梅國(guó)徽 麥海星 徐小潔 葉棋濃 陳立軍
1軍事醫(yī)學(xué)科學(xué)院附屬醫(yī)院泌尿外科 100048 北京
2軍事醫(yī)學(xué)科學(xué)院生物工程研究所
Δ共同第一作者
?審校者
?
腎癌靶向藥物治療耐藥的研究進(jìn)展
梅國(guó)徽1Δ麥海星1Δ徐小潔2葉棋濃2陳立軍1?
1軍事醫(yī)學(xué)科學(xué)院附屬醫(yī)院泌尿外科 100048 北京
2軍事醫(yī)學(xué)科學(xué)院生物工程研究所
Δ共同第一作者
?審校者
[摘要]腎細(xì)胞癌是常見(jiàn)的泌尿系統(tǒng)惡性腫瘤之一,且發(fā)病率逐年上升。手術(shù)切除依然是治療腎癌的主要方法,然而約1/3患者初診時(shí)已出現(xiàn)遠(yuǎn)處轉(zhuǎn)移。接受手術(shù)的患者中,20%~30%術(shù)后會(huì)出現(xiàn)復(fù)發(fā)。因其對(duì)傳統(tǒng)的放療、化療及激素治療均不敏感,2005年以前,臨床對(duì)于轉(zhuǎn)移性腎癌的治療策略十分有限,靶向藥物的出現(xiàn)為晚期腎癌的治療提供了更多的選擇,但是接受靶向藥物治療的患者臨床獲益有限,耐藥通常會(huì)在6~15個(gè)月內(nèi)發(fā)生。現(xiàn)僅就腎癌靶向藥物耐藥的機(jī)制做一綜述。
[關(guān)鍵詞]腎癌;靶向藥物;耐藥
腎細(xì)胞癌是一種起源于腎小管上皮的惡性腫瘤,發(fā)病率僅次于膀胱癌,位居泌尿系惡性腫瘤第二,且在世界范圍內(nèi)發(fā)病率以每10年2%~3%遞增[1, 2]。外科手術(shù)(根治性或部分切除)依然是治療腎癌的主要方法,然而約1/3患者就診時(shí)已出現(xiàn)遠(yuǎn)處轉(zhuǎn)移,20%~30%的患者術(shù)后會(huì)出現(xiàn)復(fù)發(fā)。2005年之前,轉(zhuǎn)移性腎癌患者通常接受免疫調(diào)節(jié)治療,但是這種方法臨床獲益有限,且毒性作用較大。隨著分子靶向藥物的出現(xiàn),轉(zhuǎn)移性腎癌的治療取得較大進(jìn)展。目前應(yīng)用的靶向藥物可分為兩大類:①VEGF/VEGFR信號(hào)通路抑制劑,包括VEGF人源化單克隆抗體貝伐單抗(bevacizumab)和酪氨酸激酶抑制劑(tyrosine kinase inhibitor, TKI),如索拉非尼(sorafenib)、舒尼替尼(sunitinib)、帕唑帕尼(pazopanib)等;②哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)抑制劑,如替西羅莫司(temsirolimus)、依維莫司(everolimus)等,但是隨之而來(lái)的靶向藥物耐藥成為亟待解決的問(wèn)題。本文就腎癌靶向藥物治療耐藥機(jī)制作如下綜述。
1VEGF/VEGFR信號(hào)通路抑制劑
VEGF信號(hào)通路在腫瘤新生血管形成中有著重要作用,貝伐單抗為VEGF人源化單克隆抗體,能特異性結(jié)合VEGF,抑制腫瘤新生血管的形成;TKI則能抑制VEGFR、PDGFR等,抑制腫瘤細(xì)胞生長(zhǎng)和腫瘤血管形成。盡管這些藥物可以延長(zhǎng)患者的總生存期(OS)和無(wú)進(jìn)展生存期(FPS),但是這種作用并不持久,藥物抵抗通常會(huì)在6~15個(gè)月內(nèi)發(fā)生。
1.1血管生成逃逸/血管生成平衡假說(shuō)
