張 錟,潘若谷,張成毅,周洋洋,謝明琦,戚雙雙,孫臣友*
(溫州醫(yī)科大學(xué) 1.第一臨床醫(yī)學(xué)院; 2.基礎(chǔ)醫(yī)學(xué)院 人體解剖學(xué)教研室;3.基礎(chǔ)醫(yī)學(xué)院 神經(jīng)科學(xué)研究所;4.附屬第二醫(yī)院 藥劑科, 浙江 溫州 325035)
?
短篇綜述
成年機(jī)體腦新生神經(jīng)元形成與神經(jīng)退行性疾病的關(guān)系
張 錟1,潘若谷1,張成毅1,周洋洋1,謝明琦2,3,戚雙雙4,孫臣友2,3*
(溫州醫(yī)科大學(xué) 1.第一臨床醫(yī)學(xué)院; 2.基礎(chǔ)醫(yī)學(xué)院 人體解剖學(xué)教研室;3.基礎(chǔ)醫(yī)學(xué)院 神經(jīng)科學(xué)研究所;4.附屬第二醫(yī)院 藥劑科, 浙江 溫州 325035)
包括阿爾茨海默病(AD)、帕金森病(PD)和亨廷頓病(HD)在內(nèi)的神經(jīng)退行性疾病腦中普遍存在神經(jīng)元數(shù)目進(jìn)行性減少,而新生神經(jīng)元形成減少在神經(jīng)退行性疾病發(fā)生中更為重要。目前通過促進(jìn)腦中內(nèi)源性新生神經(jīng)元的形成來治療神經(jīng)退行性疾病是一項(xiàng)新的舉措。
新生神經(jīng)元形成;阿爾茨海默病;帕金森病;亨廷頓病
成年機(jī)體腦大多數(shù)神經(jīng)元產(chǎn)生于胚胎期和出生后早期,然而,有研究表明在哺乳動(dòng)物整個(gè)生命期,有兩個(gè)重要腦區(qū)始終存在新生神經(jīng)元的發(fā)生:即側(cè)腦室的室下區(qū)(subventricular,SVZ)和海馬齒狀回(dentate gyrus,DG)的顆粒下層(subgranular,SGZ)[1]。其中,SGZ中神經(jīng)前體細(xì)胞或神經(jīng)干細(xì)胞能夠分化為顆粒細(xì)胞,并整合到海馬神經(jīng)環(huán)路中,參與海馬相關(guān)的學(xué)習(xí)記憶功能;而來自SVZ中的新生細(xì)胞沿嘴側(cè)遷移流到達(dá)嗅球,并在此處分化為γ-氨基丁酸能神經(jīng)元[1- 2]。
包括阿爾茨海默病(Alzheimer’s disease,AD)、帕金森病(Parkinson’s disease,PD)和亨廷頓病(Huntington’s disease,HD)在內(nèi)的神經(jīng)退行性疾病均存在著腦中神經(jīng)元數(shù)目進(jìn)行性減少。神經(jīng)元數(shù)目
下降一般認(rèn)為是由神經(jīng)元凋亡的增加和/或新生神經(jīng)元形成的減少所致,而后者在神經(jīng)退行性疾病發(fā)生中更為重要[3]。然而,關(guān)于神經(jīng)退行性疾病中新生神經(jīng)元形成目前還不清楚[4]。本文就近年來關(guān)于AD、PD、HD中新生神經(jīng)元形成情況,結(jié)合本課題組的研究成果對(duì)其作一綜述,旨在闡明通過誘導(dǎo)腦中內(nèi)源性新生神經(jīng)元的形成來治療神經(jīng)退行性疾病的可能性。
