR5和CD4結(jié)合位點之間的413~415氨基酸區(qū)段兩者也存在顯著差異,初始傳播病毒在這個區(qū)段缺失了一個潛在的N-連接糖鏈位點[33]。
最近,一些初始傳播病毒包膜蛋白及其全長已被克隆,這將促進(jìn)我們更詳細(xì)了解初始傳播病毒的表型特征。這些克隆將對病毒如何建立首次感染、影響病毒復(fù)制能力的因素及其潛在弱點提供新的視角。
急性傳播HIV-1的多樣性能夠使病毒的復(fù)制維持在較高的水平,且會加快病情的進(jìn)展[37]。逆轉(zhuǎn)錄病毒的多樣性不僅與逆轉(zhuǎn)錄酶的低忠實性有關(guān),同時宿主的RNA/DNA編輯酶APOBEC3G也可以通過催化HIV-1病毒負(fù)鏈的cDNA胞嘧啶(dC)脫氨形成尿嘧啶(dU),引入G/A超突變,導(dǎo)致病毒轉(zhuǎn)錄產(chǎn)物突變。盡管APOBEC3G造成的超突變可以抑制HIV-1的復(fù)制,但中等水平的突變卻有助于提高病毒的多樣化。確實,在HIV-1急性感染者中可以檢測到低水平的G/A基因突變[6,40]。HIV-1可以在APOBEC和CD8 +細(xì)胞毒性T淋巴細(xì)胞(CTL)表位嵌入一個快速的進(jìn)化位點,這表明APOBEC實際上可能有助于急性感染期病毒的免疫逃逸。Jern等[41]使用硅片建模和細(xì)胞培養(yǎng)方式,進(jìn)一步證明了低水平的非致命性G/A突變很可能是生存選擇壓力在體內(nèi)積累突變的結(jié)果,而這種溫和的突變可能更有利于病毒迅速積累遺傳多樣性。
另外,當(dāng)患者感染不止一種病毒變異體時,重組將會大大增加??傮w遺傳多樣性的快速增加可能導(dǎo)致更有效的免疫逃逸并更有可能發(fā)展成艾滋病[42,43]。Onafuwa-Nug和Telesnitsky[44]最近對重組進(jìn)行了詳細(xì)的總結(jié)。總之,與其他性傳播和空氣傳播疾病相比,HIV-1傳播的特點是具有遺傳的多樣性和較低的傳播頻率[45]。
如果宿主不能消除入侵的HIV-1,病毒將在暴露后的幾天至幾周內(nèi)建立感染。因此,通過表征感染后初期宿主的先天性和獲得性免疫反應(yīng),對理解和抑制病毒感染將是至關(guān)重要的。事實上,對粘膜感染來說,粘膜本身就是阻止HIV-1感染的最大屏障。即使這一屏障受到破壞,病毒還需找到合適的靶細(xì)胞才能建立感染。HIV-1通過CD4+細(xì)胞或輔助受體進(jìn)入宿主,將其基因組整合至宿主染色體上,然后以恒定的生殖速率產(chǎn)生后代。克服宿主的先天免疫反應(yīng)是病毒生存的一個重大挑戰(zhàn)。Fenton等[23]分別檢測了初始傳播病毒和長期感染病毒對干擾素α的敏感性,發(fā)現(xiàn)干擾素α對初始傳播病毒的作用效果顯著降低。因此,感染初期病毒血癥高峰之前是抑制病毒復(fù)制的關(guān)鍵時期,而且干擾素可用于預(yù)防和治療艾滋病。
即使初始傳播病毒逃逸了宿主的先天性免疫反應(yīng),接下來逃避宿主的獲得性免疫應(yīng)答是其生存的又一個重大挑戰(zhàn)。研究表明,獲得性免疫應(yīng)答的激活是在感染后的第一周[46],但由于免疫應(yīng)答量較少且時間上也較晚,所以不能成功消除病毒。Goonetilleke等[46]利用從4名急性感染期艾滋病患者體內(nèi)分離得到的初始傳播病毒,證實了一些早期的HIV-1特異性CTL反應(yīng)。這些特異性反應(yīng)能夠產(chǎn)生足夠大的選擇壓力,在數(shù)周內(nèi)病毒的逃逸突變體取代了整個病毒總體。更為重要的是,大多數(shù)突變不只是簡單的單個氨基酸替換,從最初到最終的各種突變是通過漸進(jìn)選擇而來的[46,47]。最近Bimber等[25]利用焦磷酸測序識別和表征了恒河猴早期的SIV特定突變,進(jìn)一步證實了這一觀點。另外,早期CTL反應(yīng)的數(shù)學(xué)模型表明,每天15%~35%被感染的細(xì)胞可被特異性T細(xì)胞殺死,如果不是HIV-1快速產(chǎn)生突變而逃逸,最終可成功清除病毒[46]。最近Hansen等[48]通過實驗發(fā)現(xiàn),T細(xì)胞疫苗能有效保護(hù)恒河猴。因此,CTL具有巨大的潛力影響病毒動力學(xué),如果處于最優(yōu)激活的話,甚至可以保護(hù)細(xì)胞免受病毒感染。