腎癌是一種高度血管化的腫瘤,使用VEGF信號(hào)通路抑制劑后,血管新生信號(hào)通路的轉(zhuǎn)變可能是耐藥產(chǎn)生的主要因素。在應(yīng)用sunitinib的病例中,疾病多在治療1年內(nèi)出現(xiàn)進(jìn)展,Huang等[3]闡述了一些sunitinib耐藥的腎癌細(xì)胞中,血管生成平衡的一些機(jī)制,他們發(fā)現(xiàn)在sunitinib耐藥的動(dòng)物模型中,腫瘤細(xì)胞來(lái)源的白細(xì)胞介素8(IL-8)表達(dá)明顯增加。IL-8屬于CXC趨化因子家族,具有強(qiáng)烈的促血管生成作用;sunitinib聯(lián)合IL-8中和抗體的應(yīng)用可以減弱腫瘤對(duì)sunitinib的抵抗,然而在未經(jīng)sunitinib治療的模型中,單獨(dú)抑制IL-8并不能抑制腫瘤生長(zhǎng),提示腎癌的生長(zhǎng)最初主要依賴VEGF/VEGFR信號(hào)通路。在sunitinib阻斷VEGFR后,才逐漸依賴IL-8信號(hào)。他們還發(fā)現(xiàn),在sunitinib原發(fā)性耐藥的患者中,IL-8表達(dá)顯著增高,提示IL-8可能是臨床患者對(duì)sunitinib敏感性的一項(xiàng)指標(biāo)。
Porta等[4]應(yīng)用ELISA技術(shù)檢測(cè)了85例應(yīng)用sunitinib患者血清中促血管生成細(xì)胞因子堿性成纖維細(xì)胞生長(zhǎng)因子(basic fibroblast growth)、肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor)、白細(xì)胞介素-6(IL-6)的滴度,他們發(fā)現(xiàn)盡管在基礎(chǔ)值和進(jìn)展期這三種細(xì)胞因子的滴度沒(méi)有統(tǒng)計(jì)學(xué)意義,但是有34例 (45.3%)、 35例 (46.6%)、 28例 (37.3%)患者這三種細(xì)胞因子的滴度上升了50%以上,提示這些細(xì)胞因子可能參與了sunitinib的耐藥 。
胎盤生長(zhǎng)因子(placental growth factor, PIGF)是VEGF的類似物,可以結(jié)合VEGFR1,并上調(diào)of VEGF-A、FGF2、PDGFβ和金屬基質(zhì)酶 (MMPs)的表達(dá)刺激血管的生成[5]。在肺癌、結(jié)直腸癌、胃癌中均發(fā)現(xiàn)PIGF和VEGF的上調(diào),且與預(yù)后不良有關(guān)[6~9]。在腎癌組織中PIGF mRNA水平升高[10],而血清中PIGF水平則與腫瘤分期、腫瘤血管密度及預(yù)后有關(guān)[11]。在VEGFR抑制劑抵抗的黑色素瘤、胰腺癌、結(jié)腸癌的動(dòng)物模型中,應(yīng)用PIGF抗體(αPlGF)可以顯著抑制腫瘤生長(zhǎng)和轉(zhuǎn)移[12]。然而,也有研究表明,過(guò)表達(dá)PIGF會(huì)抑制血管形成和腫瘤生長(zhǎng)[13,14],表達(dá)PlGF的腫瘤細(xì)胞對(duì)靶向VEGF和VEGFR2的藥物更加敏感[15]。因此PIGF在腎癌靶向耐藥中的作用有待進(jìn)一步研究。
1.2腎癌血管周細(xì)胞覆蓋的增多
周細(xì)胞(pericyte)又稱Rouget細(xì)胞和壁細(xì)胞,是一種包圍全身毛細(xì)血管和靜脈中內(nèi)皮細(xì)胞的細(xì)胞,在內(nèi)皮細(xì)胞的分化、遷移和穩(wěn)定中起重要作用。血管內(nèi)皮細(xì)胞和周細(xì)胞直接的信號(hào)轉(zhuǎn)導(dǎo)由PDGF-BB/PDGFRβ通路實(shí)現(xiàn)。內(nèi)皮細(xì)胞分泌PDGF-BB結(jié)合到周細(xì)胞的PDGFRβ上,通過(guò)MAPK和PI3K通路增加周細(xì)胞的VEGF轉(zhuǎn)錄水平,之后通過(guò)旁分泌的方式促進(jìn)內(nèi)皮細(xì)胞的增生[16],引起內(nèi)皮細(xì)胞對(duì)VEGF信號(hào)通路抑制劑的敏感性降低[17],同時(shí)靶向VEGF和PDGF能更有效地抑制腫瘤的生長(zhǎng)和血管形成。Cao等[18]發(fā)表文章表示,在腎透明細(xì)胞癌自身脈管系統(tǒng)中,高分化血管的增多是預(yù)后不良的獨(dú)立因素,作者觀察到血清中周細(xì)胞起源的微脈管增多往往與腎癌細(xì)胞的高侵襲性及對(duì)治療的抵抗有關(guān);有趣的是,腫瘤中周細(xì)胞的消耗可能參與了由缺氧導(dǎo)致的上皮間質(zhì)轉(zhuǎn)化的過(guò)程,另外血管外周細(xì)胞覆蓋不全會(huì)在抑制腫瘤生長(zhǎng)的同時(shí),引起腫瘤血管的缺陷,增加腫瘤轉(zhuǎn)移的風(fēng)險(xiǎn)[19]。