AD是以老年癡呆為主要特征的慢性神經(jīng)退行性疾病[5],除認(rèn)知功能損害外,35%~40% AD患者還出現(xiàn)錐體外系運(yùn)動(dòng)癥狀或PD樣癥狀,且這些癥狀會(huì)隨AD進(jìn)程逐漸加重[6]。AD患者既有皮質(zhì)和海馬等腦區(qū)β-淀粉樣(β-amyloid,Aβ)斑塊沉積和tau蛋白過度磷酸化所形成的神經(jīng)原纖維纏結(jié)(neurofibrillary tangles,NFTs)等神經(jīng)病理學(xué)變化外[7],也有黑質(zhì)-紋狀體通路的生物化學(xué)和結(jié)構(gòu)的變化[8]。隨著遺傳學(xué)研究的發(fā)展,已有數(shù)種模擬人AD突變基因的小鼠產(chǎn)生。與β-淀粉樣前體蛋白(amyloid precursor protein,APP)單轉(zhuǎn)基因小鼠相比,APP/早老素- 1(presenilin- 1,PS1)雙轉(zhuǎn)基因AD小鼠(double-transgenic AD mouse,2xTgAD)出現(xiàn)Aβ斑塊沉積更早[9]。文獻(xiàn)報(bào)道,6月齡2xTgAD小鼠除紋狀體出現(xiàn)Aβ斑塊沉積外,黑質(zhì)多巴胺能神經(jīng)元數(shù)目也存在下降[8],表明AD病理改變可引起多巴胺能神經(jīng)元受損[10]。
此外,在同時(shí)表達(dá)APP、PS1和TAU蛋白的3月齡AD突變基因小鼠(3xTgAD)的SGZ和SVZ中,神經(jīng)前體細(xì)胞的增殖明顯下降,且隨著年齡的增加下降更為明顯[11]。在12月齡過表達(dá)indiana突變基因的轉(zhuǎn)基因小鼠(PDAPP)SGZ中,神經(jīng)前體細(xì)胞增殖和不成熟神經(jīng)元的數(shù)量均明顯減少,但并未觀察到神經(jīng)前體細(xì)胞增殖率下降與Aβ斑塊的數(shù)量有關(guān)[12]。在PS1/M146V/KI轉(zhuǎn)基因小鼠DG中發(fā)現(xiàn)神經(jīng)前體細(xì)胞增殖下降,同時(shí)伴有新生成熟神經(jīng)元數(shù)目的減少[13]。盡管6月齡APPSWE/PS1dE9雙轉(zhuǎn)基因小鼠SGZ中神經(jīng)前體細(xì)胞增殖未發(fā)生變化,但是1個(gè)月后,神經(jīng)前體細(xì)胞存活率及新生成熟神經(jīng)元數(shù)目均出現(xiàn)明顯下降,且隨著年齡的增加減少更為明顯[14]。
然而,有些研究結(jié)果與上述報(bào)道并不一致。例如:過表達(dá)Swedish和Indiana突變基因(APPSWE,IND)的轉(zhuǎn)基因小鼠3和12月齡DG及12月齡SVZ中神經(jīng)前體細(xì)胞和不成熟神經(jīng)元的數(shù)目均增加[12]。3月齡J20轉(zhuǎn)基因模型小鼠DG和SVZ中也觀察到神經(jīng)前體細(xì)胞增殖的增加,并且認(rèn)為與低聚物Aβ的水平有關(guān)[13]。9月齡APP/M671N/PS1小鼠的海馬中,神經(jīng)前體細(xì)胞、不成熟和成熟神經(jīng)元的數(shù)目均明顯增高[12]。
總之,研究結(jié)果顯示,AD機(jī)體腦中普遍存在著新生神經(jīng)元形成下降。然而,動(dòng)物模型、動(dòng)物年齡、實(shí)驗(yàn)方案的差異可能對(duì)實(shí)驗(yàn)結(jié)果產(chǎn)生不同的影響。
PD是目前最常見的運(yùn)動(dòng)障礙性疾病,神經(jīng)病理學(xué)特征為黑質(zhì)致密部多巴胺能神經(jīng)元進(jìn)行性丟失以及其神經(jīng)終末投射到紋狀體的多巴胺含量的減少[14]。對(duì)PD患者尸檢發(fā)現(xiàn),在SVZ、SGZ以及嗅球等處的神經(jīng)前體細(xì)胞的增生均明顯下降。進(jìn)一步的研究表明,多巴胺能神經(jīng)元去神經(jīng)支配是PD患者多巴胺能神經(jīng)前體細(xì)胞產(chǎn)生受損的原因[15]。