劉偉華,邱 博,羅紅兵
(湖南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,長沙 410128)
花藥絨氈層發(fā)育和花粉母細(xì)胞減數(shù)分裂相關(guān)基因研究進(jìn)展
劉偉華,邱 博,羅紅兵*
(湖南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,長沙 410128)
植物雄性不育是自然界普遍存在的現(xiàn)象,也是利用雜種優(yōu)勢的重要途徑之一。在花藥發(fā)育過程中,花粉囊壁發(fā)育和減數(shù)分裂與花粉的育性有重要關(guān)系。主要從絨氈層發(fā)育和花粉母細(xì)胞減數(shù)分裂兩個方面對近些年來植物花藥發(fā)育基因調(diào)控網(wǎng)絡(luò)進(jìn)行綜述,以期進(jìn)一步了解和利用雄性不育性。
植物;花藥;雄性不育;絨氈層;減數(shù)分裂
植物生殖器官的正常發(fā)育對植物的繁衍具有重要的作用。在農(nóng)業(yè)生產(chǎn)中,雖然雄性不育會引起大面積減產(chǎn),造成重大損失,但由于植物雄性不育突變比雌性不育突變更為普遍[1],雄性不育也成為利用雜種優(yōu)勢的一個重要途徑。植物雄性不育的利用能簡化制種程序,省去人工去雄的繁瑣過程和去雄不徹底的麻煩,提高雜種生產(chǎn)效率和雜種質(zhì)量?;ㄋ幇l(fā)育成熟包括一系列的細(xì)胞分裂和分化,需要眾多基因參與調(diào)控,闡明花藥發(fā)育相關(guān)基因在分子水平的變化對研究雄性不育機(jī)理和利用雄性不育具有一定意義。
以擬南芥為例,花藥發(fā)育可分為14個時期[2]:第1期L1、L2和L3三個細(xì)胞層組成了花藥原基,L1發(fā)育為表皮;第2期,位于花藥4個角表皮下L2層的孢原細(xì)胞經(jīng)過平周分裂形成初生周緣細(xì)胞層和初生造孢細(xì)胞層;在第3期,初生周緣細(xì)胞經(jīng)過平周和圓周分裂在造孢細(xì)胞周圍由內(nèi)至外依次形成絨氈層、中層和藥室內(nèi)壁3層細(xì)胞。在第4、5期,造孢細(xì)胞分裂為許多花粉母細(xì)胞,絨氈層、中層、藥室內(nèi)壁和表皮構(gòu)成花粉囊壁。第6期中層逐漸降解,絨氈層細(xì)胞出現(xiàn)液泡化,胼胝質(zhì)積累,花粉母細(xì)胞進(jìn)行減數(shù)分裂并在第7期形成四分體小孢子。第8期時,絨氈層開始解體,胼胝質(zhì)溶解釋放出小孢子,隨后小孢子在第9期形成初生外壁和液泡。第10、11期絨氈層完全降解,單核花粉粒經(jīng)非均等有絲分裂形成2-胞花粉粒。第12期時,每個花藥形成4個花粉囊,花粉粒發(fā)育為3-胞花粉粒。在13、14期時花藥開裂散出成熟花粉粒(圖1)。
圖1 花藥發(fā)育過程與結(jié)構(gòu)[5]注:PS.初生造孢細(xì)胞,PP.初生周緣細(xì)胞,PMC.花粉母細(xì)胞,M.小孢子,SPC.次生周緣細(xì)胞,En.藥室內(nèi)壁,T.絨氈層,Mc.中層,C.藥隔基本組織,V.藥隔維管束。
從花藥原基分化到成熟花粉粒的形成,花藥絨氈層發(fā)育、花粉母細(xì)胞減數(shù)分裂等是形成可育花粉的關(guān)鍵。例如,玉米msca1[3]突變體的孢原細(xì)胞未分裂為初生造孢細(xì)胞和初生周緣細(xì)胞,造成雄性不育;MAC1[4](MAIZEMULTIPLEARCHESPORIALCELLS1)基因在花藥發(fā)育早期具有調(diào)控細(xì)胞分化的作用,其發(fā)生突變會形成過多的孢原細(xì)胞,導(dǎo)致花藥發(fā)育異常。
絨氈層位于花藥壁的最內(nèi)側(cè),能分泌酶降解胼胝質(zhì)釋放小孢子,能為花粉壁合成提供物質(zhì),也能為花粉粒的發(fā)育提供營養(yǎng)[6~8]。絨氈層的正常發(fā)育對調(diào)控花粉育性具有重要的作用。