由于HIV-1病毒基因組相對比較復(fù)雜,部分HIV-1病毒會在感染初期通過快速的基因組重組從而逃逸體內(nèi)的免疫反應(yīng),在受感染者體內(nèi)存活下來并進(jìn)一步繁殖,這樣在一個感染者體內(nèi)HIV-1病毒就形成了一個以優(yōu)勢株為主的相關(guān)突變株病毒群即稱為初始傳播病毒,以利于其在不良環(huán)境下生存。因此,目前研究認(rèn)為初始傳播病毒的特性分析與病毒的抗藥性有著密切的關(guān)系,例如臨床醫(yī)生如果可以方便的獲得患者血清中的初始傳播病毒的類型,又能清楚的了解不同類型的初始傳播病毒對不同藥物敏感性的差別,就便于優(yōu)化抗病毒治療藥物的選擇和方案的制定,從而提高感染初期艾滋病患者的治療效果。
新的研究數(shù)據(jù)繼續(xù)幫助我們了解病毒傳播和早期病毒/宿主的相互作用。目前該領(lǐng)域已具備一定的研究基礎(chǔ),包括病毒數(shù)量達(dá)到多少時將會產(chǎn)生臨床感染,初始傳播病毒的表型,病毒多樣化產(chǎn)生的機(jī)制,宿主因子試圖阻礙病毒進(jìn)入的機(jī)制以及隨后病毒逃逸時突變體的選擇等。結(jié)合這些新的思路,開發(fā)新的更有效的疫苗和其他治療策略來阻斷艾滋病毒感染是非常有用的。尤其是,病毒傳輸過程中嚴(yán)重的“遺傳瓶頸”效應(yīng)和有限的早期進(jìn)化,為顯著減少新增感染提供了新的希望。
[1] Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vézinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), 1983, 220(4599): 868–871.
[2] Lu XF, Chen ZW. The development of anti-HIV-1 drugs, 2010, 45(2): 165–176.
[3] Shaw GM, Hunter E. HIV transmission, 2012, 2(11): a006965.
[4] Gogtay JA, Malhotra G. Reformulation of existing antiretroviral drugs, 2013, 8(6): 550–555.
[5] Vallejo A, Valladares A, De Felipe B, Vivancos J, Gutierrez S, Soriano-Sarabia N, Ruiz-Mateos E, Lissen E, Leal M. High thymic volume is associated with viral replication and immunologic impairment only early after HAART interruption in chronic HIV infection, 2005, 18(4): 740–746.
[6] Carr A, Cooper DA. Adverse effects of antiretroviral therapy, 2000, 356(9239): 1423–1430.
[7] Baalwa J, Wang SY, Parrish NF, Decker JM, Keele BF, Learn GH, Yue L, Ruzagira E, Ssemwanga D, Kamali A, Amornkul PN, Price MA, Kappes JC, Karita E, Kaleebu P, Sanders E, Gilmour J, Allen S, Hunter E, Montefiori DC, Haynes BF, Cormier E, Hahn BH, Shaw GM. Molecular identification, cloning and characterization of transmitted/founder HIV-1 subtype A, D and A/D infectious molecular clones, 2013, 436(1): 33–48.