在表達(dá)高水平野生型人類α-突觸核蛋白轉(zhuǎn)基因鼠的嗅球和SGZ中,存在著α-突觸核蛋白聚積,同時(shí)伴有不成熟神經(jīng)元的死亡及SVZ/嗅球中新生神經(jīng)元形成的明顯減少,表明α-突觸核蛋白影響新生神經(jīng)元的形成[16]。此外,6-羥多巴胺(6-hydroxydopamine,6-OHDA)及1-甲基-4-苯基-1, 2, 3, 6-四氫吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MPTP)損傷的PD模型小鼠也顯示多巴胺能系統(tǒng)中細(xì)胞的死亡及SVZ中神經(jīng)前體細(xì)胞增殖的下降[17]。
成年人或動(dòng)物黑質(zhì)中是否存在內(nèi)源性新生的神經(jīng)元目前仍不清楚[18]。文獻(xiàn)表明,生理情況下黑質(zhì)存在低水平新生的神經(jīng)元[19]。在病理情況下,MPTP、6-OHDA和多巴胺受體拮抗劑均能誘導(dǎo)新生多巴能神經(jīng)元的產(chǎn)生和分化[20]。我們課題組的研究表明,3月齡3xTgAD小鼠黑質(zhì)中大約有100個(gè)新生的酪氨酸羥化酶(tyrosine hydroxylase, TH)陽性神經(jīng)元,表明在正常成年小鼠黑質(zhì)中,確實(shí)存在新生的多巴胺能神經(jīng)元的產(chǎn)生[21]。有研究認(rèn)為,黑質(zhì)中存在的少量新生TH陽性神經(jīng)元可能是從SVZ遷移而來,因?yàn)檫@些細(xì)胞能夠被注入側(cè)腦室的熒光染料所標(biāo)記,表明它們是來自襯附在中腦腦室系統(tǒng)中的神經(jīng)干細(xì)胞[22]。另有研究發(fā)現(xiàn),被不成熟神經(jīng)元標(biāo)志物腦衰蛋白響應(yīng)調(diào)解蛋白- 4標(biāo)記的神經(jīng)干細(xì)胞會(huì)沿中腦腹側(cè)中線遷移。此外,通過體外實(shí)驗(yàn)證實(shí),從被蓋組織、中腦水管和第四腦室室管膜分離的神經(jīng)前體細(xì)胞最終分化為功能性多巴胺能神經(jīng)元[23]。有研究發(fā)現(xiàn),CD133標(biāo)記的具有靜態(tài)神經(jīng)干細(xì)胞屬性的室管膜細(xì)胞遍布于哺乳動(dòng)物前腦腦室壁上,通過觀察這類細(xì)胞的分布和遷移有助于對(duì)新生多巴胺能神經(jīng)元起源部位的識(shí)別[24]。
盡管左旋多巴和手術(shù)切除病灶等治療手段能緩解PD患者的一些行為學(xué)癥狀,但是并未從根本上解決PD患者腦內(nèi)多巴胺能神經(jīng)元丟失的問題[25]。如果腦中新生的細(xì)胞能夠遷移入黑質(zhì)中,并進(jìn)一步分化為多巴胺能神經(jīng)元的話,那么通過向黑質(zhì)中移植多巴胺能神經(jīng)前體細(xì)胞,并延長(zhǎng)其軸突至紋狀體,將有望達(dá)到治療PD的目的。
對(duì)HD轉(zhuǎn)基因模型小鼠的研究發(fā)現(xiàn),當(dāng)一側(cè)紋狀體注入興奮性毒素喹啉酸后,在損傷的腦區(qū),可出現(xiàn)多棘神經(jīng)元急劇減少和神經(jīng)膠質(zhì)細(xì)胞過度增多,但損傷側(cè)SVZ中BrdU標(biāo)志的新生細(xì)胞的數(shù)量卻顯著增加,而且這些新生細(xì)胞有一部分表達(dá)成神經(jīng)細(xì)胞的標(biāo)志物DCX,并遷移至紋狀體損傷的部位。3周后,大約10%~20%被DCX標(biāo)志的細(xì)胞會(huì)進(jìn)一步分化為成熟神經(jīng)元。新生細(xì)胞數(shù)目增加的原因至今仍不清楚,可能與小膠質(zhì)細(xì)胞增生并分泌一種可促進(jìn)細(xì)胞增殖的因子有關(guān)[26]。
