李 明,呂厚辰,張里程,唐佩福,張立海
解放軍總醫(yī)院 骨科,北京 100853
綜 述
組織蛋白酶K抑制劑Odanacatib治療骨質(zhì)疏松的研究進(jìn)展
李 明,呂厚辰,張里程,唐佩福,張立海
解放軍總醫(yī)院 骨科,北京 100853
組織蛋白酶K(cathepsin K,Cat K)為表達(dá)于破骨細(xì)胞的一種半胱氨酸蛋白酶,是骨重建過程中骨吸收的關(guān)鍵酶。相關(guān)研究證實(shí),抑制其活性是治療骨質(zhì)疏松的一個(gè)新思路。當(dāng)前最新研發(fā)的組織蛋白酶K抑制劑Odanacatib (ODN),可有效抑制骨的吸收且不抑制骨的形成,耐受性好,無明顯的藥物相關(guān)不良反應(yīng),為治療骨質(zhì)疏松提供了新的選擇。
Odanacatib;組織蛋白酶K;骨質(zhì)疏松;抑制劑
骨質(zhì)疏松癥是以骨量減少,骨小梁,皮質(zhì)骨多孔、變薄,導(dǎo)致骨脆性增高及骨折危險(xiǎn)增加的一種代謝性骨病。目前,全世界約有2億人患骨質(zhì)疏松癥,其發(fā)病率已躍居世界各種常見病的第7位[1]。當(dāng)前研究發(fā)現(xiàn),成年人每年大約有25%的骨小梁和3%的皮質(zhì)骨進(jìn)行[2],破骨細(xì)胞的骨吸收及成骨細(xì)胞的骨形成這一動(dòng)態(tài)平衡過程,當(dāng)骨重建失衡,骨吸收大于骨形成,則引起骨質(zhì)疏松癥[3]。根據(jù)骨質(zhì)疏松發(fā)病機(jī)制的不同,臨床抗骨質(zhì)疏松藥物治療分為抗骨吸收藥物、促骨形成藥物和基本補(bǔ)充劑。抗骨吸收藥物主要為雙磷酸鹽類[4],減少破骨細(xì)胞數(shù)量及抑制其活性從而抑制骨轉(zhuǎn)換。促骨形成藥物主要為甲狀旁腺激素[5],直接刺激骨形成,快速增加骨密度(bone mineral density,BMD),恢復(fù)骨的結(jié)構(gòu)和完整性。基本補(bǔ)充劑為鈣劑和活性維生素D及其類似物,改善骨礦化,促進(jìn)鈣的吸收,從而減緩骨的丟失[6]。而當(dāng)前最新研發(fā)的抗骨質(zhì)疏松藥物Odanacatib(ODN),通過抑制骨重建過程中骨吸收的關(guān)鍵酶組織蛋白酶K(Cathepsin K,Cat K),在抑制骨吸收的同時(shí)而不影響骨形成,進(jìn)而提高骨密度,減緩骨質(zhì)疏松的進(jìn)展,預(yù)防骨質(zhì)疏松骨折的發(fā)生,為骨質(zhì)疏松的治療提供了新的思路。本文以O(shè)DN為例,對(duì)組織蛋白酶K抑制劑在骨質(zhì)疏松的作用機(jī)制、治療效果等進(jìn)行綜述。
組織蛋白酶K是一種半胱氨酸蛋白酶,屬溶酶體半胱氨酸蛋白酶中番木瓜蛋白酶超家族成員。主要表達(dá)于破骨細(xì)胞,廣泛存在于骨吸收表面、胞轉(zhuǎn)囊泡和細(xì)胞溶酶體內(nèi)[7]。溶酶體半胱氨酸蛋白酶中番木瓜蛋白酶與底物的結(jié)合具有高度選擇特異性,主要的選擇性位點(diǎn)包括P1、P2及P1'。組織蛋白酶K主要裂解P2位短小或分支狀疏水性側(cè)鏈、P1位短小或分支狀的親水側(cè)鏈及P1'位分支狀疏水性側(cè)鏈、酪氨酸或甘氨酸等。而其中組織蛋白酶K裂解P1'位甘氨酸的特性在降解膠原螺旋結(jié)構(gòu)域中發(fā)揮了核心作用[8]。