[8] Xu HB, Wang XL, Veazey RS. Mucosal immunology of HIV infection, 2013, 254(1): 10–33.
[9] Boily MC, Baggaley RF, Wang L, Masse B, White RG, Hayes RJ, Alary M. Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies, 2009, 9(2): 118–129.
[10] Keele BF. Identifying and characterizing recently transmitted viruses, 2010, 5(4): 327–334.
[11] Zhu T, Mo H, Wang N, Nam DS, Cao Y, Koup RA, Ho DD. Genotypic and phenotypic characterization of HIV-1 patients with primary infection, 1993, 261(5125): 1179–1181.
[12] Bar KJ, Li H, Chamberland A, Tremblay C, Routy JP, Grayson T, Sun CX, Wang SY, Learn GH, Morgan CJ, Schumacher JE, Haynes BF, Keele BF, Hahn BH, Shaw GM. Wide variation in the multiplicity of HIV-1 infection among injection drug users, 2010, 84(12): 6241– 6247.
[13] Frange P, Meyer L, Jung M, Goujard C, Zucman D, Abel S, Hochedez P, Gousset M, Gascuel O, Rouzioux C, Chaix ML. Sexually-transmitted/founder HIV-1 cannot be directly predicted from plasma or PBMC-derived viral quasispecies in the transmitting partner, 2013, 8(7): e69144.
[14] Lukashov VV, Goudsmit J. Founder virus population related to route of virus transmission: a determinant of intrahost human immunodeficiency virus type 1 evolution?, 1997, 71(3): 2023–2030.
[15] Kearney M, Maldarelli F, Shao W, Margolick JB, Daar ES, Mellors JW, Rao V, Coffin JM, Palmer S. Human immunodeficiency virus type 1 population genetics and adaptation in newly infected individuals, 2009, 83(6): 2715–2727.
[16] Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, Sun CX, Grayson T, Wang SY, Li H, Wei XP, Jiang CL, Kirchherr JL, Gao F, Anderson JA, Ping LH, Swanstrom R, Tomaras GD, Blattner WA, Goepfert PA, Kilby JM, Saag MS, Delwart EL, Busch MP, Cohen MS, Montefiori DC, Haynes BF, Gaschen B, Athreya GS, Lee HY, Wood N, Seoighe C, Perelson AS, Bhattacharya T, Korber BT, Hahn BH, Shaw GM. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection, 2008, 105(21): 7552–7557.
[17] Salazar-Gonzalez JF, Bailes E, Pham KT, Salazar MG, Guffey MB, Keele BF, Derdeyn CA, Farmer P, Hunter E, Allen S, Manigart O, Mulenga J, Anderson JA, Swanstrom R, Haynes BF, Athreya GS, Korber BTM, Sharp PM, Shaw GM, Hahn BH. Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing, 2008, 82(8): 3952–3970.
[18] Abrahams MR, Anderson JA, Giorgi EE, Seoighe C, Mlisana K, Ping LH, Athreya GS, Treurnicht FK, Keele BF, Wood N, Salazar-Gonzalez JF, Bhattacharya T, Chu H, Hoffman I, Galvin S, Mapanje C, Kazembe P, Thebus R, Fiscus S, Hide W, Cohen MS, Karim SA, Haynes BF, Shaw GM, Hahn BH, Korber BT, Swanstrom R, Williamson C. Quantitating the multiplicity of infection with human immunodeficiency virus type 1 subtype C reveals a non-poisson distribution of transmitted variants, 2009, 83(8): 3556–3567.
[19] Haaland RE, Hawkins PA, Salazar-Gonzalez J, Johnson A, Tichacek A, Karita E, Manigart O, Mulenga J, Keele BF, Shaw GM, Hahn BH, Allen SA, Derdeyn CA, Hunter E. Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1, 2009, 5(1): e1000274.
