于麗嬌,董 紅,伍 川,胡玉倩,張麗君
(1.杭州師范大學有機硅化學及材料技術(shù)教育部重點實驗室,浙江 杭州 311121;2. 浙江農(nóng)林大學浙江省
林業(yè)生物質(zhì)化學利用重點實驗室,浙江 臨安 311300)
甲基三氟丙基環(huán)三硅氧烷與芳香族化合物的物理化學性質(zhì)研究
于麗嬌1,董紅1,伍川1,胡玉倩1,張麗君2
(1.杭州師范大學有機硅化學及材料技術(shù)教育部重點實驗室,浙江 杭州 311121;2. 浙江農(nóng)林大學浙江省
林業(yè)生物質(zhì)化學利用重點實驗室,浙江 臨安 311300)
摘要:使用DMA4500/RXA170密折儀測定了328.15 K時1,3,5-三(三氟丙基)-1,3,5-三甲基環(huán)三硅氧烷(D3F)與硝基苯、苯甲醚、乙苯、叔丁基苯4個二元體系在全濃度范圍內(nèi)的密度和折光率,根據(jù)實驗數(shù)據(jù)計算出各個體系的過量體積、折光率偏差、摩爾折光率和摩爾折光率偏差.4個體系過量摩爾體積的大小順序為:乙苯>叔丁基苯>苯甲醚>硝基苯.在等摩爾組成時,過量折光率值的大小順序為:硝基苯>叔丁基苯>苯甲醚>乙苯.
關(guān)鍵詞:有機硅化合物;密度;折光率;物化性質(zhì)
0前言
有機氟硅橡膠是一類在有機硅橡膠的碳鏈上引入含氟
基團(如三氟丙基)而形成的橡膠.由于氟原子具有極大的吸電子效應(yīng),而且C—F鍵的鍵長較短,對C—C鍵能形成較好的屏蔽效應(yīng)[1],大大提高了橡膠的耐油、耐溶劑性能.含有機氟硅的合成材料可進一步加工得到氟硅彈性體、密封劑和高性能的低表面能防污涂料,也可作為共聚組成用于改善聚合物的表面性能及合成新型的低表面能高分子材料[2],從而廣泛應(yīng)用于航天航空、汽車石油化工、機械、人工器官等領(lǐng)域.氟硅生膠通常是由1,3,5-三(三氟丙基)-1,3,5-三甲基環(huán)三硅氧烷(D3F)開環(huán)縮聚而成的線性高分子量聚合物,因此D3F是有機硅工業(yè)重要的中間原料之一,其結(jié)構(gòu)式如圖1所示.
圖1 1,3,5-三(三氟丙基)-1,3,5-三甲基環(huán)三硅氧烷(D3F)結(jié)構(gòu)式Fig. 1 The structure of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane (D3F)
1實驗部分
實驗所需試劑列于表1中,所有試劑純度均使用山東魯南瑞虹化工有限公司生產(chǎn)的SP-6890型氣相色譜儀(色譜柱型號為Agilent HP-5)測得.
表1 實驗所需試劑
所有純物質(zhì)的密度和折光率在293.15或308.15 K下測得,并與文獻值進行比較,結(jié)果如表2所示.樣品的質(zhì)量用分析天平(Sartorius,型號BS 224 S,±0.1 mg)稱量,然后裝入帶有密閉塞子的玻璃瓶中.所有摩爾分數(shù)和體積分數(shù)測定的不確定度為0.000 1.
表2 純組分的密度和折光率實驗值與文獻值對比
2結(jié)果與討論
(1)
式中,x1、x2分別為組分1和組分2的摩爾分數(shù),M1、M2分別為純組分1和純組分2的摩爾分子量,ρ是二元體系的溶液密度,ρ1、ρ2分別為純組分1和純組分2的密度.計算結(jié)果如表3所示.