1.3血漿和血清中藥物濃度的減少
現(xiàn)已證明,在應(yīng)用sunitinib 和axitinib的患者中,血清中較高藥物濃度往往能獲得更好的臨床受益[20],另外,有報(bào)道稱,sunitinib在一定的濃度下才能發(fā)揮抗腫瘤作用[21],一個(gè)經(jīng)典的耐藥模型顯示,由于藥物的過(guò)量排泄,造成細(xì)胞內(nèi)藥物降低可能是造成耐藥的原因??朔@一機(jī)制的辦法似乎是適當(dāng)控制患者服用藥物的劑量,有研究認(rèn)為,高劑量的sunitinib可以獲得更長(zhǎng)的無(wú)進(jìn)展生存期,隨著使用劑量的增加,患者更有可能獲得部分緩解或者完全緩解。然而這種現(xiàn)象僅在sunitinib中被報(bào)道,使用sorafenib的患者多難以耐受高劑量藥物帶來(lái)的毒副反應(yīng)[22]。Khalil等[23]認(rèn)為應(yīng)該在治療過(guò)程中檢測(cè)血清藥物濃度并適當(dāng)調(diào)整劑量,以獲得最大的臨床收益和減少藥物抵抗。這種耐藥機(jī)制與藥物攝取的減少以及藥物排出增多,導(dǎo)致血清中藥物濃度無(wú)法達(dá)到有效濃度有關(guān)。血流動(dòng)力學(xué)的不穩(wěn)定、血管解剖及功能上異常同樣有可能導(dǎo)致劑量相關(guān)的藥物抵抗[24]。
1.4溶酶體隔離作用
目前應(yīng)用的抗癌藥物多呈弱堿性,這使得它們成為隔離(Sequestration)過(guò)程中的底物,通過(guò)離子捕獲機(jī)制進(jìn)入細(xì)胞內(nèi)的弱酸性細(xì)胞器中,如溶酶體。最近的數(shù)據(jù)表明,在治療腎癌的過(guò)程中,sunitinib會(huì)被隔離在溶酶體中。由于在sunitinib抵抗的細(xì)胞中,sunitinib會(huì)被隔離在“隔間內(nèi)”。為了發(fā)現(xiàn)sunitinib耐藥的規(guī)律,Gotink分析了sunitinib在細(xì)胞內(nèi)的分布情況,他們發(fā)現(xiàn)這種疏水的、弱堿性的化學(xué)藥物被隔離在酸性溶酶體中,這種現(xiàn)象可能與sunitinib自身的化學(xué)性質(zhì)有關(guān),且是可逆的。這項(xiàng)結(jié)果有助于進(jìn)一步理解應(yīng)用其他TKI藥物時(shí),隔離現(xiàn)象產(chǎn)生的機(jī)制[21]。
1.5腫瘤內(nèi)及腫瘤周圍骨髓源細(xì)胞的累積增加
骨髓源細(xì)胞(Bone Marrow Derived Cells, BMDCs)包括:血管祖細(xì)胞,促血管生成的單核細(xì)胞(pro-angiogenic monocytes),VEGFR-1+hemiangiocytes和CD11b+骨髓細(xì)胞[25];這些細(xì)胞可以調(diào)控多種細(xì)胞因子、生長(zhǎng)因子、蛋白酶的表達(dá)。在應(yīng)用抗血管生成類藥物后,血管生成減少造成腫瘤內(nèi)缺氧,BMDCs被募集到腫瘤當(dāng)中[26],而B(niǎo)MDCs具有形成血管的作用,這意味著使用抗血管生成類藥物后,同時(shí)經(jīng)由BMDCs促進(jìn)了血管的形成,這種反饋可能是造成藥物抵抗的一個(gè)原因[27]。
1.6腫瘤干細(xì)胞在耐藥中的作用