目前研究認(rèn)為,組織蛋白酶K主要降解骨組織中的Ⅰ型膠原。除可直接降解膠原端肽區(qū)外,還通過與硫酸軟骨素形成復(fù)合物于多個(gè)位點(diǎn)解離膠原的三螺旋結(jié)構(gòu),使其更易被明膠酶降解。此外有研究發(fā)現(xiàn),組織蛋白酶K對(duì)骨組織中非膠原蛋白,如骨鈣素、骨橋蛋白、骨黏連蛋白、蛋白多糖及相關(guān)生長(zhǎng)因子等,也有促進(jìn)其失活和加速其降解的作用[9-10]。組織蛋白酶K功能正常與否,對(duì)骨骼正常生理結(jié)構(gòu)及功能的維持有重要意義。
目前已證實(shí),組織蛋白酶K基因可能存在30種以上的不同類型突變(增添、缺失或替換),且突變可影響組織蛋白酶K約17個(gè)成熟蛋白位點(diǎn)和2個(gè)前肽位點(diǎn)[11]?;蛲蛔兒髮?dǎo)致組織蛋白酶K低表達(dá)或無法表達(dá)時(shí),可引起致密性成骨不全癥[12-13]。臨床上表現(xiàn)為以骨吸收障礙、骨質(zhì)硬化為特征的全身骨骼發(fā)育異常,可出現(xiàn)身材矮小,腦、上頜、指骨畸形,骨樣硬化癥,骨脆性增加等。此外,動(dòng)物實(shí)驗(yàn)證實(shí),敲除組織蛋白酶K基因的小鼠表現(xiàn)出同人致密性成骨不全癥相同的骨質(zhì)硬化病理特征,骨吸收作用嚴(yán)重破壞,形成骨樣硬癥[14]。而經(jīng)轉(zhuǎn)基因修飾過度表達(dá)組織蛋白酶K的小鼠表現(xiàn)為骨量減少及骨轉(zhuǎn)換增加[15]。同時(shí),研究還發(fā)現(xiàn),在骨質(zhì)疏松狀態(tài)下,破骨細(xì)胞較成骨細(xì)胞活性相對(duì)增強(qiáng),組織蛋白酶K的表達(dá)增加,且經(jīng)抗骨質(zhì)疏松藥物雙膦酸鹽類治療后,抑制了破骨細(xì)胞活性從而降低了組織上蛋白酶K的表達(dá)[16-17],提示組織蛋白酶K活性增強(qiáng)為骨質(zhì)疏松發(fā)生、發(fā)展的影響因素之一,因此,抑制其活性可成為治療骨質(zhì)疏松的新靶點(diǎn)。
根據(jù)組織蛋白酶K的結(jié)構(gòu)和功能特征,針對(duì)其主要的3個(gè)位點(diǎn)(P1、P2及P1'),英國GlaxoSmithKline、美國MCE、日本Ono Pharmaceutical Co等相繼研發(fā)出了一系列組織蛋白酶K抑制劑[18-22]。而ODN因其作用效果顯著而成為組織蛋白酶K抑制劑的代表性藥物。ODN(代號(hào)MK-0822)是目前最新的一種組織蛋白酶K抑制劑,屬可逆性非肽聯(lián)芳組織蛋白酶K抑制劑,化學(xué)組成為C25H27F4N3O3S((2S)-N-(1-氰基環(huán)丙基)-4-氟-4-甲基-2-[[(1S)-2,2,2-三氟-1-[4'-(甲基磺酰基)[1,1'-聯(lián)苯]-4-基]乙基]氨基]戊酰胺),分子量為525.56 g/mol。該藥物P2~P3位連接形成苯環(huán),對(duì)組織蛋白酶K具有高度選擇特異性,同時(shí)通過P2位的4-氟亮氨酸與口袋狀S2位間的相互作用,發(fā)揮出強(qiáng)大的負(fù)性調(diào)控作用[23]。ODN作用特點(diǎn)為誘導(dǎo)破骨細(xì)胞產(chǎn)生淺表陷窩,致吸收面積減少,降低骨吸收;致Cat K、抗酒石酸酸性磷酸酶及分解的基質(zhì)蛋白蓄積細(xì)胞內(nèi)囊泡,阻礙囊泡的正常轉(zhuǎn)運(yùn),從而進(jìn)一步抑制骨吸收。值得一提的是,ODN在抑制骨吸收的同時(shí),并不影響破骨細(xì)胞的活性及存活狀態(tài)[24]。