然而,在某些HD轉(zhuǎn)基因小鼠的海馬中新生神經(jīng)元的形成卻明顯受損。例如:在重癥階段R6/1和R6/2小鼠的SGZ中,發(fā)現(xiàn)被BrdU標(biāo)記的細(xì)胞數(shù)量明顯下降,用細(xì)胞周期特異性標(biāo)志物Ki-67和PCNA得到進(jìn)一步證實(shí),并呈年齡依賴效應(yīng),表明R6成年小鼠海馬新生神經(jīng)元的增殖明顯受損[27]。此外,R6/1小鼠在用5-羥色胺再攝取抑制劑氟西汀處理后,小鼠的認(rèn)知功能得到改善,可能與氟西汀增加海馬新生神經(jīng)元的形成有關(guān)[28]。在HD轉(zhuǎn)基因小鼠模型中,海馬新生神經(jīng)元形成的下降可能與小鼠體內(nèi)激素水平、生長(zhǎng)因子和神經(jīng)遞質(zhì)的減少有關(guān)[29]。
既然AD、PD和HD腦中普遍存在著新生神經(jīng)元形成的下降,因此,通過促進(jìn)腦內(nèi)內(nèi)源性新生神經(jīng)元的形成對(duì)治療神經(jīng)退行性疾病具有重要的意義。首先,通過向神經(jīng)退變的腦中植入外源性神經(jīng)干細(xì)胞,該細(xì)胞在適當(dāng)?shù)奈h(huán)境下,可以增殖分化為神經(jīng)元,但在動(dòng)物實(shí)驗(yàn)時(shí)發(fā)現(xiàn),此策略很難獲得成功。究其原因主要有以下幾點(diǎn):1)神經(jīng)干細(xì)胞植入腦區(qū)技術(shù)的復(fù)雜性;2)外源性細(xì)胞在已受損腦中存活、遷移、分化和整合的困難性;3)受到免疫排斥和倫理問題的制約性;4)神經(jīng)干細(xì)胞分化為神經(jīng)元效率很低,且有相當(dāng)部分的神經(jīng)干細(xì)胞分化為腫瘤細(xì)胞,對(duì)治療十分不利[30]。因此,該治療手段在一定程度上受到了制約。其次,利用生長(zhǎng)因子來刺激神經(jīng)元的增殖,雖然該治療策略相對(duì)于向腦內(nèi)移植外源性神經(jīng)干細(xì)胞有較大的進(jìn)步,但是生長(zhǎng)因子因分子質(zhì)量大、無法透過血-腦脊液屏障,且需要長(zhǎng)期在腦內(nèi)留置導(dǎo)管,也限制了它的應(yīng)用。相反,小分子質(zhì)量、親脂性的神經(jīng)甾體激素因能透過血-腦脊液屏障,且對(duì)神經(jīng)干細(xì)胞或神經(jīng)前體細(xì)胞增殖的誘導(dǎo)具有可控性和靶向性,因此已成為促進(jìn)腦內(nèi)內(nèi)源性新生神經(jīng)元形成的理想物質(zhì)[11]。本研究也證實(shí),神經(jīng)甾體激素別孕烯醇酮(allopregnanolone,APα)因具有強(qiáng)大的促新生神經(jīng)元的形成效力而備受關(guān)注。研究發(fā)現(xiàn),APα無論是在體內(nèi)還是在體外對(duì)腦內(nèi)神經(jīng)前體細(xì)胞的增殖均具有促進(jìn)作用。APα除了能夠促進(jìn)腦內(nèi)神經(jīng)前體細(xì)胞增殖外,還能夠減慢神經(jīng)退行性病變的退化速度,延遲神經(jīng)退行性疾病的病理學(xué)進(jìn)程[21]。
[1] Traniello IM, Srbulescu RF, IlieI,etal. Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence [J]. Dev Neurobiol, 2014, 74: 514- 530.