就目前標(biāo)準(zhǔn)而言,腫瘤干細(xì)胞是具有自我更新和成瘤能力的一類細(xì)胞,其表面分子標(biāo)志物包括CD133(表達(dá)于造血干細(xì)胞、腦和結(jié)腸癌干細(xì)胞等)和CXCR4(表達(dá)于造血祖細(xì)胞、腎臟祖細(xì)胞、胰腺癌干細(xì)胞等),Varna等[28]發(fā)現(xiàn)CD133/CXCR4共表達(dá)的腫瘤細(xì)胞在腎癌壞死旁區(qū)域大量分布,且在sunitinib治療后數(shù)量顯著增加。進(jìn)一步研究顯示,CD133/CXCR4共表達(dá)的細(xì)胞具有成瘤能力,在缺氧條件下,其成瘤能力增強(qiáng)且對(duì)sunitinib的敏感性增加,表明CD133/CXCR4共表達(dá)的細(xì)胞具有腎癌干細(xì)胞特性,且可能參與了對(duì)sunitinib的耐受,這一過(guò)程可能與sunitinib抑制血管生成,引發(fā)腫瘤內(nèi)缺氧狀態(tài)有關(guān)。
側(cè)群細(xì)胞(side population cell, SP)是利用Hoechst染料和流式細(xì)胞術(shù)進(jìn)行造血干/祖細(xì)胞分離時(shí)發(fā)現(xiàn)的一群特殊細(xì)胞,被認(rèn)為具有類似干細(xì)胞的能力,Huang等[29]驗(yàn)證了腎癌細(xì)胞系中SP表型細(xì)胞的存在,其比例在769P細(xì)胞中高達(dá)4.82%,他們發(fā)現(xiàn)SP細(xì)胞較NSP細(xì)胞具有更強(qiáng)的自我更新和多分化能力,其形成腫瘤的能力較后者強(qiáng)100倍以上,僅200個(gè) SP細(xì)胞就能在NOD/SCID中形成腫瘤。同時(shí)SP細(xì)胞具有有與ABCB1相關(guān)的耐藥性,其對(duì)5-FU和NSP的耐受能力較NSP細(xì)胞強(qiáng),且這一耐受能力可被Verapamil(ABCB1轉(zhuǎn)運(yùn)抑制劑)回轉(zhuǎn);但二者對(duì)sunitinib的耐受程度類似。目前關(guān)于腎癌腫瘤干細(xì)胞的認(rèn)識(shí)還較少,腫瘤干細(xì)胞是否參與腎癌靶向藥物耐藥尚待進(jìn)一步研究。
2mTOR抑制劑
2.1mTOR信號(hào)通路的分子機(jī)制
mTOR是一種絲氨酸/蘇氨酸激酶,分子量約289 000 D,屬于磷脂酰肌醇(-3)激酶相關(guān)激酶家族(phosphatidylinositol 3-kinase -related kinase family)[30],它有兩種不同的復(fù)合物:mTORC1和mTORC2,兩種復(fù)合物的共同成分包括mTOR、Deptor(DEP-domain-containing mTOR-interacting protein)、mLST8(mammalian lethal with Sec13 protein 8),mTORC1的特殊成分還包括Raptor(regulatory associated protein of mTOR)、PRAS40(proline-rich AKT substrate 40 000 D),mTORC2則另外包括mSIN1(mammalian stress-activated protein kinase interacting protein)和Protor-1(protein observed with Rictor-1);mTORC1 可受氨基酸、能量、氧化、應(yīng)激以及生長(zhǎng)因子的刺激,激活后可以調(diào)控細(xì)胞生長(zhǎng)和細(xì)胞周期的進(jìn)行;mTORC2則主要調(diào)節(jié)細(xì)胞骨架重組和細(xì)胞生存、代謝[31]。