在藥代動(dòng)力學(xué)和口服生物利用度方面,ODN也具有較大的優(yōu)勢(shì)。ODN具有無特殊不良反應(yīng)、適合口服、生物利用度高、半衰期長(zhǎng)等特點(diǎn)。研究發(fā)現(xiàn),其口服后吸收達(dá)峰值時(shí)間為14.2 h,半衰期可達(dá)96.7 h,在體內(nèi)能夠長(zhǎng)期發(fā)揮生物學(xué)效用。在代謝方面,主要由細(xì)胞色素P450-3A(CYP3A)調(diào)控,主要經(jīng)以下4條途徑分解代謝,1)氟代亮氨酸甲基羥基化作用產(chǎn)生M3、M7-B和M7-D代謝產(chǎn)物;2)谷胱甘肽結(jié)合作用產(chǎn)生M6代謝產(chǎn)物;2)脫烷基化作用產(chǎn)生M9代謝產(chǎn)物;4)酰胺部水解作用產(chǎn)生M10代謝產(chǎn)物[25],目前尚未發(fā)現(xiàn)上述代謝中間產(chǎn)物及最終產(chǎn)物存在明顯的毒性作用。
大量動(dòng)物實(shí)驗(yàn)證實(shí),ODN能夠增加骨密度,抑制骨吸收同時(shí)對(duì)骨形成無負(fù)面影響。Jensen等[26]發(fā)現(xiàn),在去勢(shì)家兔骨松模型中予以O(shè)DN治療后,能顯著增加兔脊柱與髖部骨密度,刺激了骨膜骨的形成,維持內(nèi)皮質(zhì)骨的形成,對(duì)骨小梁和皮質(zhì)骨表面的形成率無影響。Stroup等[27]在去勢(shì)恒河猴的實(shí)驗(yàn)中也有類似的發(fā)現(xiàn),ODN可顯著增加去勢(shì)恒河猴骨膜骨和內(nèi)皮質(zhì)骨的形成,增強(qiáng)內(nèi)皮質(zhì)骨的表面礦化,減少皮質(zhì)骨的重建,刺激基礎(chǔ)建模骨的形成,顯著改善皮質(zhì)骨的尺寸和強(qiáng)度[28]。Cabal等[29]通過定量計(jì)算機(jī)斷層掃描和計(jì)算機(jī)斷層掃描成像技術(shù)分析發(fā)現(xiàn),ODN可顯著增加去勢(shì)獼猴骨小梁密度和皮質(zhì)厚度,改善骨小梁微觀架構(gòu)。Fratzl-Zelman等[30]通過定量背散射電子顯像研究ODN對(duì)去卵巢獼猴胸腰椎及股骨骨礦密度分布(bone mineral density distribution,BMDD)發(fā)現(xiàn),ODN明顯增加骨小梁BMDD,但對(duì)皮質(zhì)骨BMDD沒有改變。
一系列臨床試驗(yàn)發(fā)現(xiàn),ODN可明顯增加骨質(zhì)疏松患者脊柱及髖部骨密度,有效降低骨吸收標(biāo)記物(Ⅰ型膠原交聯(lián)氨基末端肽,Ⅰ型膠原交聯(lián)羧基末端肽)而不影響骨形成標(biāo)記物(骨血清堿性磷酸酶、Ⅰ型前膠原N端前肽),患者對(duì)ODN能夠很好耐受且無明顯不良反應(yīng)[31-35]。