[2] Gray WP, Cheung A. Nitric oxide regulation of adult neurogenesis [J].Vitam Horm, 2014, 96: 59- 77.
[3] Pastukhov YF, Plaksina DV, Lapshina KV,etal. Exogenous protein HSP70 blocks neurodegeneration in the rat model of the clinical stage of Parkinson’s disease [J]. Dokl Biol Sci, 2014, 457: 225- 227.
[4] 楊倩倩, 張鵬, 戴侃純, 等. 神經(jīng)甾體激素對(duì)神經(jīng)元的影響及在神經(jīng)退行性疾病治療中的作用[J]. 解剖學(xué)報(bào), 2014, 45: 424- 429.
[5] Lahiri DK, Farlow MR, Sambamurti K,etal. A critical analysis of new molecular targets and strategies for drug developments in Alzheimer’s disease [J]. Curr Drug Targets, 2003, 4: 97- 112.
[6] Horvath J, Burkhard PR, Herrmann FR,etal. Neuropathology of parkinsonism in patients with pure Alzheimer’s disease [J]. J Alzheimers Dis, 2014, 39: 115- 120.
[7] 王瓊仨, 戚雙雙, 周鵬, 等. 別孕烯醇酮對(duì)AD小鼠黑質(zhì)多巴胺神經(jīng)元的影響[J]. 解剖學(xué)報(bào), 2013, 44: 176- 181.
[8] Brar S, Henderson D, Schenck J,etal. Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism [J]. Arch Neurol, 2009, 66: 371- 374.
[9] Lauritzen I, Pardossi-Piquard R, Bauer C,etal. The β-secretase-derived C-terminal fragment of βAPP, C99, but not Aβ, is a key contributor to early intraneuronal lesions in triple-transgenic mouse hippocampus [J]. J Neurosci, 2012, 32: 16243- 16255.
[10] Demars M, Hu YS, Gadadhar A,etal. Impaired neurogenesis is an early event in the etiology of familial Alzheimer’s disease in transgenic mice [J]. J Neurosci Res, 2010, 88: 2103- 2117.
[11] Wang JM, Singh C, Liu L,etal. Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer’s disease [J]. Proc Natl Acad Sci U S A, 2010, 107: 6498- 6503.
[12] Jin K, Peel AL, Mao XO,etal. Increased hippocampal neurogenesis in Alzheimer’s disease [J]. Proc Natl Acad Sci U S A, 2004, 101: 343- 347.
[13] Pluta R, Jaboński M, Czuczwar SJ. Postischemic dementia with Alzheimer phenotype: selectively vulnerable versus resistant areas of the brain andneurodegeneration versus β- amyloid peptide [J]. Folia Neuropathol, 2012, 50: 101- 109.
[14] Veeraraghavalu K, Zhang C, Zhang X,etal. Age-dependent, non-cell-autonomous deposition of amyloid from synthesis of β-amyloid by cells other than excitatory neurons [J]. J Neurosci, 2014, 34: 3668- 3673.
[15] Freundlieb N, Francois C, Tandé D,etal. Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates [J]. J Neurosci, 2006, 26: 2321- 2325.
[16] Sekiyama K, Takamatsu Y, Hashimoto M,etal. Possible alterations in β-Synuclein, the non-Amyloidogenic homologue of α-synuclein, during progression of sporadic α-synucleinopathies [J]. Int J Mol Sci, 2012, 13: 11584- 11592.