mTOR的激活依賴兩種級(jí)聯(lián)信號(hào):胰島素通路和Ras通路, 胰島素通路的第一階段包括胰島素與其受體的結(jié)合,而胰島素受體則表現(xiàn)為胰島素受體底物-1(IRS1)的酪氨酸激酶活性,當(dāng)IRS1募集和激活后,信號(hào)通過(guò)磷酸肌醇3-激酶(PI3K)轉(zhuǎn)換,隨后激活磷酸肌醇依賴的激酶-1(PDK1)和Akt,第二條通路則由RAS的激活開(kāi)始,之后通過(guò)Raf和MEK 1/2轉(zhuǎn)導(dǎo),之后激活促分裂原活化蛋白激酶(MAPK)和核糖體激酶s6(RSKs) 。mTORC1有兩條主要的下游靶點(diǎn):真核細(xì)胞翻譯起始因子4E(eIF4E)結(jié)合蛋白(4E-BP1)和p70核糖體蛋白s6激酶1(S6K1),4E-BP1的磷酸化可以抑制自身與eIF4E的結(jié)合,使eIF4E可以促進(jìn)帽依賴翻譯[32],S6K1也可以促進(jìn)翻譯的進(jìn)行;這些進(jìn)程可以促進(jìn)HIF 1α和細(xì)胞周期調(diào)節(jié)因子c-myc 和 cyclin D1的產(chǎn)生[33]。
值得注意的是,PI3K/AKT軸上各部分之間的相互作用,AKT的完全激活不僅需要PDK1的磷酸化,也需要mTOR2的參與[34],最近也有證據(jù)證實(shí)PI3K信號(hào)可以激活mTORC2[35],因此mTOR復(fù)合物之間的作用可能是相互的。
2.2耐藥機(jī)制研究
2.2.1mTORC2在耐藥中的作用mTOR抑制劑可以與FK結(jié)合蛋白形成復(fù)合物,特異性結(jié)合Raptor進(jìn)而抑制mTORC1的活性[36],而mTORC2則對(duì)其高度抵抗,因此mTOR抑制劑可以被看做是mTORC1的特異性抑制劑,mTORC2所調(diào)控的mTOR未被抑制[36];并且mTORC1被抑制后,PI3K和AKT表達(dá)上調(diào),mTORC2的激活可能是耐藥產(chǎn)生的潛在原因。
mTORC2還可以可以進(jìn)一步激活HIF2α和 AKT,從而抵消mTORC抑制劑的抗腫瘤作用。另外,盡管HIF1α可以由兩種mTORC來(lái)激活,HIF2α的激活則只依賴mTORC2[44]。同時(shí),VHL-/-的腎癌組織只表達(dá)HIF-2α[37],有實(shí)驗(yàn)研究表明,HIF2α的表達(dá)依賴Akt2,而HIF1α則依賴Akt3。因?yàn)镠IF-2α可能在腎癌發(fā)展中起重要作用,選擇性mTORC1抑制劑無(wú)法抑制HIF-2α的產(chǎn)生,可能是耐藥產(chǎn)生的一個(gè)重要機(jī)制。
2.2.2反饋回路的激活負(fù)反饋回路的缺失可能是mTOR抑制劑抵抗的一個(gè)重要因素。目前發(fā)現(xiàn)數(shù)條可以激活mTOR并強(qiáng)烈抑制PI3K-AKT軸的反饋回路。比如S6K1可以促進(jìn)IRS1的磷酸化從而降低其穩(wěn)定性(負(fù)反饋)[38],S6K1也可以降解磷脂酶D2,進(jìn)而減少磷脂酸的水平,而磷脂酸則是mTORC1和mTORC2聯(lián)系的重要物質(zhì)[39]。另一條通路則是S6K/PI3K/Ras依賴的mTORC1-MAPK反饋回路,有研究表明,在腫瘤細(xì)胞中mTORC1的抑制可以通過(guò)PI3K依賴的反饋回路激活MAPK通路,最有可能的解釋是mTORC1的抑制增加了IRS-1和PI3K對(duì)Ras和MAPK的活性,進(jìn)而增加了Akt的活性和MAPK的磷酸化,從而形成了雙重反饋機(jī)制[40]。
2.2.3通路中蛋白對(duì)mTOR抑制劑敏感性mTOR抑制劑作用后對(duì)mTOR下游蛋白的抑制不盡相同。研究表明,在mTOR抑制劑的作用下,S6K的磷酸化抑制尤為敏感,并且能持續(xù)較長(zhǎng)一段時(shí)間,4E-BP1磷酸化的抑制則多在6 h內(nèi)恢復(fù),這種恢復(fù)仍然對(duì)mTORC1依賴,并且這種恢復(fù)對(duì)帽依賴翻譯的刺激在不同細(xì)胞類型中有所差異。mTORC1抑制后帽依賴翻譯的存在可能是藥物抵抗的一種機(jī)制[41]。
2.2.4PLD2過(guò)表達(dá)PLD2及其代謝物PA均能調(diào)控mTOR[45],有報(bào)道稱PLD的抑制可以阻止mTORC1底物S6K的磷酸化和mTORC2依賴的PRAS40磷酸化,PA則是mTORC1和mTORC2之間聯(lián)系的關(guān)鍵。抑制PA的表達(dá)可以顯著增加mTORC2對(duì)雷帕霉素的敏感性。盡管腎癌中PLD2高表達(dá),但是PLD2表達(dá)水平是否與腫瘤對(duì)mTOR抑制劑的敏感性有關(guān)尚待進(jìn)一步研究[39,42]。