來自比利時(shí)和美國的隨機(jī)、安慰劑對(duì)照、雙盲研究設(shè)計(jì)的Ⅰ期臨床試驗(yàn),對(duì)79名年齡≤75歲絕經(jīng)后女性,評(píng)估ODN日劑量0.5 mg、2.5 mg、10 mg與周劑量為5 mg、25 mg、50 mg、100 mg效果。根據(jù)骨代謝標(biāo)記物判斷評(píng)價(jià)ODN的藥代動(dòng)力學(xué)參數(shù)、最佳劑量及安全耐受性。結(jié)果顯示,ODN的半衰期為66~93 h,服藥168 h后,骨吸收標(biāo)記物下降明顯。且周次劑量>50 mg或日次劑量>2.5 mg時(shí),ODN顯示出較強(qiáng)且持續(xù)的抑制骨形成標(biāo)記物的作用,服藥后無明顯不良反應(yīng)[31]。
后續(xù)Ⅱ期試驗(yàn)進(jìn)一步評(píng)價(jià)了不同劑量的周次給藥的治療差異。對(duì)399名年齡為45~85歲,骨密度T值為-2.5 ~-3.5的絕經(jīng)后女性,分別采用周劑量3 mg、10 mg、25 mg和50 mg,治療時(shí)間12個(gè)月,延伸治療為24個(gè)月。結(jié)果顯示,受試者BMD呈劑量依賴性增加,且50 mg/周組受試者BMD增加最顯著,骨吸收標(biāo)記物呈劑量依賴性降低[32]。同期另一項(xiàng)研究中189名女性參與3年臨床延伸試驗(yàn),結(jié)果發(fā)現(xiàn),50 mg/周組受試者BMD持續(xù)增高,骨吸收標(biāo)記物明顯降低,骨形成標(biāo)記物無明顯改變,且到第3年時(shí),骨形成標(biāo)記物較基線值增加了18%[33]。最近5年擴(kuò)展數(shù)據(jù)第二階段研究報(bào)告顯示,85名絕經(jīng)后女性接受ODN 50 mg/周治療5年后,全身多部位的骨量呈現(xiàn)進(jìn)行性(幾乎以線性速率)增加,特別在髖部骨量上增加尤為明顯,骨吸收標(biāo)記物明顯降低,而骨形成標(biāo)記物保持在基線相對(duì)不變[34]。
大量研究提示,ODN可明顯提高患者腰椎及髖部BMD,抑制骨吸收且呈劑量依賴性,同時(shí)對(duì)骨形成標(biāo)記物無顯著影響,患者對(duì)ODN治療的耐受性好,未出現(xiàn)劑量相關(guān)的不良事件[35]。
組織蛋白酶K抑制劑ODN在抑制骨吸收的同時(shí),不抑制骨形成,且耐受性好,無明顯的藥物相關(guān)不良反應(yīng)。其與現(xiàn)有常用的抗骨質(zhì)疏松藥物,如雙膦酸鹽、降鈣素和雌激素受體調(diào)節(jié)劑等具有不同的作用機(jī)制,具有一定的互補(bǔ)作用。隨著ODN逐步應(yīng)用于臨床,其將會(huì)改善骨質(zhì)疏松癥的治療現(xiàn)狀,提高治療效果。
1 戴如春,張麗,廖二元.骨質(zhì)疏松的診治進(jìn)展[J].中國醫(yī)刊,2008,43(4):4-6.
2 Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis[J]. N Engl J Med, 1995, 332(5):305-311.
