国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

復合蛋白源替代魚粉對大菱鲆生長、體組成和表觀消化率的影響*

2015-03-20 03:13:03周慧慧麥康森
關鍵詞:大菱鲆魚粉魚體

董 純,周慧慧,麥康森,徐 瑋,何 艮

(中國海洋大學水產(chǎn)學院農(nóng)業(yè)部水產(chǎn)動物營養(yǎng)與飼料重點實驗室,山東 青島 266003)

?

復合蛋白源替代魚粉對大菱鲆生長、體組成和表觀消化率的影響*

董 純,周慧慧,麥康森,徐 瑋,何 艮**

(中國海洋大學水產(chǎn)學院農(nóng)業(yè)部水產(chǎn)動物營養(yǎng)與飼料重點實驗室,山東 青島 266003)

本實驗旨在研究谷朊粉、寵物級雞肉粉、脫脂肉骨粉、豆粕和玉米蛋白粉復合替代0%(對照組,CON)、35%(FM35)、50%(FM50)、65%(FM65)、80%(FM80)魚粉對大菱鲆(Scophthalmusmaximus)生長、體組成和表觀消化率的影響。設計5組等氮等能(粗蛋白52%,總能19kJ/g)的飼料,養(yǎng)殖魚初重(8.63±0.01)g,養(yǎng)殖周期9周。結(jié)果顯示,替代組體末重、增重率和特定生長率顯著低于CON(P<0.05),而攝食率和成活率各處理組之間沒有顯著變化(P>0.05)。替代組飼料效率和蛋白質(zhì)效率隨著替代水平的升高而降低,F(xiàn)M65和FM80飼料效率和FM80蛋白質(zhì)效率顯著低于CON(P<0.05)。復合蛋白替代魚粉對魚體水分、粗蛋白和粗脂肪沒有顯著影響(P>0.05),但替代組魚體灰分顯著高于CON(P<0.05)。除FM35干物質(zhì)表觀消化率與CON沒有顯著差異(P>0.05),其他替代組的干物質(zhì)和粗蛋白表觀消化率均顯著低于CON(P<0.05)。研究表明,該比例復合蛋白源替代魚粉水平應不超過35%。

大菱鲆;魚粉;復合蛋白;生長;體組成;表觀消化率

大菱鲆(Scophthalmusmaximus)肉質(zhì)鮮美,在中國北方廣泛養(yǎng)殖,是一種重要的商業(yè)肉食性魚類,主要投喂高蛋白商業(yè)飼料[1-2]。魚粉蛋白含量高、氨基酸平衡、適口性好、抗營養(yǎng)因子少,含有一些未知促生長因子,是大菱鲆商業(yè)飼料的首選蛋白源[3]。但隨著野生漁業(yè)資源的不斷減少,養(yǎng)殖業(yè)規(guī)模的不斷擴大,魚粉資源供不應求,價格持續(xù)上漲。因此,尋求新型高效蛋白源替代魚粉成為水產(chǎn)動物營養(yǎng)與飼料學的研究重點。

目前常用新型蛋白源主要是植物蛋白源如豆粕、玉米蛋白粉、花生粕等。植物蛋白源資源豐富、價格低廉,是一種理想的蛋白源,但抗營養(yǎng)因子[4]、氨基酸不平衡[5]等因素限制其廣泛應用,如豆粕替代魚粉水平大于20%就會顯著降低黑海比目魚(Scophthalmusmaeoticus)的生長和營養(yǎng)利用[6]。動物蛋白源如雞肉粉、肉骨粉、血粉等,富含游離氨基酸、?;撬?、鵝肌肽等[7],這些水溶性小分子含氮化合物具有促攝食作用,可以改善飼料的味道[8],魚粉替代率較高,如寵物級雞肉粉替代60%魚粉對軍曹魚(Rachycentroncanadum)的生長沒有顯著影響[9],肉骨粉替代45%魚粉而不影響大黃魚(PseudosciaenacroceaRichardson)的生長[10]。復合蛋白源是將2種以上的植物蛋白源和(或)動物蛋白源以一定的配比混合,由于可以平衡營養(yǎng)物、補充氨基酸、掩蓋差的適口性[11-13],近年來在新型蛋白源的研究中廣受關注,如發(fā)酵豆粕和魷魚副產(chǎn)物替代36%魚粉對牙鲆(Paralichthysolivaceus)的生長不造成影響[14],混合植物蛋白替代39%魚粉,對大菱鲆生長無顯著影響[15]。

