国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

有機(jī)電解液型鋰空氣電池空氣電極研究進(jìn)展

2015-04-27 00:39羅仲寬尹春麗吳其興李豪君魏蒙蒙
關(guān)鍵詞:電解液容量電極

羅仲寬,尹春麗,吳其興,王 芳,黃 洋,李豪君,魏蒙蒙

深圳市新型鋰離子電池與介孔材料重點(diǎn)實(shí)驗(yàn)室,深圳大學(xué)化學(xué)與化工學(xué)院,深圳 518060

【材料科學(xué) / Materials Science】

有機(jī)電解液型鋰空氣電池空氣電極研究進(jìn)展

羅仲寬,尹春麗,吳其興,王 芳,黃 洋,李豪君,魏蒙蒙

深圳市新型鋰離子電池與介孔材料重點(diǎn)實(shí)驗(yàn)室,深圳大學(xué)化學(xué)與化工學(xué)院,深圳 518060

有機(jī)電解液體系的鋰空氣電池因其超高能量密度受到廣泛關(guān)注. 為尋求高性能、安全實(shí)用的鋰空氣電池,國(guó)內(nèi)外就正極材料、催化劑、電解液和鋰負(fù)極等開展了大量研究,其中空氣電極的優(yōu)化、電解液的穩(wěn)定性是鋰空氣電池高性能發(fā)揮的關(guān)鍵. 介紹了近年有機(jī)電解液鋰空氣電池空氣電極上的反應(yīng)機(jī)理、空氣電極影響因素、正極材料和催化劑等最新研究進(jìn)展,分析了各類多孔材料和催化劑的優(yōu)缺點(diǎn),及其對(duì)電池電化學(xué)性能的影響,結(jié)合本課題組研究成果,指出了鋰空氣電池空氣電極的發(fā)展方向,即結(jié)合新型復(fù)合氧化物催化劑,構(gòu)筑獨(dú)特的多孔電極結(jié)構(gòu),以實(shí)現(xiàn)高容量、長(zhǎng)壽命的鋰空氣電池.

應(yīng)用化學(xué);鋰空氣電池;空氣電極;反應(yīng)機(jī)理;碳材料;催化劑

為應(yīng)對(duì)能源和環(huán)境兩大全球性問(wèn)題,人們對(duì)可再生能源(太陽(yáng)能、風(fēng)能和潮汐能等)的應(yīng)用研究不斷加深,與此同時(shí),也對(duì)電能存儲(chǔ)系統(tǒng)(如燃料電池、鋰硫電池和金屬-空氣電池等)進(jìn)行了廣泛深入的探索. 目前,鋰離子電動(dòng)車的電池能量密度即將達(dá)到其理論極限,嚴(yán)重制約著電動(dòng)汽車的續(xù)駛里程,且電池造價(jià)占到了整車成本的65%[1]. 鋰空氣電池技術(shù)作為后鋰離子時(shí)代的一種新型電池技術(shù),具有5 200 W·h/kg的超高能量密度(考慮鋰片和O2的質(zhì)量),是鋰離子電池體系(150 W·h/kg)的數(shù)十倍,預(yù)計(jì)可驅(qū)動(dòng)電動(dòng)汽車行駛500 km以上,接近汽油燃料汽車的行駛能力. 文獻(xiàn)[2]指出,鋰空氣電池的研究已獲日本(NEDO(New energy and industrial technology development organization)和Rising項(xiàng)目)、美國(guó)(DOE(Department of energy)和EIH(Energy innovation hub)項(xiàng)目)、中國(guó)(科技部973項(xiàng)目)政府的國(guó)家重點(diǎn)研究資助. 近年關(guān)于鋰空氣電池的研究報(bào)道越來(lái)越多,涉及電解液、空氣電極和催化劑等方面,涵蓋整個(gè)電池體系研究進(jìn)展的更新速度也較快.

鋰空氣電池的超高比能量來(lái)自兩個(gè)方面:一是鋰空氣電池的正極活性物質(zhì)(O2)直接從外界汲取而不存儲(chǔ)在電池中;二是電池的負(fù)極材料金屬鋰擁有固體材料中的最高的比容量(3.862 A·h/g)和最低的電極電勢(shì)(-3.04 V)[3]. 然而,鋰空氣電池還處于研究初期,要實(shí)現(xiàn)應(yīng)用還面臨著重大挑戰(zhàn),特別是電池組件材料的長(zhǎng)壽命可循環(huán)充電性能仍有待提高. 本文針對(duì)近年來(lái)有機(jī)體系鋰空氣電池空氣電極上的反應(yīng)機(jī)理、影響因素、正極材料及催化劑的研究進(jìn)展作詳細(xì)介紹.