2.1 受體蛋白激酶參與調(diào)控絨氈層發(fā)育
類受體蛋白激酶在植物的生命活動中具有重要作用[9],許多受體蛋白激酶在絨氈層發(fā)育中起調(diào)控作用。
Zhao等人[10]發(fā)現(xiàn),ems1(EXCESSMICROSPOROCYTES1)突變體絨氈層細(xì)胞發(fā)育為花粉母細(xì)胞導(dǎo)致絨氈層缺失,形成過多花粉母細(xì)胞。但在ems1中,SPL/NZZ(SPOROCYTELESS/NOZZLE)基因表達(dá)未受影響,說明EMS1位于SPL/NZZ的調(diào)控下游。EXS[11](EXTRASPOROGENOUSCELLS)能調(diào)控孢原細(xì)胞的正常分裂,其突變后孢原細(xì)胞分裂為異常的造孢細(xì)胞,次生周緣細(xì)胞解體或受到藥室內(nèi)壁和造孢細(xì)胞團(tuán)擠壓而無法形成絨氈層細(xì)胞,導(dǎo)致絨氈層缺失。tpd1(TAPETUMDETERMINANT1)突變體的絨氈層前體細(xì)胞發(fā)育為花粉母細(xì)胞,導(dǎo)致了絨氈層缺失,并且TPD1與EMS1/EXS可能存在互補(bǔ)協(xié)同關(guān)系,TPD1基因調(diào)控細(xì)胞分裂也需要EMS1/EXS基因參與[12,13]。Jia[14]等人的研究也表明TPD1作為EMS1的配體,參與調(diào)控花藥的發(fā)育。SERK1、SERK2(SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1/2)能感受由花粉母細(xì)胞向外傳遞的信號,參與調(diào)控絨氈層的發(fā)育。在serk1serk2雙突變體中絨氈層前體細(xì)胞發(fā)育為花粉母細(xì)胞,通過減數(shù)分裂形成四分體小孢子,導(dǎo)致絨氈層缺失,其表型與ems1/exs和tpd1突變體相似[15]。bam1、bam2[16](BARELYANYMERISTEM1/2)突變體在花藥發(fā)育早期的細(xì)胞分裂中出現(xiàn)異常,雙突變體的孢原細(xì)胞未分裂形成初生周緣細(xì)胞,導(dǎo)致絨氈層、中層和藥室內(nèi)壁等結(jié)構(gòu)缺失[17]。ER(ERECTA)、ERL1、ERL2(ERECTA-LIKE1/2)和MPK3MPK6(MITOGEN-ACTIVATED PROTEIN KINASE3/6)可能在同一途徑中調(diào)控花藥發(fā)育,er-105erl1-2erl2-1三突變體和mpk3/+mpk6/-突變體的表型相似,表現(xiàn)為孢原細(xì)胞分裂異常,延遲了絨氈層和中層發(fā)育形成。在mpk3/+mpk6/-突變體中,EMS1、TPD1等基因的表達(dá)未受影響,在ems1突變體中MPK3/6的表達(dá)水平變化也不明顯,這表明MPK3/MPK6與EMS1、TPD1等基因的調(diào)控途徑可能不同[18]。
擬南芥AG(AGAMOUS)[19]基因能激活SPL/NZZ基因調(diào)控花藥發(fā)育,而SPL/NZZ轉(zhuǎn)錄因子主要在花藥發(fā)育早期的孢原細(xì)胞分裂中起作用[20,21]。在spl/nzz雙突變體中,孢原細(xì)胞分裂異常,導(dǎo)致絨氈層缺失,沒有花粉母細(xì)胞的發(fā)育和花粉囊壁形成。Wijeratne[22]等人的研究發(fā)現(xiàn)AG與SPL/NZZ可能也存在正負(fù)調(diào)節(jié),AG正向調(diào)節(jié)SPL/NZZ的表達(dá),而SPL/NZZ基因可能抑制AG基因的表達(dá)。水稻中MSP1[23](MULTIPLESPOROCYTE1)的突變會引起絨氈層完全缺失,形成過多的花粉母細(xì)胞,與ems1/exs突變體類似,表現(xiàn)出雄性不育。