本研究選擇適口性好的復合蛋白源谷朊粉、寵物級雞肉粉、脫脂肉骨粉、豆粕和玉米蛋白粉,依照氨基酸平衡的原則設計配方(1:1:4:1:3),以不同水平替代魚粉,研究該配比復合蛋白源對大菱鲆生長、體組成和表觀消化率的影響,為大菱鲆新型蛋白源的開發(fā)研究提供參考。

1 材料與方法

1.1 飼料原料和飼料配方

實驗用蛋白源為紅魚粉、谷朊粉、寵物級雞肉粉、脫脂肉骨粉、豆粕和玉米蛋白粉,脂肪源為魚油和棕櫚油,糖源為小麥粉。其中肉骨粉脂肪較高,易發(fā)生氧化酸敗,因此對其進行脫脂。原料的營養(yǎng)和必需氨基酸組成見表1。

實驗設計5組等氮等能(粗蛋白52%,總能19kJ/g)的飼料,以62%魚粉組作為對照(CON),谷朊粉、寵物級雞肉粉、脫脂肉骨粉、豆粕和玉米蛋白粉(1:1:4:1:3)復合替代35%(FM35)、50%(FM50)、65%(FM65)、80%(FM80)魚粉。根據(jù)魚粉對照組必需氨基酸組成,添加晶體氨基酸L-組氨酸、L-賴氨酸和DL-蛋氨酸平衡各處理組必需氨基酸。添加微晶纖維素平衡能量。具體飼料配方見表2。

制作飼料時,首先將所有原料粉碎后過80目篩,依配方表(見表2)從小到大逐一混勻,再將魚油、棕櫚油和大豆卵磷脂搓散攪拌均勻后加到原料中,所有原料與油徹底混勻,然后加水搓均勻。用雙螺桿制粒機(F-26(Ⅱ),華南理工大學)制粒,45℃烘箱干燥12h,最后用塑料袋裝好密封保存于-20℃冰箱備用。

表1 飼料原料營養(yǎng)和必需氨基酸組成(干物質(zhì))Table 1 Nutrition and essential amino acid composition of dietary ingredient (dry matter) /%

Note:①Nutrient composition;②Brown fishmeal;③Wheat gluten meal;④Pet food-grade poultry by-product meal;⑤Defatted meat and bone meal;⑥Soybean meal;⑦Corn gluten meal;⑧Wheat flour

表2 實驗飼料配方和主要營養(yǎng)成分(干物質(zhì))Table 2 Formulation and proximate chemical composition of the tested diets (dry matter)

續(xù)表2

原料Ingredients處理組TreatmentsCONFM35FM50FM65FM80棕櫚油Palmoil3.753.963.704.004.60微晶纖維素Microcrystallinecellulose0.000.001.301.831.17大豆卵磷脂Soybeanlecithin2.002.002.002.002.00氯化膽堿Cholinechloride0.250.250.250.250.25誘食劑Attrancta0.500.500.500.500.50維生素預混料Vitaminpremixb0.500.500.500.500.50礦物質(zhì)預混料Mineralpremixc1.001.001.001.001.00磷酸二氫鈣Ca(H2PO4)20.300.300.300.300.30乙氧基喹啉Ethoxyquin0.050.050.050.050.05丙酸鈣Calciumpropionate0.050.050.050.050.05三氧化二釔Y2O30.100.100.100.100.10總量Total100.00100.00100.00100.00100.00營養(yǎng)組成Nutrientcomposition水分Moisture3.353.052.753.043.66粗蛋白Crudeprotein52.3750.2251.7751.1751.32粗脂肪Crudelipid12.5613.9114.8915.8916.77灰分Ash11.4013.4814.0214.9614.77總能量Grossenergyd/kJ·g-119.3619.2918.9618.9119.07