[20] Butler DM, Pacold ME, Jordan PS, Richman DD, Smith DM. The efficiency of single genome amplification and sequencing is improved by quantitation and use of a bioinformatics tool, 2009, 162(1–2): 280–283.
[21] Seu L, Mwape I, Guffey MB. Single genome amplification of proviral HIV-1 DNA from dried blood spot specimens collected during early infant screening programs in Lusaka, Zambia, 2014, 203: 97–101.
[22] Chaitaveep N, Utachee P, Nakamura S, Chuenchitra T, Ekpo P, Takeda N, Pattanapanyasat K, Kameoka M. Characterization of human immunodeficiency virus type 1 CRF01_AE env genes derived from recently infected Thai individuals, 2014, 16(2): 142–152.
[23] Fenton-May AE, Dibben O, Emmerich T, Ding HT, Pfafferott K, Aasa-Chapman MM, Pellegrino P, Williams I, Cohen MS, Gao F, Shaw GM, Hahn BH, Ochsenbauer C, Kappes JC, Borrow P. Relative resistance of HIV-1 founder viruses to control by interferon-alpha, 2013, 10: 146.
[24] Lee HY, Giorgi EE, Keele BF, Gaschen B, Athreya GS, Salazar-Gonzalez JF, Pham KT, Goepfert PA, Kilby JM, Saag MS, Delwart EL, Busch MP, Hahn BH, Shaw GM, Korber BT, Bhattacharya T, Perelson AS. Modeling sequence evolution in acute HIV-1 infection, 2009, 261(2): 341–360.
[25] Bimber BN, Burwitz BJ, O'Connor S, Detmer A, Gostick E, Lank SM, Price DA, Hughes A, O'Connor D. Ultradeep pyrosequencing detects complex patterns of CD8+T-lymphocyte escape in simian immunodeficiency virus-infected macaques, 2009, 83(16): 8247–8253.
[26] Novitsky V, Wang R, Margolin L, Baca J, Kebaabetswe L, Rossenkhan R, Bonney C, Herzig M, Nkwe D, Moyo S, Musonda R, Woldegabriel E, van Widenfelt E, Makhema J, Lagakos S, Essex M. Timing constraints ofgag mutations during primary HIV-1 subtype C infection, 2009, 4(11): e7727.
[27] Sagar M, Laeyendecker O, Lee S, Gamiel J, Wawer MJ, Gray RH, Serwadda D, Sewankambo NK, Shepherd JC, Toma J, Huang W, Quinn TC. Selection of HIV variants with signature genotypic characteristics during heterosexual transmission, 2009, 199(4): 580–589.
[28] Derdeyn CA, Decker JM, Bibollet-Ruche F, Mokili JL, Muldoon M, Denham SA, Heil ML, Kasolo F, Musonda R, Hahn BH, Shaw GM, Korber BT, Allen S, Hunter E. Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission, 2004, 303(5666): 2019–2022.
[29] Gottlieb GS, Heath L, Nickle DC, Wong KG, Leach SE, Jacobs B, Gezahegne S, van't Wout AB, Jacobson LP, Margolick JB, Mullins JI. HIV-1 variation before seroconversion in men who have sex with men: analysis of acute/early HIV infection in the multicenter AIDS cohort study, 2008, 197(7): 1011–1015.
[30] Greenier JL, Miller CJ, Lu D, Dailey PJ, Lu FX, Kunstman KJ, Wolinsky SM, Marthas ML. Route of simian immunodeficiency virus inoculation determines the complexity but not the identity of viral variant populations that infect rhesus macaques, 2001, 75(8): 3753–3765.
[31] Long EM, Martin HL, Kreiss JK, Rainwater SM, Lavreys L, Jackson DJ, Rakwar J, Mandaliya K, Overbaugh J. Gender differences in HIV-1 diversity at time of infection, 2000, 6(1): 71–75.
[32] Margolis L, Shattock R. Selective transmission of CCR5- utilizing HIV-1: the‘gatekeeper’problem resolved?, 2006, 4(4): 312–317.