2.2 bHLH轉(zhuǎn)錄因子調(diào)控絨氈層發(fā)育
堿性螺旋-環(huán)-螺旋(basic Helix-Loop-Helix,bHLH)結(jié)構(gòu)域轉(zhuǎn)錄因子主要參與調(diào)控植物生化過程和發(fā)育進(jìn)程[24~27]。DYT1[28](DYSFUNCTIONALTAPETUM1)在花藥的絨氈層中大量表達(dá),位于EMS1/EXS、SPL/NZZ下游,AMS、MS1上游。其發(fā)生突變會導(dǎo)致絨氈層細(xì)胞過度液泡化,喪失正常功能,花粉母細(xì)胞外圍的胼胝質(zhì)形成受到影響。此外,DYT1也參與調(diào)控下游基因MYB35、MS1等的表達(dá)[29]。
水稻中UDT1、TDR、ETA1和bHLH142都編碼bHLH轉(zhuǎn)錄因子,前者與絨氈層的分化形成有關(guān),后三者與絨氈層的解體退化有關(guān)。UDT1[30](UNDEVELOPEDTAPETUM1)突變體在減數(shù)分裂時絨氈層細(xì)胞高度液泡化,花粉母細(xì)胞不分裂為小孢子,逐漸解體,造成雄性不育。TDR1[31](TAPETUMDEGENERATIONRETARDATION1)的表達(dá)與絨氈層的解體有關(guān),其發(fā)生突變導(dǎo)致絨氈層與中層延遲解體,引起小孢子敗育,導(dǎo)致雄性不育的發(fā)生。此外,在udt1突變體中TDR1基因的轉(zhuǎn)錄量減少,而在tdr1突變體中UDT1的轉(zhuǎn)錄不受影響,表明UDT1可能位于TDR1上游位置。ETA1[32](ETERNALTAPETUM1)基因直接調(diào)控與細(xì)胞PCD有關(guān)的AP25和AP37(ASPARTIC PROTEASE 25/37)兩個天冬氨酸蛋白酶的表達(dá),從而調(diào)控絨氈層的解體退化。bHLH142[33]與花藥絨氈層PCD調(diào)控相關(guān),突變體表現(xiàn)出絨氈層延遲解體,花粉母細(xì)胞不進(jìn)行減數(shù)分裂,引起完全雄性不育。玉米ms32[34](MALESTERILITY32)突變體無法形成正常功能的絨氈層,絨氈層前體細(xì)胞分裂形成體細(xì)胞層,并逐漸膨大液泡化,并在花粉母細(xì)胞發(fā)育時解體,導(dǎo)致絨氈層缺失,引起不育。
2.3 MYB結(jié)構(gòu)域蛋白調(diào)控絨氈層發(fā)育
生物中含有MYB結(jié)構(gòu)域的蛋白是一個較大的蛋白家族,根據(jù)MYB結(jié)構(gòu)域基序數(shù)目差異分為MYB1R、R2R3MYB和3RMYB等亞族,其中R2R3MYB轉(zhuǎn)錄因子是最大的一個亞類[35]。
擬南芥中AtMYB33、AtMYB65[36]是兩個功能冗余的類GAMYB轉(zhuǎn)錄因子,在調(diào)控花藥絨氈層活動中起作用。雙突變體myb33myb65表現(xiàn)出絨氈層細(xì)胞過度液泡化、膨脹肥大,并向內(nèi)擠壓小孢子,造成敗育。AtMYB103[37,38]突變后會引起絨氈層過早解體,小孢子畸形、退化,導(dǎo)致雄性不育。該基因也能調(diào)控下游胼胝質(zhì)解體基因A6,小孢子外壁形成基因MS1、MS2的表達(dá)。TDF1(TAPETALDEVELOPMENTANDFUNCTION1)編碼的R2R3 MYB轉(zhuǎn)錄因子主要在絨氈層細(xì)胞、花粉母細(xì)胞中參與轉(zhuǎn)錄調(diào)控。在tdf1突變體中,絨氈層畸形發(fā)育,胼胝質(zhì)未降解釋放小孢子,引起雄配子敗育。Zhu[39]等人的研究表明,該基因還與上游的AtMYB103、MYC型轉(zhuǎn)錄因子AMS[40]、下游的DYT1協(xié)同參與調(diào)控絨氈層的發(fā)育。