1 有機(jī)體系鋰空氣電池及反應(yīng)機(jī)理

1996年,Abraham等[4]最先報(bào)道了有機(jī)體系的Li/LiPF6-聚丙烯腈/O2的鋰空氣電池,該電池達(dá)到了250~350 W·h/kg的能量密度,遠(yuǎn)高于現(xiàn)有的鋰離子電池. 2006年,Ogasawara等[5]建立了基于碳酸酯類電解液體系的鋰空氣電池,首次實(shí)現(xiàn)了50次循環(huán)后,電池仍能保持600 mA·h/g的容量. 此后,鋰空氣電池的研究在國(guó)內(nèi)外廣泛開展起來(lái). 根據(jù)電解液的不同,鋰空氣電池可分為有機(jī)電解液型、水系電解液型、有機(jī)-水混合電解液型以及全固態(tài)電解質(zhì)型4類. 有機(jī)電解液型鋰空氣電池結(jié)構(gòu)相對(duì)簡(jiǎn)單,理論上的能量密度最高,體系較為穩(wěn)定,且由于無(wú)水環(huán)境包圍鋰片,電池的整體安全性較高,因而倍受關(guān)注.

有機(jī)電解液體系鋰空氣電池以金屬鋰作負(fù)極,多孔材料為正極(如碳納米管和多孔金等),從空氣中汲取的O2為正極活性物質(zhì),碳酸酯類、砜類、醚類或腈類等有機(jī)物搭配鋰鹽為鋰空氣電池電解液體系[6-7]. 目前研究中,乙二醇二甲醚(1,2-dimethoxyethane,DME)[8]、四乙二醇二甲醚(tetraethylene glycol dimethyl ether, TEGDME)[9]和二甲基亞砜(dimethyl sulfoxide, DMSO)[10]作為電池電解液的情況較多. 學(xué)界對(duì)于有機(jī)體系的氧化還原機(jī)制(oxygen reductive reaction/oxygen evolution reaction, ORR/OER)有不同的見解[11-14],一般認(rèn)為:① 通過(guò)兩電子過(guò)程,O2在正極表面直接被還原,與Li+結(jié)合生成Li2O2[13]

(1)

(2)

(3)

② 通過(guò)一電子過(guò)程O2首先被還原成O2-,與Li+生成不穩(wěn)定的中間產(chǎn)物L(fēng)iO2,然后再歧化得到Li2O2[15]

(4)

(5)

(6)

(7)

Cao等[16]在DMSO電解液體系中采用電子順磁共振測(cè)試方法,以5,5-二甲基吡咯啉-N-氧化物(5,5-dimethyl-1-pyrroline N-oxide ,DMPO)為捕捉物,在放電過(guò)程中成功捕獲O2-(在充電過(guò)程中未檢測(cè)到O2-),提出氧化還原機(jī)制為:放電時(shí),O2在空氣電極上被還原成O2-,與Li+結(jié)合生成LiO2后再發(fā)生歧化反應(yīng)得到Li2O2;在充電過(guò)程中,Li2O2直接被還原產(chǎn)生O2,不形成任何中間體,同時(shí)釋放Li+. 放電過(guò)程中生成的Li2O2導(dǎo)電性極差,不溶于有機(jī)電解液,而是停留在正極表面. 大量的Li2O2會(huì)增大電極的阻抗,從而引起充電電壓增大,另一方面,大量的Li2O2會(huì)嚴(yán)重堵塞空氣電極內(nèi)部的孔道,甚至破壞電極的微觀結(jié)構(gòu),致使電池循環(huán)性能惡化,甚至放電終止[17].

2 影響空氣電極性能的因素

空氣電極用來(lái)提供鋰離子、電子和氧氣的三維傳輸通道和反應(yīng)的活性位置,為放電產(chǎn)物L(fēng)i2O2提供儲(chǔ)存空間. 圖1簡(jiǎn)要描述了鋰空氣電池的簡(jiǎn)單結(jié)構(gòu)及三相反應(yīng)界面處電解液在電池正極的分布情況. 圖1(a)中負(fù)極鋰釋放的Li+穿過(guò)隔膜與空氣中的O2及外電路來(lái)的e-在三相界面接觸,發(fā)生反應(yīng). 因此,具有多孔結(jié)構(gòu)的空氣電極是決定電池性能的關(guān)鍵部件之一,而正極的比表面積、多孔情況以及被電解液濕潤(rùn)的程度則是體現(xiàn)正極性能優(yōu)劣的重要參數(shù)[18-19].