注:a誘食劑:甜菜堿:二甲基-丙酸噻亭:甘氨酸:丙氨酸:5-磷酸肌苷=4:2:2:1:1。b維生素預混料(mg/kg):維生素A,32;維生素D,5;維生素E,240;維生素K,10;維生素B1,25;維生素B2,45;維生素B6,20;維生素B12,10;泛酸鈣,60;煙酸,200;葉酸,20;生物素,60;肌醇,800;維生素C磷酸酯,2000;微晶纖維素,1473。c礦物質(zhì)預混料(mg/kg):MgSO4·7H2O,1200;CuSO4·5H2O;10;FeSO4·H2O,80;ZnSO4·H2O,50;MnSO4·H2O,45;CoCl2·6H2O(1%),50;Na2SeO3(1%),20;碘酸鈣,60;沸石粉,8485。d能量通過蛋白質(zhì)、脂肪和糖類的平均產(chǎn)熱量計算得出,產(chǎn)熱量分別為23.6,39.5和17.2 kJ/g。糖類物質(zhì)為100-(蛋白質(zhì)+脂肪+灰分+水分)。aAttractant:betaine:dimethyl-propiothetin:glycine: alanine:5-phosphate inosine = 4:2:2:1:1.bVitamin premix(mg/kg diet): retinal palmitate, 32; cholecalciferol, 5; DL-ɑ-tocopherol acetate, 240; menadione, 10; thiamin-HCl, 25; riboflavin, 45; pyridoxine-HCl, 20; cyanocobalamin, 10; D-calcium pantothenate, 60; amine nicotinic acid, 200; folic acid, 20; biotin, 60; mesoinositol, 800; ascorbyl polyphosphate(contained 35% ascorbic acid) , 2000; microcrystalline cellulose, 1473.cMineral premix(mg/kg diet): MgSO4·7H2O, 1200; CuSO4·5H2O, 10; FeSO4·H2O, 80; ZnSO4·H2O, 50; MnSO4·H2O, 45; CoCl2·6H2O(1%), 50; Na2SeO3(1%), 20; calcium iodine, 60; zoelite, 8485.dGross energy calculated using combustion values for protein, lipid and carbohydrate of 23.6, 39.5 and 17.2 kJ·g-1, respectively. Carbohydrate was calculated by the difference: 100-(protein + lipid + ash + moisture).

1.2 實驗用魚和實驗條件

實驗大菱鲆幼魚購買于萊州養(yǎng)殖廠(山東煙臺)。養(yǎng)殖實驗在山東海陽黃海水產(chǎn)有限公司進行,實驗開始前,魚暫養(yǎng)1周以適應養(yǎng)殖環(huán)境,期間投喂商業(yè)飼料。馴化結(jié)束后,禁食24h,然后挑選規(guī)格均一、體格健壯的大菱鲆幼魚(初重(8.63±0.01)g)隨機分配到15個216 L纖維玻璃缸中,每個處理3個重復,每個重復30尾魚。實驗用海水經(jīng)水泵持續(xù)抽送到過濾池中,經(jīng)沙濾以大約1.5 L/min的速度流到實驗桶。養(yǎng)殖9周期間,每天于07:00和19:00飽食投喂,每次攝食0.5h后吸污、換水以保證水質(zhì)。整個養(yǎng)殖期間,持續(xù)曝氣,水溫控制在19~22℃,pH=7.5~8.0,鹽度30~33。

1.3 樣品收集和分析

實驗開始前,隨機收集20尾初始魚保存于-20℃冰箱以備全魚分析。養(yǎng)殖實驗結(jié)束時,停喂24h,記錄每桶實驗魚的尾數(shù)和體重,每桶隨機選擇5尾作為全魚分析,保存于-20℃。從每桶中隨機選3尾實驗魚,測量體長并稱重以計算肥滿度,之后取出全肝稱重計算肝體比。

實驗原料、飼料和實驗魚在105℃烘箱中烘至恒重計算水分含量;采用凱氏定氮法檢測樣品粗蛋白含量;采用索氏抽提法檢測粗脂肪含量;采用馬福爐在550℃環(huán)境下灼燒12h計算灰分含量。

實驗飼料中添加1%的三氧化二釔(Y2O3)作為指示劑測定干物質(zhì)和粗蛋白表觀消化率。實驗進行4周后,用虹吸法收集糞便,保存于-20℃。待收集充足的糞便后,按上述方法測定糞便中的干物質(zhì)和粗蛋白。采用Frukawa和Tsukabatra的方法測定飼料和糞便中釔的含量,即用高氯酸消解后,使用電感耦合等離子體原子發(fā)射光譜儀(ICP-OES,Vista-mpx,Varian,美國)分析飼料和糞便中的釔含量。

1.4 計算和統(tǒng)計方法

存活率(Survival rate,SR)=終末尾數(shù)/初始尾數(shù)×100%。

增重率(Weight gain rate,WGR)=(魚體末重-魚體初重)/魚體初重×100%。

特定生長率(Specific growth rate,SGR)=(ln(魚體末重)-ln(魚體初重))/養(yǎng)殖天數(shù)×100%。

攝食率(Feed intake,F(xiàn)I)=(攝食飼料量/((魚體初重+魚體末重)/2))/養(yǎng)殖天數(shù)×100%。

飼料效率(Feed efficiency ratio,F(xiàn)ER)=魚體增重/攝食飼料量×100%。

蛋白質(zhì)效率(Protein efficiency ratio,PER)=魚體增重/攝入蛋白量×100%。

肥滿度(Condition factor,CF)=魚體重(g)/魚體長(cm)3×100%。

肝體比(Hepatosomatic index,HSI)=肝重/體重×100%。

表觀消化率(Apparent digestibility coefficients,ADC)=(1-(飼料中釔含量%/糞便中釔含量)×(糞便營養(yǎng)物/飼料營養(yǎng)物))×100%。