3 Iacovino JR. Mortality outcomes after osteoporotic fractures in men and women[J]. J Insur Med, 2001, 33(4):316-320.
4 Russell R. Bisphosphonates: the first 40 years[J]. Bone, 2011,49(1, SI): 2-19.
5 Augustine M, Horwitz MJ. Parathyroid hormone and parathyroid hormone-related protein analogs as therapies for osteoporosis[J]. Curr Osteoporos Rep, 2013, 11(4): 400-406.
6 Salari Sharif P, Abdollahi M, Larijani B. Current, new and future treatments of osteoporosis[J]. Rheumatol Int, 2011, 31(3):289-300.
7 V??r?niemi J, Halleen JM, Kaarlonen K, et al. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts[J]. J Bone Miner Res, 2004, 19(9): 1432-1440.
8 Atley LM, Mort JS, Lalumiere M, et al. Proteolysis of human bone collagen by cathepsin K: Characterization of the cleavage sites generating the cross-linked N-telopeptide neoepitope[J]. Bone,2000, 26(3): 241-247.
9 Fuller K, Lawrence KM, Ross JL, et al. Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts[J]. Bone, 2008, 42(1): 200-211.
10 Bossard MJ, Tomaszek TA, Thompson SK, et al. Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation,and substrate identification[J]. J Biol Chem, 1996, 271(21):12517-12524.
11 Xue Y, Cai T, Shi S, et al. Clinical and animal research findings in pycnodysostosis and gene mutations of cathepsin K from 1996 to 2011[J]. Orphanet J Rare Dis, 2011, 6:20.
12 Schilling AF, Mülhausen C, Lehmann W, et al. High bone mineral density in pycnodysostotic patients with a novel mutation in the propeptide of cathepsin K[J]. Osteoporos Int, 2007, 18(5):659-669.
13 Troen BR. The regulation of cathepsin K gene expression[J]. Ann N Y Acad Sci, 2006, 1068:165-172.
14 Gowen M, Lazner F, Dodds R, et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization[J]. J Bone Miner Res, 1999, 14(10): 1654-1663.
15 Kiviranta R, Morko J, Uusitalo H, et al. Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K[J]. J Bone Miner Res, 2001, 16(8): 1444-1452.
16 Eghbali-Fatourechi G, Khosla S, Sanyal A, et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women[J]. J Clin Invest, 2003, 111(8):1221-1230.
17 Meier C, Meinhardt U, Greenfield JR, et al. Serum cathepsin K concentrations reflect osteoclastic activity in women with postmenopausal osteoporosis and patients with Paget’s disease[J]. Clin Lab, 2006, 52(1/2): 1-10.
18 Connor JR, LePage C, Swift BA, et al. Protective effects of a cathepsin K inhibitor, SB-553484, in the canine partial medial meniscectomy model of osteoarthritis[J]. Osteoarthritis Cartilage,2009, 17(9):1236-1243.
19 Kumar S, Dare L, Vasko-Moser JA, et al. A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys[J]. Bone, 2007, 40(1): 122-131.
20 Jerome C, Missbach M, Gamse R. Balicatib, a cathepsin K inhibitor,stimulates periosteal bone formation in monkeys[J]. Osteoporos Int, 2011, 22(12): 3001-3011.
21 Engelke K, Nagase S, Fuerst T, et al. The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study[J]. J Bone Miner Res, 2014, 29(3):629-638.
22 Tanaka M, Hashimoto Y, Sekiya N, et al. Effects of novel cathepsin K inhibitor ONO-5334 on bone resorption markers: a study of four sustained release formulations with different pharmacokinetic patterns[J]. J Bone Miner Metab, 2014, 32(4): 447-454.
23 Br?mme D, Lecaille F. Cathepsin K inhibitors for osteoporosis and potential off-target effects[J]. Expert Opin Investig Drugs, 2009,18(5): 585-600.
24 Leung P, Pickarski M, Zhuo Y, et al. The effects of the cathepsin K inhibitor odanacatib on osteoclastic bone resorption and vesicular trafficking[J]. Bone, 2011, 49(4):623-635.