表3 常壓下4個二元體系在328.15 K時的密度、過量體積、折光率、過量折光率、摩爾折光率和摩爾折光率偏差
續(xù)表
二元體系x1ρ/(g/cm3)VEm/(cm3/mol)φ1nD103·nERm/(cm3/mol)△Rm/(cm3/mol)D3F(1)0.00000.835830 0 1.476670 35.8687 0.0000+0.05000.886150.2290.13821.45773-2.694838.2497-4.2346乙苯(2)0.10000.928440.3510.2531.44247-4.234240.6199-7.35980.15000.964210.4470.34971.42989-5.094042.9961-9.61260.19670.993150.4890.42741.41996-5.496645.2102-11.11800.25001.021850.5090.5041.41034-5.626547.7415-12.25350.29981.045200.5200.56611.40266-5.540750.1142-12.85350.35001.066000.5180.62131.39592-5.322752.5081-13.10200.37701.076370.4790.64841.39267-5.137653.7917-13.11570.44371.099160.4440.70851.38544-4.704056.9728-12.81150.50011.116080.4050.7531.38021-4.219059.6748-12.23970.54921.129300.3750.78781.37613-3.805262.0279-11.55250.59941.141680.3210.82021.37236-3.372064.4303-10.70110.64991.153200.2250.84981.36894-2.935566.8424-9.70590.69971.163290.2160.87651.36586-2.523369.2407-8.58580.75021.172890.1520.90151.36302-2.081671.6651-7.35810.79991.181360.1600.92411.36051-1.615274.0784-6.02660.84981.189380.1230.94521.35814-1.197876.4839-4.63120.90021.196720.1400.96491.35599-0.737978.9387-3.11940.94981.203620.1010.98291.35396-0.377081.3292-1.59061.00001.21033011.352060 83.73830.0000D3F(1)0.00000.84587001.47504045.11950.0000+0.04760.885610.1750.11281.45994-2.027847.0416-2.4332叔丁基苯(2)0.10000.924210.2990.21171.447-3.348348.9544-4.33910.15000.956760.3860.29891.43584-4.138450.8782-5.78220.20000.985860.4420.37641.42603-4.632052.8015-6.85130.25001.012000.4780.4461.41736-4.853754.7167-7.62350.29991.035680.4760.50871.40964-4.896156.6490-8.11210.34991.057130.4820.56531.40277-4.780258.5655-8.38100.39991.076690.4780.61731.39648-4.605360.5063-8.44800.45001.094660.4590.66381.39094-4.325862.4136-8.33620.50001.111160.4290.70721.38586-3.941464.3682-8.05720.54981.126360.3830.7471.38117-3.592066.3026-7.65960.60001.140410.3630.78361.37691-3.193768.2388-7.13660.64991.153460.3150.81771.37292-2.822770.1722-6.51980.70011.165580.2870.84931.3693-2.383372.1098-5.80240.75001.176830.2530.87881.36587-2.007874.0508-5.00030.79951.187300.2060.90641.36272-1.583475.9861-4.13080.84991.197270.1610.93181.35983-1.171977.9211-3.17640.89541.205760.1130.95611.35704-0.792679.8561-2.17970.94851.215060.0640.97811.35455-0.404181.7440-1.14131.00001.22358011.35208083.73090.0000
過量摩爾體積和摩爾分數(shù)之間的關(guān)系可以用Redlich-Kister方程[16]進行擬合:
(2)
式中,x1是組分1的摩爾質(zhì)量分數(shù),Ai是Redlich-Kister方程的擬合參數(shù),n+1是擬合參數(shù)的個數(shù).R-K方程的參數(shù)采用EVIEWS 5.0軟件通過最小二乘法計算得到,結(jié)果如表4所示.各個體系的標準偏差由式(3)計算.