1.5 數(shù)據(jù)統(tǒng)計與分析

使用軟件SPSS 17.0對所得數(shù)據(jù)進行單因素方差分析(One-way ANOVA),若差異顯著,則進行Tukey 多重比較(Tukey HSD test),顯著水平為P<0.05。實驗所得數(shù)據(jù)表示為平均值±標準誤(mean ±S.E.,n=3)。

2 結(jié)果

2.1 復合蛋白替代魚粉對大菱鲆幼魚生長性能和飼料利用的影響

復合蛋白替代組與全魚粉對照組相比,體末重顯著降低(P<0.05),其中,F(xiàn)M35、FM50和FM65之間沒有顯著差異(P>0.05)。增重率和特定生長率的變化趨勢與體末重相同。攝食率和成活率各處理組之間沒有顯著變化(P>0.05)。當復合蛋白替代魚粉水平不超過50%時,對大菱鲆幼魚的飼料效率和蛋白質(zhì)效率影響不顯著(P>0.05)。具體數(shù)據(jù)見表3。

表3 復合蛋白替代魚粉對大菱鲆幼魚生長性能和飼料利用的影響Table 3 Effect of replacement of fishmeal by compound proteins on growth parameters and feed utilization of juvenile turbot

注:數(shù)據(jù)為平均值±標準誤,n=3;同一行標有不同的上標表示顯著性差異(P<0.05)。Values show with mean ± standard error,n=3. Values in the same row with different small letter superscript mean significant difference(P<0.05).

2.2 復合蛋白替代魚粉對大菱鲆幼魚體組成和形體指標的影響

根據(jù)表4可知,該復合蛋白替代魚粉對大菱鲆魚體水分、粗蛋白和粗脂肪沒有顯著影響(P>0.05),但粗蛋白有先上升后下降的趨勢。灰分含量隨復合蛋白替代水平的增加而升高,各替代組灰分均顯著高于對照組(P<0.05)。替代對魚體肥滿度和肝體比沒有影響,各處理組之間沒有顯著差異(P>0.05)。

表4 復合蛋白替代魚粉對大菱鲆幼魚體組成(濕重)和形體指標的影響Table 4 Effect of replacement of fishmeal by compound proteins on proximate composition (wet weight) of the whole body and somatic parameters of juvenile turbot /%

注:數(shù)據(jù)為平均值±標準誤,n=3;同一行標有不同的上標表示顯著性差異(P<0.05)。Values show with mean ± standard error,n=3; Values in the same row with different small letter superscript mean significant difference(P<0.05).1初始魚沒有進行統(tǒng)計分析。1Initial values are not included in the statistical analysis.

2.3 復合蛋白替代魚粉對飼料干物質(zhì)和粗蛋白表觀消化率的影響

表5顯示,該復合蛋白替代魚粉顯著影響粗蛋白表觀消化率,隨著替代水平的增加,粗蛋白表觀消化率顯著降低(P<0.05),F(xiàn)M35和FM50顯著低于對照組(P<0.05),顯著高于FM65和FM80(P<0.05)。只有FM35替代組的干物質(zhì)表觀消化率與對照組相比沒有顯著變化(P>0.05),其他替代組均顯著低于對照組(P<0.05)。

表5 飼料干物質(zhì)和粗蛋白的表觀消化率(ADC)Table 5 Apparent digestibility coefficients (ADC) for dry matter and crude protein of the test diets /%

注:數(shù)據(jù)為平均值±標準誤,n=3;同一行標有不同的上標表示顯著性差異(P<0.05)。 Values show with mean ± standard error,n=3. Values in the same row with different small letter superscript mean significant difference(P<0.05).