2.4 PHD-finger結(jié)構(gòu)域蛋白調(diào)控絨氈層活動
PHD-finger結(jié)構(gòu)域轉(zhuǎn)錄因子在玉米、擬南芥中最先發(fā)現(xiàn),后來在人類中也發(fā)現(xiàn)存在該類結(jié)構(gòu)域的轉(zhuǎn)錄因子。擬南芥的MS1[41~43](MALESTERILITY1)與含PHD-finger結(jié)構(gòu)域的蛋白具有很強(qiáng)同源性。在ms1突變體中,小孢子能從四分體中正常釋放,但隨后絨氈層細(xì)胞高度液泡化,花粉外壁無法形成,進(jìn)而退化降解,導(dǎo)致敗育。PTC1[44](PERSISTENT TAPETAL CELL1)是水稻中一個PHD-finger蛋白,在花藥發(fā)育中該基因在絨氈層細(xì)胞和小孢子中都有表達(dá),但其突變體的絨氈層細(xì)胞出現(xiàn)一種類似細(xì)胞凋亡的狀態(tài),導(dǎo)致絨氈層延遲解體,小孢子敗育,花粉粒形態(tài)異常。
綜合上述對DYT1、TDF1、MYB35以及下游AMS、MS1和AtMYB103的調(diào)控表達(dá)關(guān)系,在調(diào)控絨氈層發(fā)育中可能存在兩個分支:一條是通過DYT1調(diào)控TDF1,進(jìn)而調(diào)控下游基因表達(dá);另一條是通過DYT1調(diào)控MYB35,進(jìn)而調(diào)控下游基因表達(dá)(圖2)。
圖2 擬南芥花藥發(fā)育部分基因調(diào)控網(wǎng)絡(luò)
與動物直接形成雌、雄配子不同,植物雄蕊中的花粉母細(xì)胞經(jīng)過減數(shù)分裂Ⅰ期和Ⅱ期,形成胼胝質(zhì)包圍的四分體小孢子,隨后胼胝質(zhì)解體釋放小孢子。小孢子經(jīng)過兩次有絲分裂:第一次有絲分裂形成2-胞花粉粒;第二次有絲分裂時,生殖細(xì)胞再分裂形成兩個生殖細(xì)胞,最后形成成熟的3-胞花粉粒[45]。
減數(shù)分裂前期Ⅰ同源染色體的聯(lián)會配對關(guān)系到后期Ⅰ同源染色體的有序分離。擬南芥RCK(ROCK-N-ROLLERS)[46]基因參與調(diào)控減數(shù)分裂同源染色體的聯(lián)會和二價體的形成。其發(fā)生突變后同源染色體聯(lián)會和交叉紊亂,二價體數(shù)目減少,出現(xiàn)單價體,影響花粉母細(xì)胞正常的減數(shù)分裂,導(dǎo)致花粉敗育。ZYP1[47]基因編碼的蛋白與其他物種中的聯(lián)會復(fù)合體橫絲蛋白具有相似的結(jié)構(gòu)。zyp1突變體沒有形成聯(lián)會復(fù)合體,嚴(yán)重延遲了減數(shù)分裂Ⅰ期的進(jìn)程。水稻ZEP1[48]基因編碼的橫絲蛋白是聯(lián)會復(fù)合體的中心元件,與ZYP1同源。在突變體中,前期Ⅰ同源染色體交叉正常,但聯(lián)會復(fù)合體未能正常裝配,影響減數(shù)分裂正常發(fā)生。CRC1(CENTRAL REGION COMPONENT 1)[49]聯(lián)會復(fù)合體蛋白與ZEP1共同構(gòu)成聯(lián)會復(fù)合體中心組件。crc1突變體在減數(shù)分裂的偶線期同源染色體未配對,形成24個單體,后期染色體不均等分離,形成不同染色體數(shù)目的小孢子,造成敗育。水稻OsDMC1[50]基因失去功能后會影響減數(shù)分裂前期I的同源染色體聯(lián)會配對,出現(xiàn)單體,從而引起小孢子染色體數(shù)目差異,導(dǎo)致敗育。此外,與同源染色體配對聯(lián)會相關(guān)的基因還有PAIR1[51]、PAIR2[52]和PAIR3[53]等,在各突變體中,同源染色體配對異常形成單價體,導(dǎo)致二價體減少,造成后期Ⅰ染色體分離紊亂。