(3)
表4 R-K方程擬合的擬合參數(shù)Ai值和標準偏差σ
由圖2可見,在328.15 K時4個二元體系的過量摩爾體積的大小順序為:乙苯>叔丁基苯>苯甲醚>硝基苯.過量體積所呈現(xiàn)出的現(xiàn)象和趨勢,是兩個對立貢獻的平衡過程.當兩種純?nèi)芤合嗷セ旌蠒r,若不同種分子間的相互作用弱于同種分子間的相互作用,且色散力在溶液中起主要作用,此時混合溶液的自由體積相對于純?nèi)芤旱淖杂审w積之和發(fā)生膨脹,對VE產(chǎn)生正貢獻,且最終導致VE呈正值;而兩種溶液分子間形成氫鍵、絡(luò)合物,以及混合溶液分子間形成強的偶極-偶極作用時,都對VE產(chǎn)生負貢獻,并最終導致VE呈負值;分子的結(jié)構(gòu)性質(zhì)對VE的貢獻可正可負,主要由組成二元混合體系的分子種類、大小和結(jié)構(gòu)來決定.在混合溶液中也可能存在溶質(zhì)分子與溶劑分子間瞬時的偶極-誘導偶極作用,范德華力的大小直接影響到溶劑的介電常數(shù).硝基苯的介電常數(shù)是4種芳香烴溶劑中最大的,這表明,硝基苯對體積收縮的貢獻最大,導致其對VE的負貢獻最多[5].
圖2 328.15 K時4個二元體系的過量摩爾體積隨摩爾分數(shù)的變化Fig. 2 A plot of versus mole fraction ofbinary mixtures with D3F at T = 328.15 K
為了描述在指定的溫度和壓力下,實際測得的溶液折光率與理想溶液的偏差程度,Reis等[17]推薦使用過量折光率.具體可以用式(4)~(6)表示,結(jié)果列于表3.
nE=△mixn-△mixnid,
(4)
(5)
(6)
式中,ni和φi分別表示純組分的摩爾分數(shù)和體積分數(shù),n表示混合物的折光率.4個二元體系的nE隨體積分數(shù)的變化規(guī)律如圖3所示.折光率偏差與體積分數(shù)之間的關(guān)系由Redlich-Kister方程(式(2))進行擬合,并用式(3)計算了標準偏差,其結(jié)果均列于表4中.
圖3 328.15 K時4個二元體系過量折光率與體積分數(shù)的關(guān)系Fig. 3 A plot of nE versus volume fraction ofbinary mixtures with D3F at T = 328.15 K
從圖3可以看出,4個二元體系的nE均為負值,且隨著D3F量的增加先減小再增大,在體積分數(shù)為0.5左右時達到最小值.在全溶液范圍內(nèi),nE值的大小順序為硝基苯>叔丁基苯>苯甲醚>乙苯.nE所呈現(xiàn)出的趨勢表明,在這些二元混合溶液中存在著重要的相互作用.
純組分的摩爾折光率和折光率之間的關(guān)系可以用Lorentz-Lorenz方程來定義:
(7)
式中ρ為與折光率相同溫度下的密度,M為摩爾質(zhì)量.對二元混合溶液來說,摩爾折光率可以用式(8)[18-19]來計算:
(8)
式中,nD和ρ分別為二元混合溶液的折光率和密度.Mi為純組分的摩爾質(zhì)量,xi為各組分的摩爾質(zhì)量分數(shù).328.15 K時4個二元體系的計算結(jié)果列于表3.摩爾折光率偏差則可用式(9)[20]表示,計算結(jié)果也列于表3中:
△Rm=Rm-(φ1R1+φ2R2).
(9)
式中,Rm表示溶液的摩爾折光率,φi為純組分的體積分數(shù),Ri表示純組分的摩爾折光率.
摩爾折光率偏差與體積分數(shù)之間的關(guān)系由Redlich-Kister方程(式(2))進行擬合,并用式(3)計算了標準偏差,其結(jié)果均列于表4中.
如圖4所示,相同溫度下,4個體系Rm值隨摩爾分數(shù)的變化曲線中,體系D3F(1)+硝基苯(2)和體系D3F(1)+苯甲醚(2)的曲線基本重合,說明這兩個體系的Rm值基本相同,其他體系Rm值的大小順序為叔丁基苯>乙苯>硝基苯.摩爾折光率主要由分子或混合溶液中的元素種類和價鍵種類決定[4].由圖4結(jié)果可見,對于空間位阻最大的叔丁基苯與D3F組成的二元體系,Rm值表現(xiàn)最大.