2.2.5自噬β-欖香烯是一種天然的倍半萜烯,具有潛在的抗腫瘤作用。在腎癌中,它可以通過(guò)增加細(xì)胞凋亡和保護(hù)性自噬來(lái)抑制腎癌細(xì)胞的生存能力,這是一種時(shí)間和劑量依賴的方式。進(jìn)一步研究表明,β-欖香烯可以通過(guò)抑制MAPK/ERK和PI3K/Akt/mTOR信號(hào)通路,與抗自噬藥物聯(lián)用可以增加抗腫瘤的能力[43]。因此,抑制自噬有可能增加藥物的抗腫瘤作用和克服mTOR抵抗。其他有研究表明,mTOR抑制劑可以增加自噬的產(chǎn)生[44]。mTORC1通過(guò)一種未知的方式調(diào)控自噬,而自噬則可能與腫瘤細(xì)胞對(duì)mTOR抑制劑的耐受有關(guān)[45]。
另外,自噬也可能參與了TKI藥物的耐受。Zheng等[46]在腎癌組織和細(xì)胞系發(fā)現(xiàn)miR-30a明顯下調(diào),Beclin-1表達(dá)增強(qiáng),Sorafenib作用于在腎癌細(xì)胞系后p62下調(diào),Beclin-1/自噬蛋白(ATG5)上調(diào),輕鏈(light chain)3B-I/Ⅱ比例翻轉(zhuǎn),引發(fā)自噬。外源性轉(zhuǎn)入miR-30a可以抑制Beclin-1表達(dá),增強(qiáng)Sorafenib的細(xì)胞毒性。相反,通過(guò)anti-miR-30a敲低miR-30a后Beclin-1表達(dá)上調(diào),抑制Sorafenib的作用。加用自噬抑制劑及通過(guò)siRNA敲低 Beclin-1 或 ATG-5 后同樣可以增強(qiáng)Sorafenib的細(xì)胞毒性。作者認(rèn)為腎癌中的miR-30a下調(diào)可能通過(guò)誘發(fā)自噬增強(qiáng)了對(duì)Sorafenib的耐受性。
3結(jié)語(yǔ)與展望
近年來(lái)由于靶向藥物的出現(xiàn),腎癌的治療取得了巨大進(jìn)展,然而靶向藥物的長(zhǎng)期效果卻不盡人意。目前出現(xiàn)的應(yīng)對(duì)耐藥的策略包括:第一,在耐藥出現(xiàn)后,使用單藥繼續(xù)抑制VEGF通路,或在治療開(kāi)始時(shí)聯(lián)合用藥來(lái)延緩耐藥發(fā)生的時(shí)間;第二,提高藥物應(yīng)用劑量,或者用藥過(guò)程中檢測(cè)血藥濃度來(lái)調(diào)整適當(dāng)?shù)膭┝?,根?jù)藥物效果調(diào)整藥物種類等等。由于我們對(duì)腎癌耐藥的精確機(jī)制及應(yīng)對(duì)措施認(rèn)識(shí)有限,相關(guān)耐藥的臨床策略仍需進(jìn)一步研究。
腎癌靶向藥物耐藥是一個(gè)復(fù)雜的過(guò)程,TKI類藥物耐藥可能與多種促血管生成的信號(hào)通路激活有關(guān),mTOR抑制劑耐藥也涉及多個(gè)信號(hào)通路,腫瘤干細(xì)胞和自噬也可能參與了腎癌靶向藥物耐藥。關(guān)于腎癌耐藥機(jī)制的研究多停留在細(xì)胞及動(dòng)物模型水平,缺乏大宗的臨床實(shí)驗(yàn)?;颊叱霈F(xiàn)耐藥后多接受二線藥物治療,然而對(duì)于藥物的選擇仍缺乏相應(yīng)標(biāo)準(zhǔn),進(jìn)一步對(duì)患者進(jìn)行的二線藥物的評(píng)估可能為我們提供更好的指導(dǎo)??偟膩?lái)說(shuō),對(duì)于腎癌靶向藥物耐受機(jī)制的進(jìn)一步了解,有助于為患者提供合理的治療方案,以提高患者的臨床獲益。
[參考文獻(xiàn)]
[1]Gupta K, Miller JD, Li JZ, et al. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev, 2008, 34(3): 193-205.