紡錘體在染色體正常分離的過程中具有重要作用。MPS1[54]是擬南芥中一種含有卷曲螺旋結(jié)構(gòu)域的蛋白,與紡錘體的形成有關(guān)。mps1突變體在減數(shù)分裂過程中紡錘體畸形,紡錘絲牽引異常,染色體不均等分離,造成敗育。CTF7/ECO1(CHROMOSOME TRANSMISSION FIDELITY 7/ESTABLISHMENT OF COHESION 1)[55]主要參與DNA修復(fù)、有絲分裂和減數(shù)分裂。該基因變異阻礙黏連蛋白的形成,造成減數(shù)分裂時花粉母細(xì)胞的染色體結(jié)構(gòu)異常,導(dǎo)致突變體花藥發(fā)育不良,花粉敗育發(fā)生。水稻的DTM1(DEFECTIVETAPETUMANDMEIOCYTES1)[56]基因編碼一個內(nèi)質(zhì)網(wǎng)膜蛋白,與早期的絨氈層發(fā)育和后期的減數(shù)分裂有關(guān)。其突變造成花粉母細(xì)胞減數(shù)分裂過程緩慢,多數(shù)減數(shù)分裂細(xì)胞保持在細(xì)線期或偶線期,從而影響花粉母細(xì)胞的減數(shù)分裂進(jìn)程。
目前在模式植物擬南芥和水稻中發(fā)現(xiàn)和鑒定出許多花藥發(fā)育的相關(guān)基因,這些基因準(zhǔn)確的時空表達(dá)以及基因構(gòu)成的調(diào)控網(wǎng)絡(luò)對花藥結(jié)構(gòu)的形成和花粉育性具有重要作用。在基因調(diào)控網(wǎng)絡(luò)中某些基因產(chǎn)物的功能是互為冗余的,其中一個基因失去功能后,另一個基因產(chǎn)物能夠代替或部分代替該基因的功能使調(diào)控過程不受影響。但是多數(shù)基因發(fā)生突變后會對網(wǎng)絡(luò)下游基因的表達(dá)產(chǎn)生影響,從而影響花藥結(jié)構(gòu)發(fā)育進(jìn)程,最終影響到花粉育性。
目前,隨著科學(xué)技術(shù)不斷進(jìn)步和分子生物學(xué)的深入發(fā)展,生物實驗技術(shù)在基因克隆、基因測序、基因功能驗證的應(yīng)用不斷更新和日趨成熟,已在多種植物中發(fā)現(xiàn)和鑒定出許多與植物花粉育性相關(guān)的基因和其在調(diào)控網(wǎng)絡(luò)中的相對位置。這些基因產(chǎn)物可能直接參與花藥結(jié)構(gòu)的形成,或參與信號的傳導(dǎo)間接參與調(diào)控其他基因表達(dá)。但基因與基因間的表達(dá)調(diào)控作用多數(shù)是通過突變體下游基因表達(dá)量的變化來間接說明,對其中分子水平的調(diào)控機(jī)理仍不明晰。而且有關(guān)植物花藥發(fā)育的許多基因尚未被發(fā)掘,甚至有些基因可能通過多條途徑參與調(diào)控。這對植物花藥發(fā)育調(diào)控大網(wǎng)絡(luò)的完善和雄性不育的實際應(yīng)用,尤其在作物育種上的應(yīng)用造成一定困難。希望在不久的將來,在前人研究的基礎(chǔ)上能對植物花藥發(fā)育的基因調(diào)控網(wǎng)絡(luò)有系統(tǒng)的研究和闡述,以期能夠在作物生產(chǎn)中更好利用植物雄性不育特性。
[1] Wang D,Skibbe DS,Walbot V.Maize Male sterile 8 (Ms8),a putative β-1,3-galactosyltransferase,modulates cell division,expansion,and differentiation during early maize anther development[J]. Plant Reprod,2013,26(4):329-338.