3 討論

本實驗條件下,復合蛋白源替代不同水平的魚粉對大菱鲆攝食率沒有顯著影響,這與之前魚粉替代的部分研究結(jié)果一致[6,16],但與Fournier等的研究結(jié)果不同,隨著植物蛋白替代魚粉水平的增加,大菱鲆攝食率顯著降低[17]。本實驗較好的攝食率結(jié)果說明復合蛋白源或誘食劑提高了飼料適口性。研究顯示,在沒有誘食劑的情況下,土豆?jié)饪s蛋白替代50%魚粉,與全魚粉對照組相比,虹鱒(Oncorhynchusmykiss)攝食率顯著下降,然而即使添加促攝食物質(zhì)貽貝粉或氨基酸混合物(1丙氨酸:1甘氨酸:1甜菜堿),攝食率也并未升高,誘食物并未改善虹鱒飼料適口性[18]。Silva-Neto等發(fā)現(xiàn)添加商業(yè)誘食劑或螺旋藻促攝食物的魚粉替代組與投喂商業(yè)飼料和沒有添加誘食物的替代組相比,凡納濱對蝦(Litopenaeusvannamei)的攝食均沒有顯著升高[19]。這說明誘食劑只是在一定程度上改善飼料適口性,當魚粉替代水平增加,替代組適口性差的缺點隨之突出,即使添加誘食劑,飼料適口性依然下降。另有研究指出,塞內(nèi)加爾鰨(Soleasenegalensis)能有效利用植物蛋白飼料,但其生長和營養(yǎng)利用取決于蛋白源混合物的選擇,而非替代水平[20]。因此,高比例替代魚粉關鍵在于替代蛋白源的選擇和其適口性。本實驗復合蛋白源是根據(jù)前期適口性實驗做出的選擇,攝食率結(jié)果也進一步證實該復合蛋白源對大菱鲆有著較好的適口性,80%魚粉替代組的攝食率依然沒有顯著降低。然而該復合蛋白源替代35%魚粉顯著降低大菱鲆體末重、增重率和特定生長率。因此,就本實驗而言,大菱鲆生長降低與該復合蛋白的適口性關系不大,較低的蛋白利用率可能是導致大菱鲆生長緩慢的主要原因。

有研究表明,谷朊粉替代67%魚粉而不影響大菱鲆生長[21]。豆粕和谷朊粉100%替代魚粉對西伯利亞鱘的生長沒有顯著影響[22]。在理想蛋白模式下,寵物級雞肉粉100%替代魚粉,對雜交條紋鱸(Moronechrysops♀ ×M.saxatilis♂)的生長影響不顯著[23]。占本實驗復合蛋白比重較大的植物蛋白源玉米蛋白粉替代魚粉33%,對大菱鲆的生長和飼料效率也沒有造成負面影響[24]。然而本實驗條件下復合蛋白源替代水平低于以上蛋白源單一替代,這可能是由于各組分之間沒有起到補充營養(yǎng)物,提高蛋白利用等作用,反而掩蓋了谷朊粉、寵物級雞肉粉高蛋白、適口性好的優(yōu)點[25-26],導致替代魚粉35%大菱鲆生長顯著降低。首先,復合蛋白源替代組較低水平的消化率可能是導致大菱鲆低生長性能的主要因素,除了FM35替代組的干物質(zhì)表觀消化率與對照組沒有顯著差異,其他替代組的干物質(zhì)和粗蛋白表觀消化率均顯著低于對照組。有文獻報道,單寧不僅降低飼料適口性,而且影響蛋白質(zhì)消化率[27]。而復合蛋白源中的豆粕含有單寧、植酸、胰蛋白酶抑制因子、凝集素等[4],這些抗營養(yǎng)因子降低蛋白的吸收利用,而肉食性魚類的生長需要高蛋白[1,28-29],大菱鲆得不到生長所需蛋白質(zhì)而生長緩慢。此外,飼料灰分含量與蛋白質(zhì)消化率存在負相關關系[30-31],占復合蛋白比重最大的脫脂肉骨粉灰分含量高。因此,高比例的脫脂肉骨粉可能導致蛋白質(zhì)表觀消化率較低,從而影響到大菱鲆幼魚的生長。玉米蛋白粉的偏酸性也會降低蛋白質(zhì)消化率[32]。同時,復合蛋白源質(zhì)量和糞便收集方法的不同也會不同程度的影響蛋白質(zhì)消化率[33-34]。

關于蛋白源替代魚粉對水生動物體成分的影響,不同的實驗得到的結(jié)果不一樣。發(fā)酵豆粕和魷魚副產(chǎn)物復合替代魚粉,牙鲆魚體成分沒有顯著變化[14]。混合動物蛋白替代魚粉75%甚至100%,對西伯利亞鱘的體組成也都沒有產(chǎn)生顯著影響[35]。隨著復合植物蛋白替代魚粉水平的增加,大菱鲆魚體粗蛋白和灰分降低,粗脂肪和水分升高[17]。而本實驗動植物復合蛋白源替代魚粉,對大菱鲆體水分、粗蛋白和粗脂肪沒有顯著影響,但粗蛋白有先升高后下降的趨勢??赡苡捎诟弑壤?、高灰分脫脂肉骨粉的存在,隨替代水平的增加,魚體灰分顯著升高。