[2]Ljungberg B, Campbell SC, Cho HY, et al. The epidemiology of renal cell carcinoma. Eur Urol, 2011, 60(4): 615-621.
[3]Huang D, Ding Y, Zhou M, et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res, 2010, 70(3): 1063-1071.
[4]Porta C, Paglino C, Imarisio I, et al. Changes in circulating pro-angiogenic cytokines, other than VEGF, before progression to sunitinib therapy in advanced renal cell carcinoma patients. Oncology, 2013, 84(2): 115-122.
[5]Kim KJ, Cho CS, Kim WU. Role of placenta growth factor in cancer and inflammation. Exp Mol Med, 2012, 44(1): 10-19.
[6]Zhang L, Chen J, Ke Y, et al. Expression of placenta growth factor(PlGF)in non-small cell lung cancer(NSCLC)and the clinical and prognostic significance. World J Surg Oncol, 2005,3:68.
[7]Wei SC, Tsao PN, Yu SC, et al. Placenta growth factor expression is correlated with survival of patients with colorectal cancer. Gut, 2005, 54(5): 666-672.
[8]Parr C, Watkins G, Boulton M, et al. Placenta growth factor is over-expressed and has prognostic value in human breast cancer. Eur J Cancer, 2005, 41(18): 2819-2827.
[9]Chen CN, Hsieh FJ, Cheng YM, et al. The significance of placenta growth factor in angiogenesis and clinical outcome of human gastric cancer. Cancer Lett, 2004, 213(1): 73-82.
[10]Takahashi A, Sasaki H, Kim SJ, et al. Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Res, 1994, 54(15): 4233-4237.
[11]Matsumoto K, Suzuki K, Koike H, et al. Prognostic significance of plasma placental growth factor levels in renal cell cancer: an association with clinical characteristics and vascular endothelial growth factor levels. Anticancer Res, 2004, 23(6D): 4953-4958.
[12]Fischer C, Jonckx B, Mazzone M, et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell, 2007, 131(3): 463-475.
[13]Eriksson A, Cao R, Pawliuk R, et al. Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell, 2002, 1(1): 99-108.
[14]Xu L, Cochran DM, Tong RT, et al. Placenta growth factor overexpression inhibits tumor growth, angiogenesis, and metastasis by depleting vascular endothelial growth factor homodimers in orthotopic mouse models. Cancer Res, 2006, 66(8): 3971-3977.
[15]Hedlund EM, Yang X, Zhang Y, et al. Tumor cell-derived placental growth factor sensitizes antiangiogenic and antitumor effects of anti-VEGF drugs. Proc Natl Acad Sci U S A, 2013, 110(2): 654-659.
[16]Reinmuth N, Liu W, Jung YD, et al. Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J, 2001, 15(7): 1239-1241.
[17]Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer, 2008, 8(8): 592-603.
[18]Cao Z, Shang B, Zhang G, et al. Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. Biochim Biophys Acta, 2013, 1836(2): 273-286.
[19]Cooke VG, Lebleu VS, Keskin D, et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by Met signaling pathway. Cancer Cell, 2012, 21(1): 66-81.
[20]Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med, 2007, 356(2): 125-134.
[21]Gotink KJ, Broxterman HJ, Labots M, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res, 2011, 17(23): 7337-7346.
[22]Houk BE, Bello CL, Poland B, et al. Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol, 2010, 66(2): 357-371.
[23]Khalil B, Hudson J, Williams R, et al. Reprint of: Outcomes in patients with metastatic renal cell cancer treated with individualized sunitinib therapy: Correlation with dynamic microbubble ultrasound data and review of the literature. Urol Oncol, 2015, 33(4):171-178.
[24]Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase therapy. Mol Cancer, 2010,9:75.
[25]Azam F, Mehta S, Harris AL. Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer, 2010, 46(8): 1323-1332.
[26]Pàez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 2009, 15(3): 220-231.
[27]Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer, 2008, 8(6): 425-437.
[28]Varna M, Gapihan G, Feugeas JP, et al. Stem cells increase in numbers in perinecrotic areas in human renal cancer. Clin Cancer Res, 2015, 21(4): 916-924.
[29]Huang B, Huang YJ, Yao ZJ, et al. Cancer stem cell-like side population cells in clear cell renal cell carcinoma cell line 769P. PLoS One, 2013, 8(7): e68293.
[30]Jiang BH, Liu LZ. Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat, 2008, 11(3): 63-76.
[31]Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci, 2009, 122(Pt 20): 3589-3594.