圖4 328.15 K時二元體系摩爾折光率隨摩爾分數(shù)的變化Fig. 4 A plot of Rm versus mole fraction ofbinary mixtures with D3F at T=328.15 K
如圖5所示,在溫度328.15 K下,摩爾折光率偏差△Rm隨摩爾分數(shù)的變化規(guī)律為:隨著摩爾分數(shù)的增大,△Rm值先緩慢減小,達到最小值后又急速增加,最小值出現(xiàn)在摩爾分數(shù)為0.6左右.4個二元體系中,△Rm值均為負值,且△Rm值的大小順序為叔丁基苯>乙苯>苯甲醚>硝基苯.
圖5 328.15 K時二元體系摩爾折光率偏差與摩爾分數(shù)的關(guān)系Fig. 5 A plot of the deviation in △Rm versus mole fractionof binary mixtures with D3F at T=328.15 K
3結(jié)論
1)實驗測定了D3F與硝基苯、苯甲醚、乙苯、叔丁基苯組成的二元體系在328.15 K時的密度和折光率數(shù)據(jù),可以為化工過程的設(shè)計和開發(fā)積累基礎(chǔ)物性數(shù)據(jù).
2)根據(jù)實驗測定的密度計算得到過量體積,結(jié)果表明D3F與苯甲醚、乙苯、叔丁基苯組成的二元體系的過量體積為正值,D3F與硝基苯二元體系的過量摩爾體積值為負值.在328.15 K時4種二元體系過量摩爾體積的大小順序為:乙苯>叔丁基苯>苯甲醚>硝基苯.
3)根據(jù)實驗測定的折光率數(shù)據(jù)計算得到過量折光率、摩爾折光率和摩爾折光率偏差.在等摩爾組成時,過量折光率值的大小順序為:硝基苯>叔丁基苯>苯甲醚>乙苯.由于4種芳香族溶劑中苯環(huán)上的取代基不同,因此在等摩爾組成時,4個二元體系摩爾折光率的大小順序為:叔丁基苯>乙苯>苯甲醚≈硝基苯.4個二元體系的摩爾折光率偏差為負值,在等摩爾組成時,其大小順序為:叔丁基苯>乙苯>苯甲醚>硝基苯.
參考文獻:
[1] 謝遂至,劉登祥,周明巒. 橡膠工業(yè)手冊:生膠與骨架材料[M]. 北京: 石油化學工業(yè)出版社, 1999:243-247.
[2] 易玲敏, 詹曉力, 陳豐秋. 1, 3, 5-三甲基-1, 3, 5-三( 3′,3′,3′-三氟丙基)環(huán)三硅氧烷的陰離子開環(huán)(共)聚合研究進展[J].高分子材料科學與工程,2005,21(4):5-9.
[3] Dong H, Yue Y,Wu C,etal.Excess molar volumes of 2,4,6,8-tetramethylcyclotetrasiloxane with Benzene, Toluene, and Xylene atT=(288.15, 298.15, and 308.15) K[J]. J Chem Eng Data,2012,57(4):1050-1056.
[4] Zhang Y D, Dong H, Yue Y,etal.Effect of temperature and composition on the density, refractive index,and excess quantities of binary mixtures of 2,4,6,8-tetramethyl-2,4,6,8-tetraethenylcyclotetrasiloxane with aromatic hydrocarbons[J]. J Chem Thermodyn,2013,57:114-130.
[5] Yu L J, Dong H, Wu C,etal.The density, refractive index, and thermodynamic behaviour of binarymixtures of 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane with aromatichydrocarbons[J]. J Chem Thermodyn,2014,72:139-151.
[6] Zhang Y D, Dong H, Wu C,etal.Thermophysical properties of binary mixtures of triethoxysilane, methyltriethoxysilane, vinyltriethoxysilane and 3-mercaptopropyltriethoxysilane with ethylbenzene at various temperatures[J]. J Chem Thermodyn,2014,76:45-55.
[7] Tarrant P, Dyckes G W, Dunmire R,etal. The preparation of some fluoroalkylmethyldichlorosilanes and their hydrolysis products[J]. J Am Chem Soc,1957,79(24):6536-6540.
[8] Walden P, Birr E J. Conductivity measurements in nitro compounds. II. Conductivity measurements in nitrobenzene[J]. Z Physik Chem,1933,A163:281-290.