[2] Sanders PM,Bui AQ,Weterings K,et al.Anther developmental defects inArabidopsisthalianamale-sterile mutants[J]. Sexual Plant Reproduction,1999,11:297-322.
[3] Chaubal R,Anderson JR,Trimnell MR,et al.The transformation of anthers in the msca1 mutant of maize[J]. Planta,2003,216(5):778-788.
[4] Wang CJ,Nan GL,Kelliher T,et al.Maize multiple archesporial cells 1 (mac1),an ortholog of rice TDL1A,modulates cell proliferation and identity in early anther development[J]. Development,2012,139(14):2594-2603.
[5] Wilson ZA,Zhang DB.FromArabidopsisto rice:pathways in pollen development[J]. J Exp Bot,2009,60(5):1479-1492.
[6] Wu HM,Cheun AY.Programmed cell death in plant reproduction[J]. Plant Mol Biol,2000,44(3):267-281.
[7] Zhu J,Lou Y,Xu X,et al.A genetic pathway for tapetum development and function inArabidopsis[J]. J Integr Plant Biol,2011,53(11):892-900.
[8] Wang D,Oses-Prieto JA,Li KH,et al.The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions[J]. Plant J,2010,63(6):939-951.
[9] Johnson KL,Ingram GC.Sending the right signals:regulating receptor kinase activity[J]. Curr Opin Plant Biol,2005,8(6):648-656.
[10] Zhao DZ,Wang GF,Speal B,et al.The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in theArabidopsisanther [J]. Genes Dev,2002,16(15):2021-2031.
[11]Canales C,Bhatt AM,Scott R,et al.EXS,a putative LRR receptor kinase,regulates male germline cell number and tapetal identity and promotes seed development inArabidopsis[J]. Curr Biol,2002,12(20):1718-1827.
[12]Yang SL,Xie LF,Mao HZ,et al.Tapetum determinant1 is required for cell specialization in theArabidopsisanther[J]. Plant Cell,2003,15(12):2792-2804.
[13]Yang SL,Jiang L,Puah CS,et al.Overexpression of TAPETUM DETERMINANT 1 alters the cell fates in theArabidopsiscarpel and tapetum via genetic interaction with excess microsporocytes 1/extra sporogenous cells[J]. Plant Physiol,2005,139(1):186-191.
[14]Jia G,Liu X,Owen HA,et al.Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase[J]. Proc Natl Acad Sci USA,2008,105(6):2220-2225.
[15]Albrecht C,Russinova E,Hecht V,et al.TheArabidopsisthalianaSOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES 1 and 2 control male sporogenesis[J]. Plant Cell,2005,17(12):3337-3349.
[16]Hord CL,Chen C,Deyoung BJ,et al.The BAM1/BAM2 receptor-like kinases are important regulators ofArabidopsisearly anther development[J]. Plant Cell,2006,18(7):1667-1680.
[17]DeYoung BJ,Bickle KL,Schrage KJ,et al.The CLAVATA1-related BAM1,BAM2 and BAM3 receptor kinase-like proteins are required for meristem function inArabidopsis[J]. Plant J,2006,45(1):1-16.
[18]Hord CL,Sun YJ,Pillitteri LJ,et al.Regulation ofArabidopsisearly anther development by the mitogen-activated protein kinases,MPK3 and MPK6,and the ERECTA and related receptor-like kinases[J]. Mol Plant,2008,1(4):645-658.
[19]Ito T,Wellmer F,Yu H,et al.The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS[J]. Nature,2004,430:356-360.
[20]Yang WC,Ye D,Xu J,et al.The SPOROCYTELESS gene ofArabidopsisis required for initiation of sporogenesis and encodes a novel nuclear protein[J]. Genes Dev,1999,13(16):2108-2117.