[32]Wang L, Harris TE, Roth RA, et al. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem, 2007, 282(27): 20036-20044.
[33]Choo AY, Yoon SO, Kim SG, et al. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A, 2008, 105(45): 17414-17419.
[34]Kucejova B, Pea-Llopis S, Yamasaki T, et al. Interplay between pVHL and mTORC1 pathways in clear-cell renal cell carcinoma. Mol Cancer Res, 2011, 9(9): 1255-1265.
[35]Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005, 307(5712): 1098-1101.
[36]Battelli C, Cho DC. mTOR inhibitors in renal cell carcinoma. Therapy, 2011,8(4): 359-367.
[37]Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive Mammalian Target of Rapamycin Inhibitor Reveals Rapamycin-resistant Functions of mTORC1. J Biol Chem, 2009,284(12): 8023-8032.
[38]Carracedo A, Ma L, Teruya-Feldstein J, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest, 2008, 118(9): 3065-3074.
[39]Zhao Y, Ehara H, Akao Y, et al. Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochem Biophys Res Commun, 2000, 278(1): 140-143.
[40]Shanmugasundaram K, Block K, Nayak BK, et al. PI3K regulation of the SKP-2/p27 axis through mTORC2. Oncogene, 2013, 32(16): 2027-2036.
[41]Khaleghpour K, Pyronnet S, Gingras AC, et al. Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities. Mol Cell Biol, 1999, 19(6): 4302-4310.
[42]Veilleux A, Houde VP, Bellmann K, et al. Chronic inhibition of the mTORC1/S6K1 pathway increases insulin-induced PI3K activity but inhibits Akt2 and glucose transport stimulation in 3T3-L1 adipocytes. Mol Endocrinol, 2010, 24(4): 766-778.
[43]Wang K, Li Z, Chen Y, et al. The pharmacokinetics of a novel anti-tumor agent, beta-elemene, in Sprague-Dawley rats. Biopharm Drug Dispos, 2005, 26(7): 301-307.
[44]Zhan YH, Liu J, Qu XJ, et al. β-Elemene induces apoptosis in human renal-cell carcinoma 786-0 cells through inhibition of MAPK/ERK and PI3K/Akt/ mTOR signalling pathways. Asian Pac J Cancer Prev, 2012, 13(6): 2739-2744.
[45]Martina JA, Chen Y, Gucek M, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 2012, 8(6): 903-914.
[46]Zheng B, Zhu H, Gu D, et al. MiRNA-30a-mediated autophagy inhibition sensitizes renal cell carcinoma cells to sorafenib. Biochem Biophys Res Commun, 2015, 459(2): 234-239.
綜述
Progress of target therapy resistance in renal cell carcinoma
MeiGuohui1MaiHaixing1XuXiaojie2YeQinong2ChenLijun1
(1Department of Urology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China;2Beijing Institute of Biotechnology)
Corresponding author: Chen Lijun, chenlj829@163.com; Ye Qinong, yeqn66@yahoo.com; Xu Xiaojie, miraclexxj@126.com
AbstractRenal cell carcinoma is one of the most common types of urologic cancer, and its morbidity increases yearly. Nephrectomy is still the standard treatment, however, about 1/3 of the patients were diagnosed with metastastic RCC (mRCC) when first visit. After initial resection, tumor recurrence is observed in 20%-30% cases. As RCC is resistant to traditional chemotherapy, radiotherapy and hormone therapy, strategies in the treatment of mRCC were limited before 2005. The emergence of the targeted drugs has provided more choices for patients with mRCC. However, patients receiving targeted therapy seem to gain limited clinical benefit, and usually are subjected to drug resistance within 6-15 months. This article aims to review the feasible mechanisms of resistance against targeted therapies.
Key wordsrenal cell carcinoma; target therapy; drug resistance
基金項(xiàng)目:國(guó)家自然科學(xué)基金(31100604, 81472589),北京市科技新星計(jì)劃(Z141102001814055),北京市自然科學(xué)基金(7132155),軍事醫(yī)學(xué)科學(xué)院創(chuàng)新基金轉(zhuǎn)化醫(yī)學(xué)項(xiàng)目(ZHYX003)
[文章編號(hào)]2095-5146(2015)05-309-06
[中圖分類號(hào)]R737.11
[文獻(xiàn)標(biāo)識(shí)碼]A
收稿日期:2015-06-03
通訊作者:陳立軍,chenlj829@163.com;葉棋濃,yeqn66@yahoo.com; 徐小潔,miraclexxj@126.com