25 Kassahun K, McIntosh I, Koeplinger K, et al. Disposition and metabolism of the cathepsin K inhibitor odanacatib in humans[J]. Drug Metab Dispos, 2014, 42(5):818-827.
26 Jensen PR, Andersen TL, Pennypacker BL, et al. The bone resorption inhibitors odanacatib and alendronate affect postosteoclastic events differently in ovariectomized rabbits[J]. Calcif Tissue Int, 2014, 94(2): 212-222.
27 Stroup GB, Kumar S, Jerome CP. Treatment with a potent cathepsin K inhibitor preserves cortical and trabecular bone mass in ovariectomized monkeys[J]. Calcif Tissue Int, 2009, 85(4):344-355.
28 Pennypacker BL, Chen CM, Zheng H, et al. Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys[J]. J Bone Miner Res, 2014, 29(8):1847-1858.
29 Cabal A, Jayakar RY, Sardesai S, et al. High-resolution peripheral quantitative computed tomography and finite element analysis of bone strength at the distal radius in ovariectomized adult rhesus monkey demonstrate efficacy of odanacatib and differentiation from alendronate[J]. Bone, 2013, 56(2): 497-505.
30 Fratzl-Zelman N, Roschger P, Fisher JE, et al. Effects of odanacatib on bone mineralization density distribution in thoracic spine and femora of ovariectomized adult rhesus monkeys: a quantitative backscattered electron imaging study[J]. Calcif Tissue Int, 2013,92(3): 261-269.
31 Stoch SA, Zajic S, Stone J, et al. Effect of the cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthy postmenopausal women: two double-blind, randomized, placebo-controlled phase I studies[J]. Clin Pharmacol Ther, 2009, 86(2):175-182.
32 Bone HG, Mcclung MR, Roux C, et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density[J]. J Bone Miner Res, 2010, 25(5):937-947.
33 Eisman JA, Bone HG, Hosking DJ, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect[J]. J Bone Miner Res,2011, 26(2):242-251.
34 Langdahl B, Binkley N, Bone H, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study[J]. J Bone Miner Res, 2012,27(11):2251-2258.
35 Nakamura T, Shiraki M, Fukunaga M, et al. Effect of the cathepsin K inhibitor odanacatib administered once weekly on bone mineral density in Japanese patients with osteoporosis--a double-blind,randomized, dose-finding study[J]. Osteoporos Int, 2014, 25(1):367-376.
Advances in Cathepsin K inhibitor Odanacatib in treatment of osteoporosis
LI Ming, LYU Houchen, ZHANG Licheng, TANG Peifu, ZHANG Lihai
Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
ZHANG lihai. Email: zhanglihai74@qq.com
Cathepsin K (Cat K) is a cysteine protease expressed in osteoclasts, which is the key enzyme of bone resorption in the process of bone rebuilding. Related research confirms that inhibiting its activity is a new way for the treatment of osteoporosis. As the latest research and development of cathepsin K inhibitor, Odanacatib (ODN) can effectively inhibit bone absorption without inhibiting bone formation, and it also shows well tolerance and no obvious drug related adverse reaction, which provides a new option for treatment of osteoporosis.
Odanacatib; cathepsin K; osteoporosis; inhibitors
R 681.4
A
2095-5227(2015)03-0285-03
10.3969/j.issn.2095-5227.2015.03.023
時(shí)間:2014-12-22 16:33
http://www.cnki.net/kcms/detail/11.3275.R.20141222.1633.001.html
2014-09-25
國家自然科學(xué)基金面上項(xiàng)目(31370947;81472112);國家自然科學(xué)基金青年基金(8140090663)
Supported by the National Natural Science Foundation of China(31370947; 81472112); National Natural Science Foundation for Youth of China(81400 90663)
李明,男,碩士。研究方向:創(chuàng)傷骨科。Email: liming8 91215@163.com
張立海,男,博士,副主任醫(yī)師,副教授,副主任。Email: zhanglihai74@qq.com