綜上,本實驗條件下,復合蛋白源谷朊粉、寵物級雞肉粉、脫脂肉骨粉、豆粕和玉米蛋白粉(1:1:4:1:3)對大菱鲆有較好的適口性,不影響各替代水平的攝食率。而35%魚粉替代組大菱鲆生長顯著降低,所以以大菱鲆生長性能作為評價指標,該復合蛋白源替代魚粉水平應低于35%。推測主要是因為較低的干物質(zhì)和蛋白質(zhì)表觀消化率,大菱鲆對飼料蛋白質(zhì)沒有充分吸收利用所導致。因此,為達到利用蛋白源優(yōu)點,降低缺點的目的,復合蛋白源配比的選擇不僅要注重飼料適口性的改善,而且還應提高各蛋白源的消化吸收,總體提高魚粉替代水平。

[1] Kroeckel S, Harjes A G E, Roth I, et al. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetiaillucens) as fish meal substitute-growth performance and chitin degradation in juvenile turbot (Psettamaxima) [J]. Aquaculture, 2012, (364-365): 345-352.

[2] Turker A, Yigit M, Ergun S, et al. Potential of poultry by-product meal as a substitute for fishmeal in diets for Black Sea TurbotScophthlmusMaeoticus: growth and nutrient utilization in winter [J]. The Israeli Jounal of Aquaculture-Bamidgeh, 2005, 57(1): 49-61.

[3] Bonaldo A, Parma L, Mandrioli L, et al. Increasing dietary plant proteins affects growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psettamaxima) juveniles [J]. Aquaculture, 2011, 318(1): 101-108.

[4] Francis G, Makkar H P S, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish [J]. Aquaculture, 2001, 199(3): 197-227.

[5] Hansen A C, Rosenlund G, Karlsen ?, et al. Total replacement of fish meal with plant proteins in diets for Atlantic cod (GadusmorhuaL.) I-effects on growth and protein retention [J]. Aquaculture, 2007, 272(1): 599-611.

[6] Ergun S, Yigit M, Turker A, et al. Incorporation of soybean meal and hazelnut meal in diets for Black Sea turbot (Scophthalmusmaeoticus) [J]. The Israeli Jounal of Aquaculture-Bamidgeh, 2008, 60(1): 27-36.

[7] Aksnes A, Hope B, Albrektsen S. Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchusmykiss) fed high plant protein diets. II: flesh quality, absorption, retention and fillet levels of taurine and anserine [J]. Aquaculture, 2006, 261: 318-326.

[8] Fuke S, Konosu S. Taste-active components in some foods: a review of Japanese research [J]. Physiology and Behavior, 1991, 49(5): 863-868.

[9] Zhou Q C, Zhao J, Li P, et al. Evaluation of poultry by-product meal in commercial diets for juvenile cobia (Rachycentroncanadum) [J]. Aquaculture, 2011, (322-323): 122-127.

[10] Ai Q, Mai K, Tan B, et al. Replacement of fish meal by meat and bone meal in diets for large yellow croaker,Pseudosciaenacrocea[J]. Aquaculture, 2006, 260(1): 255-263.

[11] Kader M A, Koshio S. Effect of composite mixture of seafood by-products and soybean proteins in replacement of fishmeal on the performance of red sea bream,Pagrusmajor[J]. Aquaculture, 2012, 368-369: 95-102.

[12] Guo J, Wang Y, Bureau D. Inclusion of rendered animal ingredients as fishmeal substitutes in practical diets for cuneate drum,Nibeamiichthioides(Chu, Lo et Wu) [J]. Aquaculture Nutrition, 2007, 13(2): 81-87.

[13] Tidwell J H, Coyle S D, Bright L A, et al. Evaluation of plant and animal source proteins for replacement of fish meal in practical diets for the largemouth bassMicropterussalmoides[J]. Journal of the World Aquaculture Society, 2005, 36(4): 454-463.

[14] Kader A, Koshio S, Ishikawa M, et al. Can fermented soybean meal and squid by-product blend be used as fishmeal replacements for Japanese flounder (Paralichthysolivaceus) [J]. Aquaculture Research, 2012, 43: 1427-1438.

[15] Bonaldo A, Parma L, Mandrioli L, et al. Increasing dietary plant proteins affects growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psettamaxima) juveniles [J]. Aquaculture, 2011, 318: 101-108.