[21]Schiefthaler U,Balasubramanian S,Sieber P,et al.Molecular analysis of NOZZLE,a gene involved in pattern formation and early sporogenesis during sex organ development inArabidopsisthaliana[J]. Proc Natl Acad Sci USA,1999,96(20):11664-11669.
[22]Wijeratne AJ,Zhang W,Sun Y,et al.Differential gene expression inArabidopsiswild-type and mutant anthers:insights into anther cell differentiation and regulatory networks[J]. Plant J,2007,52(1):14-29.
[23]Nonomura K,Miyoshi K,Eiguchi M,et al.TheMSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice[J]. Plant Cell,2003,15(8):1728-1739.
[24]Heisler MG,Atkinson A,Bylstra YH,et al.a gene that controls development of carpel margin tissues inArabidopsis,encodes a bHLH protein[J]. Development,2001,128(7):1089-1098.
[25]Chinnusamy V,Ohta M,Kanrar S,et al.ICE1:a regulator of cold-induced transcriptome and freezing tolerance inArabidopsis[J]. Genes Dev,2003,17(8):1043-1054.
[26]Andrade-Zapata I,Baonza A.The bHLH factors extramacrochaetae and daughterless control cell cycle in drosophila imaginal discs through the transcriptional regulation of the cdc25 phosphatase string[J]. PLoS Genet,2014,10(3):e1004233.
[27]Andriankaja ME,Danisman S,Mignolet-Spruyt LF,et al.Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors[J]. Plant Mol Biol,2014,85(3):233-245.
[28]Zhang W,Sun Y,Timofejeva L,et al.Regulation ofArabidopsistapetum development and function by DYSFUNCTIONAL TAPETUM 1 (DYT1) encoding a putative bHLH transcription factor[J]. Development,2006,133(16):3085-3095.
[29]Feng B,Lu D,Ma X,et al.Regulation of theArabidopsisanther transcriptome by DYT1 for pollen development[J]. Plant J,2012,72(4):612-624.
[30]Jung KH,Han MJ,Lee YS,et al.Rice Undeveloped Tapetum 1 is a major regulator of early tapetum development[J]. Plant Cell,2005,17(10):2705-2722.
[31]Li N,Zhang DS,Liu HS,et al.The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J]. Plant Cell,2006,18(11):2999-3014.
[32]Niu N,Liang W,Yang X,et al.EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice[J]. Nat Commun,2013,4:1445.
[33]Ko SS,Li MJ,Sun-Ben Ku M,et al.The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice[J]. Plant Cell,2014,26(6):2486-2504.
[34]Moon J,Skibbe D,Timofejeva L,et al.Regulation of cell divisions and differentiation by MALE STERILITY 32 is required for anther development in maize[J]. Plant J,2013,76(4):592-602.
[35]Stracke R,Werber M,Weisshaar B.The R2R3-MYB gene family inArabidopsisthaliana[J]. Curr Opin Plant Biol,2001,4(5):447-456.
[36]Millar AA,Gubler F.TheArabidopsisGAMYB-like genes,MYB33 and MYB65,are microRNA-regulated genes that redundantly facilitate anther development[J]. Plant Cell,2005,17(3):705-721.
[37]Zhang ZB,Zhu J,Gao JF,et al.Transcription factor AtMYB103 is required for anther development by regulating tapetum development,callose dissolution and exine formation inArabidopsis[J]. Plant J.2007,52(3):528-538.
[38]Higginson T,Li SF,Parish RW.AtMYB103 regulates tapetum and trichome development inArabidopsisthaliana[J]. Plant J,2003,35(2):177-192.
[39]Zhu J,Chen H,Li H,et al.Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation inArabidopsis[J]. Plant J,2008,55(2):266-277.
[40]Sorensen AM,Krber S,Unte US,et al.TheArabidopsisABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor[J]. Plant J,2003,33(2):413-423.
[41]Wilson ZA,Morroll SM,Dawson J,et al.TheArabidopsisMALESTERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis,with homology to the PHD-finger family of transcription factors[J]. Plant J,2001,28(1):27-39.
[42]Fernández Gómez J,Wilson ZA.A barley PHD finger transcription factor that confers male sterility by affecting tapetal development[J]. Plant Biotechnol J,2014,12(6):765-777.