[9] Brown I. Liquid-vapor equilibria. III. The systems benzeneheptane, hexane-chlorobenzene, and cyclohexane-nitrobenzeneAust[J]. J Sci Res B,1952,5A:530-540.
[10] Marongiu B, Piras A,Porcedda S,etal.Excess enthalpies of aromatic ether or aromatic ketone(1) +n-heptane(2) mixtures DISQUAC analysis[J]. J Therm Anal Calorim,2008,92(1):137-144.
[11] Jaworski J S, Cembor M, Orlik M. Anisole as a solvent for organic electrochemistry[J]. J Electroanal Chem,2005,582(1/2):165-170.
[12] Forziati A F, Glasgow A R, Willingham C B,etal.Purification and properties of 29 paraffin, 4 alkylcyclopentane, 10 alkylcyclohexane, and 8 alkylbenzene hydrocarbons[J].J Res Natl Bur Stand,1946,36(2):129-136.
[13] Gonzalez E J, Calvar N, Gonzalez B,etal.Measurement and correlation of liquid-liquid equilibria for ternary systems {cyclooctane + aromatic hydrocarbon + 1-ethyl-3-methylpyridinium ethylsulfate} atT= 298.15 K and atmospheric pressure[J].Fluid Phase Equilib,2010,291(1):59-65.
[14] Marongiu B, Piras A,Porcedda S,etal.A comparative study of thermodynamic properties of binary mixtures containing dimethyl sulfoxide[J].Journal of Thermal Analysis and Calorimetry,2007,90(3):909-922.
[15] Duffin H C, Hughes E D,Ingold C.Homolytic substitution at a saturated carbon atom. I. Products of the gaseous nitration of tert-butylbenzene[J].Journal of the Chemical Society,1959:2734-2741.
[16] Redlich O, KisterA T. Thermodynamics of nonelectrolyte solutionsx-y-trelations in a binary system[J].Ind Eng Chem,1948,40(2):341-345.
[18] Rodríguez H, Brennecke J F. Temperature and composition dependence of the density and viscosity of binary mixtures of water + ionic liquid[J].J Chem Eng Data,2006,51(5):2145-2155.
[19] Dhondge S S, Pandhurnekar C P, Parwate D V. Density, speed of sound, and refractive index of aqueous binary mixtures of some glycol ethers atT= 298.15 K[J]. J Chem Eng Data,2010,55(9):3962-3968.
The Physicochemical Properties of 1,3,5-trimethyl-1,3,5-tris (3,3,3-trifluoropropyl) Cyclotrisiloxane and Aromatic Compounds
YU Lijiao1, DONG Hong1, WU Chuan1, HU Yuqian1, ZHANG Lijun2
(1.Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University,Hangzhou 311121, China; 2.Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A&F University, Lin’an 311300, China)
Abstract:Using the DMA4500/RXA170 instrument, the density and refractive index of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl) cyclotrisiloxane with nitrobenzene, ethylbenzene, anisole and tert-butylbenzene at T=328.15 K are determined. The excess molar volume, refractive index deviation, molar refractive index and molar refractive index deviation are also calculated. The excess molar volumes decrease in the following sequence, Ethylbenzene>Tert-butyl benzene>Anisole>Nitrobenzene. The excess refractive indices decrease in the following sequence, Nitrobenzene >Tert-butyl benzene>Anisole>Ethylbenzene.
Key words:organosilicon compound; density; refractive index; physicochemical properties
通信作者:董紅(1980—),女,助理研究員,博士,主要從事有機硅材料研究.E-mail:donghong1686@hotmail.com
基金項目:杭州市科學技術(shù)委員會社會發(fā)展專項(20130533B16);石油和化工行業(yè)科技指導計劃項目(2011-07-06);大學生創(chuàng)新創(chuàng)業(yè)孵化項目(2014R421079).
收稿日期:2015-03-25
文章編號:1674-232X(2015)03-0239-08
中圖分類號:O642.1
文獻標志碼:A
doi:10.3969/j.issn.1674-232X.2015.03.003