[33] Gnanakaran S, Bhattacharya T, Daniels M, Keele BF, Hraber PT, Lapedes AS, Shen TY, Gaschen B, Krishnamoorthy M, Li H, Decker JM, Salazar-Gonzalez JF, Wang SY, Jiang CL, Gao F, Swanstrom R, Anderson JA, Ping LH, Cohen MS, Markowitz M, Goepfert PA, Saag MS, Eron JJ, Hicks CB, Blattner WA, Tomaras GD, Asmal M, Letvin NL, Gilbert PB, Decamp AC, Magaret CA, Schief WR, Ban YEA, Zhang M, Soderberg KA, Sodroski JG, Haynes BF, Shaw GM, Hahn BH, Korber B. Recurrent signature patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections, 2011, 7(9): e1002209.
[34] Parrish NF, Wilen CB, Banks LB, Iyer SS, Pfaff JM, Salazar-Gonzalez JF, Salazar MG, Decker JM, Parrish EH, Berg A, Hopper J, Hora B, Kumar A, Mahlokozera T, Yuan S, Coleman C, Vermeulen M, Ding H, Ochsenbauer C, Tilton JC, Permar SR, Kappes JC, Betts MR, Busch MP, Gao F, Montefiori D, Haynes BF, Shaw GM, Hahn BH, Doms RW. Transmitted/founder and chronic subtype C HIV-1 use CD4 and CCR5 receptors with equal efficiency and are not inhibited by blocking the integrin alpha4beta7, 2012, 8(5): e1002686.
[35] Parrish NF, Gao F, Li H, Giorgi EE, Barbian HJ, Parrish EH, Zajic L, Iyer SS, Decker JM, Kumar A, Hora B, Berg A, Cai FP, Hopper J, Denny TN, Ding HT, Ochsenbauer C, Kappes JC, Galimidi RP, West AP, Bjorkman PJ, Wilen CB, Doms RW, O'Brien M, Bhardwaj N, Borrow P, Haynes BF, Muldoon M, Theiler JP, Korber B, Shaw GM, Hahn BH. Phenotypic properties of transmitted founder HIV-1, 2013, 110(17): 6626–6633.
[36] Huang W, Toma J, Stawiski E, Fransen S, Wrin T, Parkin N, Whitcomb JM, Coakley E, Hecht FM, Deeks SG, Gandhi RT, Eshleman SH, Petropoulos CJ. Characterization of human immunodeficiency virus type 1 populations containing CXCR4-using variants from recently infected individuals, 2009, 25(8): 795–802.
[37] Tsai L, Tasovski I, Leda AR, Chin MP, Cheng-Mayer C. The number and genetic relatedness of transmitted/founder virus impact clinical outcome in vaginal R5 SHIVSF162P3N infection, 2014, 11(1): 22.
[38] Wilen CB, Parrish NF, Pfaff JM, Decker JM, Henning EA, Haim H, Petersen JE, Wojcechowskyj JA, Sodroski J, Haynes BF, Montefiori DC, Tilton JC, Shaw GM, Hahn BH, Doms RW. Phenotypic and immunologic comparison of clade B transmitted/founder and chronic HIV-1 envelope glycoproteins, 2011, 85(17): 8514–8527.
[39] Go EP, Hewawasam G, Liao HX, Chen HY, Ping LH, Anderson JA, Hua DC, Haynes BF, Desaire H. Characterization of glycosylation profiles of HIV-1 transmitted/founder envelopes by mass spectrometry, 2011, 85(16): 8270–8284.
[40] Wood N, Bhattacharya T, Keele BF, Giorgi E, Liu M, Gaschen B, Daniels M, Ferrari G, Haynes BF, McMichael A, Shaw GM, Hahn BH, Korber B, Seoighe C. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC, 2009, 5(5): e1000414.
[41] Jern P, Russell RA, Pathak VK, Coffin JM. Likely role of APOBEC3G-mediated G-to-A mutations in HIV-1 evolution and drug resistance, 2009, 5(4): e1000367.