[17] Fernando CV, Kele J, Bye CR,etal. Diverse roles for wnt7a in ventral midbrain neurogenesis and dopaminergic axon morphogenesis [J]. Stem Cells Dev, 2014, 23: 1991- 2003.
[18] Arias-Carrión O, Yamada E, Freundlieb N,etal. Neurogenesis in substantia nigra of parkinsonian brains? [J]. J Neural Transm Suppl, 2009, 73: 279- 285.
[19] Zhao M, Janson Lang AM. Bromodeoxyuridine infused into the cerebral ventricle of adult mice labels nigral neurons under physiological conditions-a method to detect newborn nerve cells in regions with a low rate of neurogenesis [J]. J Neurosci Meth, 2009, 184: 327- 331.
[20] Peng J, Andersen JK. Mutant alpha-synuclein and aging reduce neurogenesis in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease [J]. Aging Cell, 2011, 10: 255- 262.
[21] Sun CY, Ou X, Farley JM,etal. Allopregnanolone increases the number of dopaminergic neurons in substantia nigra of triple transgenic mouse model of alzheimer’s disease [J]. Curr Alzheimer Res, 2012, 9: 473- 480.
[22] Zhao M, Momma S, Delfani K,etal. Evidence for neurogenesis in the adult mammalian substantia nigra [J]. Proc Natl Acad Sci U S A, 2003, 100: 7925- 7930.
[23] Hermann A, Maisel M, Wegner F,etal. Multipotent neural stem cells from the adult tegmentum with dopaminergic potential develop essential properties of functional neurons [J]. Stem Cells, 2006, 24: 949- 964.
[24] Coskun V, Wu H, Blanchi B,etal. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain [J]. Proc Natl Acad Sci U S A, 2008, 105: 1026- 1031.
[25] Lang AE, Gill S, Patel NK,etal. Randomized controlled trial of intraputamental glial cell line-derived neurotrophic factor infusion in Parkinson disease [J]. Ann Neurol, 2006, 59: 459- 466.
[26] Ignarro RS, Vieira AS, Sartori CR,etal. JAK2 inhibition is neuroprotective and reduces astrogliosis after quinolinic acid striatal lesion in adult mice [J]. J Chem Neuroanat, 2013, 48- 49: 14- 22.
[27] Reiner A, Wang HB, Del Mar N,etal. BDNF may play a differential role in the protective effect of the mGluR2/3 agonist LY379268 on striatal projection neurons in R6/2 Huntington’s disease mice [J]. Brain Res, 2012, 1473: 161- 172.
[28] Pamidi N, Nayak S. Effect of environmental enrichment exposure on neuronal morphology of streptozotocin-induced diabetic and stressed rat hippocampus [J]. Biomed J, 2014, 37: 225- 231.
[29] Giampà C, Montagna E, Dato C,etal. Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model ofHuntington’s disease [J]. PLoS One, 2013, 8: e64037. doi: 10.1371/journal.pone.0064037.
[30] Smith EJ, Stroemer RP, Gorenkova N,etal. Implantation site and lesion topology determine efficacy of a human neural stem cell line in a rat model of chronic stroke [J]. Stem Cells, 2012, 30: 785- 796.