[16] Cheng Z, Ai Q, Mai K, et al. Effects of dietary canola meal on growth performance, digestion and metabolism of Japanese seabass,Lateolabraxjaponicus[J]. Aquaculture, 2010, 305(1): 102-108.

[17] Fournier V, Huelvan C, Desbruyeres E. Incorporation of a mixture of plant feedstuffs as substitute for fish meal in diets of juvenile turbot (Psettamaxima) [J]. Aquaculture, 2004, 236(1): 451-465.

[18] Tusche K, Berends K, Wuertz S, et al. Evaluation of feed attractants in potato protein concentrate based diets for rainbow trout (Oncorhynchusmykiss) [J]. Aquaculture, 2011, 321(1-2): 54-60.

[19] Silva Neto J F, Nunes A J P, Sabry Neto H, et al. Spirulina meal has acted as a strong feeding attractant for Litopenaeus vannamei at a very low dietary inclusion level [J]. Aquaculture Research, 2012, 43(3): 430-437.

[20] Cabral E, Bacelar M, Batista S, et al. Replacement of fishmeal by increasing levels of plant protein blends in diets for Senegalese sole (Soleasenegalensis) juveniles [J]. Aquaculture, 2011, 322-323: 74-81.

[21] Dietz C, Kroeckel S, Schulz C, et al. Energy requirement for maintenance and efficiency of energy utilization for growth in juvenile turbot (Psettamaxima, L.): The effect of strain and replacement of dietary fish meal by wheat gluten [J]. Aquaculture, 2012, 358-359: 98-107.

[22] Yun B, Xue M, Wang J, et al. Fishmeal can be totally replaced by plant protein blend at two protein levels in diets of juvenile Siberian sturgeon,AcipenserbaeriiBrandt [J]. Aquaculture Nutrition, 2014, 20(1): 69-78.

[23] Gaylord T G, Rawles S D. The modification of poultry by-product meal for use in hybrid striped bassMoronechrysops×M.saxatilisDiets [J]. Journal of the World Aquaculture Society, 2005, 36(3): 363-374.

[24] Regost C, Arzel J, Kaushik S. Partial or total replacement of fish meal by corn gluten meal in diet for turbot (Psettamaxima) [J]. Aquaculture, 1999, 180(1): 99-117.

[25] Tibaldi E, Tulli F, Piccolo G, et al. Wheat gluten as a partial substitute for fish meal protein in sea bass (D.labrax) diets [J]. Italian Journal of Animal Science, 2011, 2(1): 613-615.

[26] Rawles S, Riche M, Gaylord T, et al. Evaluation of poultry by-product meal in commercial diets for hybrid striped bass (Moronechrysops♀×M.saxatilis♂) in recirculated tank production [J]. Aquaculture, 2006, 259(1): 377-389.

[27] McCurdy S, March B. Processing of canola meal for incorporation in trout and salmon diets [J]. Journal of the American Oil Chemists Society, 1992, 69(3): 213-220.

[28] Hevroy E M, El-Mowafi A, Taylor R, et al. Effects of a high plant protein diet on the somatotropic system and cholecystokinin in Atlantic salmon (SalmosalarL.) [J]. Comp Biochem Physiol A Mol Integr Physiol, 2008, 151(4): 621-627.

[29] Bromley P. Effect of dietary protein, lipid and energy content on the growth of turbot (ScophthalmusmaximusL.) [J]. Aquaculture, 1980, 19(4): 359-369.

[30] Kureshy N, Davis D A, Arnold C. Partial replacement of fish meal with meat and bone meal, flash dried poultry by-product meal, and enzyme digested poultry by-product meal in practical diets for juvenile red drum [J]. North American Journal of Aquaculture, 2000, 62(4): 266-272.

[31] 王裕玉, 石野, 楊雨虹, 等. 肉骨粉在水產(chǎn)飼料中的應用 [J]. 中國飼料, 2012(2): 32-35.

[32] Masumoto T, Ruchimat T, Ito Y, et al. Amino acid availability values for several protein sources for yellowtail (Seriolaquinqueradiata) [J]. Aquaculture, 1996, 146(1): 109-119.

[33] Cabral E, Bacelar M, Batista S, et al. Replacement of fishmeal by increasing levels of plant protein blends in diets for Senegalese sole (Soleasenegalensis) juveniles [J]. Aquaculture, 2011, 322: 74-81.

[34] Tibbetts S M, Milley J E, Lall S P. Apparent protein and energy digestibility of common and alternative feed ingredients by Atlantic cod,Gadusmorhua(Linnaeus, 1758) [J]. Aquaculture, 2006, 261(4): 1314-1327.