[43]Ito T,Shinozaki K.TheMALESTERILITY1 gene ofArabidopsis,encoding a nuclear protein with a PHD-finger motif,is expressed in tapetal cells and is required for pollen maturation[J]. Plant Cell Physiol,2002,43(11):1285-1292.
[44]Li H,Yuan Z,Vizcay-Barrena G,et al.PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice[J]. Plant Physiol,2011,156(2):615-630.
[45]Li T,Gong C,Wang T.RA68 is required for postmeiotic pollen development inOryzasativa[J]. Plant Mol Biol,2010,72(3):265-277.
[46]Chen C,Zhang W,Timofejeva L,et al.TheArabidopsisROCK-N-ROLLERSgene encodes a homolog of the yeast ATP-dependent DNA helicase MER3 and is required for normal meiotic crossover formation[J]. Plant J,2005,43(3):321-334.
[47]Higgins JD,Sanchez-Moran E,Armstrong SJ,et al.TheArabidopsissynaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over[J]. Genes Dev,2005,19(20):2488-2500.
[48]Wang M,Wang K,Tang D,et al.The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice[J]. Plant Cell,2010,22(2):417-430.
[49]Miao C,Tang D,Zhang H,et al.Central region component1,a novel synaptonemal complex component,is essential for meiotic recombination initiation in rice[J]. Plant Cell,2013,25(8):2998-3009.
[50]Deng ZY,Wang T.OsDMC1 is required for homologous pairing inOryzasativa[J]. Plant Mol Biol,2007,65(1-2):31-42.
[51]Nonomura K,Nakano M,F(xiàn)ukuda T,et al.The novel geneHOMOLOGOUSPAIRINGABERRATIONINRICEMEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis[J]. Plant Cell,2004,16(4):1008-1020.
[52]Nonomura KI,Nakano M,Murata K,et al.An insertional mutation in the ricePAIR2 gene,the ortholog ofArabidopsisASY1,results in a defect in homologous chromosome pairing during meiosis [J]. Mol Genet Genomics,2004,271(2):121-129.
[53]Yuan W,Li X,Chang Y,et al.Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis[J]. Plant J,2009,59(2):303-315.
[54]Jiang H,Wang FF,Wu YT,et al.MULTIPOLARSPINDLE1 (MPS1),a novel coiled-coil protein ofArabidopsisthaliana,is required for meiotic spindle organization[J]. Plant J,2009,59(6):1001-1010.
[55]Bolaos-Villegas P,Yang X,Wang HJ,et al.ArabidopsisCHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7/ECO1) is required for DNA repair,mitosis and meiosis[J]. Plant J,2013,75(6):927-940.
[56]Yi J,Kim SR,Lee DY,et al.The rice geneDEFECTIVETAPETUMANDMEIOCYTES1 (DTM1) is required for early tapetum development and meiosis[J]. Plant J,2012,70(2):256-270.
Advances in Genes Related to Tapetum Development and Microsporocyte Meiosis in Anther
LIU Wei-hua,QIU Bo,LUO Hong-bing*
(College of Agronomy,Hunan Agricultural University,Changsha,Hunan 410128,China)
Male sterility in plant is common phenomenon in nature,which is one of important ways for heterosis utilization.There exists vital relevance between pollen fertility and both anther layers development and meiosis during the process of anther development.This paper introduced the gene regulatory expression network of anther development from aspects of tapetal development and meiosis of pollen mother cells in order to further investigate and utilize the male sterility.
plant;anther;male sterility;tapetum;meiosis
2015-03-21
劉偉華(1990-),男,福建南平人,碩士研究生,Email:lwillhall@163.com。
*通信作者:羅紅兵,教授,博士生導(dǎo)師,主要從事玉米種質(zhì)創(chuàng)新的新技術(shù)及應(yīng)用研究,Email:hbluo48@sohu.com。
“十二五”農(nóng)村領(lǐng)域國家科技計劃(2011BAD35B01);湖南省科技計劃(2013TP4096);長沙市科技計劃(K1406002-61)。
Q78
A
1001-5280(2015)03-0311-06
10.3969/j.issn.1001-5280.2015.03.23