新聞點(diǎn)擊
骨關(guān)節(jié)炎:減輕體質(zhì)量可減少膝軟骨負(fù)擔(dān)
據(jù)美國WebMD醫(yī)學(xué)新聞網(wǎng)(2014-02-19)報(bào)道,醫(yī)生一直建議減輕體質(zhì)量以緩解膝蓋骨關(guān)節(jié)炎(osteoarthritis,OA)的疼痛與不適,現(xiàn)在,有證據(jù)支持這項(xiàng)醫(yī)療建言。
在一篇針對(duì)112名肥胖成人的研究中,澳大利亞研究者發(fā)現(xiàn),減輕體質(zhì)量和脛骨內(nèi)側(cè)軟骨量流失較少以及改善膝蓋功能有關(guān),若體質(zhì)量增加則有不良反應(yīng)。
澳大利亞墨爾本Monash大學(xué)暨Alfred醫(yī)院的Andrew J. Teichtahl醫(yī)生認(rèn)為,對(duì)于肥胖患者,體質(zhì)量變化對(duì)疾病相關(guān)的膝關(guān)節(jié)構(gòu)造與功能有所影響;減輕體質(zhì)量是幫助肥胖者減少他們的膝蓋癥狀和有害的結(jié)構(gòu)性變化,另外,肥胖者也應(yīng)避免體質(zhì)量增加。
作者們指出,雖然最近的系統(tǒng)性回顧顯示質(zhì)量手術(shù)或非手術(shù)減輕體質(zhì)量計(jì)劃可改善膝關(guān)節(jié)炎,但是目前還沒有確切證據(jù)。
這些研究在線刊登于2014年2月11日《風(fēng)濕性疾病學(xué)》雜志。
結(jié)婚使男人變成“硬骨頭”
據(jù)英國《BBC新聞》(BBC NEWS)2014年2月5日?qǐng)?bào)道,美國最近一項(xiàng)有關(guān)骨質(zhì)疏松的研究發(fā)現(xiàn),25歲以上的男子結(jié)婚也可使骨骼獲得強(qiáng)化。研究人員首次證實(shí),婚姻的質(zhì)量和歷史與骨骼的健康有關(guān)。
研究顯示,結(jié)婚對(duì)男子的骨骼健康有所幫助,但前提是要在25歲以后結(jié)婚。
該研究稱,與婚姻出現(xiàn)問題或未婚的男性相比,婚姻或伴侶關(guān)系長(zhǎng)期處于穩(wěn)定(未曾離婚或分居)的男性會(huì)有較強(qiáng)的骨骼。但男性25歲前結(jié)婚骨頭較弱,故結(jié)婚的年齡也是一個(gè)重要的因素。
研究人員發(fā)現(xiàn),結(jié)婚的年齡會(huì)影響脊柱骨的堅(jiān)硬程度。對(duì)此,參與這項(xiàng)研究的加州大學(xué)洛杉磯分校(UCLA)醫(yī)學(xué)教授卡拉曼格拉(Arun Karlamangla)認(rèn)為,年輕娶妻的很可能是那些教育程度較低,從而導(dǎo)致薪酬較低和遭遇更多生活困難的人,他們?yōu)榱损B(yǎng)家就得承受更多的壓力,因此早婚可能對(duì)男人不利。
這項(xiàng)研究發(fā)表在《國際骨質(zhì)疏松癥》(Osteoporosis International)期刊。
Relationship between neurogenesis in the brains
of adult organisms and the neurodegenerative disease
ZHANG Tan1, PAN Ruo-gu1, ZHANG Cheng-yi1, ZHOU Yang-yang1, XIE Ming-qi2,3,QI Shuang-shuang4, SUN Chen-you2,3*
(1.the First Clinical Medical College; 2.Dept. of Anatomy, School of Basic Medical Sciences; 3.Institution of Neuroscience, School of Basic Medical Sciences; 4.Dept. of Pharmacy, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China)
It is very common that the number of neurons in the brain is progressively decreasing in the neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease, etc. Moreover, it is much more important that there is a decline in the neurogenesis of adult brain in such neurodegenerative diseases. In treating neurodegenerative diseases, it is a potential therapeutic modality to promote endogenous neurogenesis in the brain.
neurogenesis; Alzheimer’s disease; Parkinson’s disease; Huntington’s disease
2014- 12- 30
2015- 04- 27
浙江省自然科學(xué)基金(LY12C11003);浙江省錢江人才計(jì)劃(2013R10077)
1001-6325(2015)10-1401-05
R322.81
A
*通信作者(corresponding author):sunchenyou1972@aliyun.com