[35] Xue M, Yun B, Wang J, et al. Performance, body compositions, input and output of nitrogen and phosphorus in Siberian sturgeon,AcipenserbaeriiBrandt, as affected by dietary animal protein blend replacing fishmeal and protein levels [J]. Aquaculture Nutrition, 2012, 18(5): 493-501.

責任編輯 朱寶象

Replacement of Fishmeal in Juvenile Turbot Diets with Compound Proteins: Effects on Growth Performance, Whole Body Composition and Apparent Digestibility Coefficient

DONG Chun, ZHOU Hui-Hui, MAI Kang-Sen, XU Wei, HE Gen

(The Key Laboratory of Aquaculture Nutrition and Feeds of Ministry of Agriculture, Ocean University of China, Qingdao 266003, China)

A 9-week feeding trial was conducted to determine the effect of a mixture of wheat gluten meal, pet-food grade poultry by-product meal, defatted meat and bone meal, soybean meal and corn gluten meal as a partial replacement of fishmeal in juvenile turbot (Scophthalmusmaximus) diets on its growth performance, whole body composition and apparent digestibility coefficient. The fish initially weighed (8.63±0.01)g. Five isonitrogenous (52% crude protein) and isoenergetic (19kJ/g gross energy) diets were formulated by replacing 0 (CON), 35% (FM35), 50% (FM50), 65% (FM65) and 80% (FM80) fishmeal, respectively. Results indicated that the final body weight, weight gain and specific growth rate were significantly lower than those of CON (P<0.05). Feed intake and survival rate of turbot had no significant difference among tested diets (P>0.05). Feed efficiency rate and protein efficiency rate of tested diets decreased with the increase of replacement level. Feed efficiency rate of FM65 and FM80 and protein efficiency rate of FM80 were significantly lower than those of CON (P<0.05). The blend proteins substituted fishmeal had no influence on moisture, crude protein and crude lipid (P>0.05). However, the ash content of all treatments was significantly higher than that of CON (P<0.05). The apparent digestibility coefficient of dry matter of FM35 had no significant difference from that of CON (P>0.05). In addition, other replacement diets significantly decreased in the apparent digestibility coefficient of dry matter and protein (P<0.05). The results showed that compound proteins reduced the growth performance, whole body composition and apparent digestibility coefficient of juve-nile turbot. Based on these findings, the level of fishmeal substitution with compound proteins should be less than 35%.

turbot; fishmeal; compound protein; growth; whole body composition; apparent digestibility coefficient

公益性(農(nóng)業(yè))行業(yè)科研專項(201303053)資助

2014-03-02;

2014-04-30

董 純(1986-),女,碩士生,研究方向:水生動物生理學。

** 通訊作者: E-mail:hegen@ouc.edu.cn

S963.3

A

1672-5174(2015)04-027-08

10.16441/j.cnki.hdxb.20140049

猜你喜歡
大菱鲆魚粉魚體
魚粉普遍上漲100~200元/噸,背后“推手”是什么?
瘋狂!直擊魚粉飆漲,與國外魚粉市場緣何倒掛?
軸流泵內(nèi)魚體的運動行為與撞擊損傷分析
淡水魚水平往復振動頭尾定向輸送方法
黃海水產(chǎn)研究所“一種大菱鲆油乳化疫苗及其應用”獲國家發(fā)明專利授權
淡水魚腹背定向裝置設計及試驗
魚粉:秘魯A季捕撈良好,國內(nèi)外魚粉市場穩(wěn)定為主
魚粉:秘魯B季捕撈良好,國內(nèi)外魚粉價格下滑
遼寧大菱鲆養(yǎng)殖產(chǎn)業(yè)發(fā)展形勢分析
體外培養(yǎng)法探討不同蛋白源對大菱鲆腸道菌群的影響
浏阳市| 十堰市| 娄底市| 舞钢市| 家居| 临桂县| 长岭县| 宜昌市| 山阴县| 南平市| 陆川县| 华坪县| 吉木萨尔县| 涪陵区| 牡丹江市| 诸城市| 靖西县| 郸城县| 顺昌县| 铜山县| 西乌珠穆沁旗| 莲花县| 柳河县| 赤峰市| 建水县| 绥芬河市| 伊金霍洛旗| 兴和县| 饶平县| 麻阳| 漳浦县| 铜川市| 定远县| 渝北区| 神木县| 辽中县| 三门峡市| 布拖县| 松潘县| 沙湾县| 通海县|