[42] Sagar M, Lavreys L, Baeten JM, Richardson BA, Mandaliya K, Chohan BH, Kreiss JK, Overbaugh J. Infection with multiple human immunodeficiency virus type 1 variants is associated with faster disease progression, 2003, 77(23): 12921–12926.
[43] Chow WZ, Ong LY, Razak SH, Lee YM, Ng KT, Yong YK, Azmel A, Takebe Y, Al-Darraji HAA, Kamarulzaman A, Tee KK. Molecular diversity of HIV-1 among people who inject drugs in Kuala Lumpur, Malaysia: massive expansion of circulating recombinant form (CRF) 33_01B and emergence of multiple unique recombinant clusters, 2013, 8(5): e62560.
[44] Onafuwa-Nuga A, Telesnitsky A. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination, 2009, 73(3): 451–480.
[45] Lange A, Ferguson NM. Antigenic diversity, transmission mechanisms, and the evolution of pathogens, 2009, 5(10): e1000536.
[46] [46] Goonetilleke N, Liu MKP, Salazar-Gonzalez JFS, Ferrari G, Giorgi E, Ganusov VV, Keele BF, Learn GH, Turnbull EL, Salazar MG, Weinhold KJ, Moore S, Letvin N, Haynes BF, Cohen MS, Hraber P, Bhattacharya T, Borrow P, Perelson AS, Hahn BH, Shaw GM, Korber BT, McMichael AJ. The first T cell response to transmitted/ founder virus contributes to the control of acute viremia in HIV-1 infection, 2009, 206(6): 1253–1272.
[47] Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, Decker JM, Wang SY, Baalwa J, Kraus MH, Parrish NF, Shaw KS, Guffey MB, Bar KJ, Davis KL, Ochsenbauer-Jambor C, Kappes JC, Saag MS, Cohen MS, Mulenga J, Derdeyn CA, Allen S, Hunter E, Markowitz M, Hraber P, Perelson AS, Bhattacharya T, Haynes BF, Korber BT, Hahn BH, Shaw GM. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/ founder viruses in acute and early HIV-1 infection, 2009, 206(6): 1273–1289.
[48] Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond DD, Legasse AW, Axthelm MK, Oswald K, Trubey CM, Piatak M, Lifson JD, Nelson JA, Jarvis MA, Picker LJ. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge, 2009, 15(3): 293–299.
(責(zé)任編委: 謝建平)
Identification and characterization of HIV-1 transmitted /founder viruses
Jianyuan Zhao1,2, Jiwei Ding2, Zeyun Mi2, Tao Wei1, Shan Cen2
During the spread of human immunodeficiency virus type 1 (HIV-1) in the mucosa, the entire genetic diversity of the viruses is significantly reduced. The vast majority of HIV-1 mucosal infections are established by one or a few viruses and ultimately develop into systemic infections, thus the initial virus is called transmitted/founder virus (T/F virus). The study of T/F virus will benefit understanding its key characteristics resulting in successful viral replication in the new host body, which may provide novel strategies for the development of AIDS vaccines, pre-exposure prophylaxis and other therapeutic interventions. In this review, we summarize the discovery and evolutionary characteristics of T/F virus as well as early immune response after HIV-1 infection, which will establish the basis to explore the features of T/F viruses.
human immunodeficiency virus type 1(HIV-1); viral transmission; acute infection; transmitted /founder virues (T/F Virus)
2014-12-19;
2015-02-18
北京聯(lián)合大學(xué)研究生創(chuàng)新基金(編號:12246994501)和國家基金委-加拿大國立衛(wèi)生研究院研究基金課題(CIHR)合作基金(編號:81361128017)資助
趙建元,碩士研究生,專業(yè)方向:病毒學(xué)。E-mail: Zjyuan815@163.com
岑山,博士,研究員,研究方向:病毒學(xué)。E-mail: shancen@hotmail.com;魏濤,碩士,教授,研究方向:病毒學(xué)。E-mail: weitao@buu.edu.cn
10.16288/j.yczz.14-452
2015-3-26 10:09:02
http://www.cnki.net/kcms/detail/11.1913.R.20150326.1009.002.html