圖1 鋰空氣電池結(jié)構(gòu)示意圖和電解液在正極的分布Fig.1 Schematic of Li-air battery structure and electrolyte distribution in cathode

空氣電極的比表面積是影響電池性能的重要因素之一,但并不是比表面積越大,電池性能越佳,反而電極孔體積、孔徑大小對(duì)電池性能的影響更大[20]. 孔體積大,就有足夠空間容納放電產(chǎn)物,延緩因放電產(chǎn)物堵塞導(dǎo)致的放電終止. 孔徑是選擇空氣電極材料的重要參數(shù),孔徑太小,孔道易被放電產(chǎn)物充滿,不利于氧氣的傳輸,太大則會(huì)造成孔的浪費(fèi)[21]. 由于放電產(chǎn)物不導(dǎo)電且存在不完全分解,當(dāng)其附著在正極表面時(shí),會(huì)導(dǎo)致多孔電極的有效孔徑減小、微孔被完全堵塞,產(chǎn)生厚Li2O2膜,從而阻止電子的傳導(dǎo)過(guò)程,導(dǎo)致表面失效[22]. 因此,設(shè)計(jì)合理的多孔電極結(jié)構(gòu),對(duì)解決放電產(chǎn)物的存放問(wèn)題,促進(jìn)放電產(chǎn)物的分解,改善電池性能至關(guān)重要,如中空球形碳[23]、自支撐式[24]空氣電極的設(shè)計(jì). 電解液對(duì)正極的濕潤(rùn)情況如圖1(b)—(d),分為3種狀態(tài):完全淹沒(méi)、恰當(dāng)濕潤(rùn)和干枯. 完全淹沒(méi)可能賭塞微孔,不利于氧進(jìn)入電極孔內(nèi)發(fā)生反應(yīng);干枯(即基本不濕潤(rùn))則會(huì)大大減小三相界面反應(yīng)的有效面積;因此,恰當(dāng)?shù)臐駶?rùn)才能提供最大的三相反應(yīng)界面,這對(duì)電極的反應(yīng)至關(guān)重要[19].

另外,正極厚度對(duì)電池容量的影響也不可忽視. Li等[25]通過(guò)建立一個(gè)二維、非等溫的理想態(tài)模型并結(jié)合數(shù)學(xué)分析指出,當(dāng)電極的厚度分別為75、200、400、600和800 μm時(shí),對(duì)應(yīng)的放電比容量在該模型設(shè)定下分別為2 151、1 500、980、696和526 mA·h/g,所以正極負(fù)載的碳材料厚度越大,電子和O2等的傳輸阻力越大,導(dǎo)致放電容量越小,孔隙利用率越低. 除此之外,顆粒大小、涂膜方法、集流體材質(zhì)以及催化劑等都對(duì)正極的電化學(xué)性能有影響[26-27].

因此,一個(gè)理想的空氣電極應(yīng)具備:① 高比表面積,以提供大的反應(yīng)界面;② 優(yōu)化的孔道結(jié)構(gòu),以存放放電產(chǎn)物并確保氧氣及離子的快速運(yùn)輸;③ 電解液對(duì)正極的恰當(dāng)潤(rùn)濕,以利于三相界面反應(yīng);④ 適中的厚度,以減小電子傳輸阻抗;⑤高活性的催化劑,以改善ORR和OER反應(yīng)動(dòng)力學(xué)過(guò)程.

3 正極基體材料

3.1 碳多孔材料

3.1.1 傳統(tǒng)碳多孔材料

經(jīng)典的鋰空氣電池正極基體材料大都采用具有多孔結(jié)構(gòu)的商品炭黑,如Ketjin black(KB)、Super P、Vulcan XC-72等,其導(dǎo)電性好、比表面積大,利于電子的傳輸和界面反應(yīng). Park等[28]選用KB(EC600JD、EC300JD)等5種碳材料分別用作鋰空氣電池的正極并進(jìn)行性能比較,發(fā)現(xiàn)KB EC600JD的放電比容量最大達(dá)2 600 mA·h/g(0.1 mA/cm2、1.5 V截止電壓),且文獻(xiàn)[28-29]研究表明,KB具有較大的孔體積和比表面積,比容量最高. Super P雖然比表面積不大,僅有62 m2/g,但平均孔徑在50 nm左右,有利于放電產(chǎn)物的存放,按孔體積比容量計(jì)算Super P是KB的7倍[18]. 因此,將KB和Super P按質(zhì)量比為 5∶1混合,構(gòu)建雙孔正極結(jié)構(gòu),電池的放電比容量在30 mA/g、2.0 V下達(dá)到1 219 mA·h/g,高于單一使用KB(1 005 mA·h/g)或Super P(635 mA·h/g)的電池[18]. 傳統(tǒng)碳材料雖然種類多樣,價(jià)格便宜,但在高于3.5 V時(shí)不穩(wěn)定,易與放電產(chǎn)物反應(yīng)發(fā)生降解,且傳統(tǒng)碳的孔結(jié)構(gòu)不足以滿足鋰空氣電池的性能要求,需進(jìn)一步尋求更為合理的多孔碳.

3.1.2 新型碳多孔材料

溶膠凝膠法和模板法是制備碳多孔材料最常用的方法,成本低廉且可控調(diào)節(jié)孔徑大小. 利用間苯二酚和甲醛按一定質(zhì)量比在碳酸鈉的催化下混合,經(jīng)固化、陳化、Ar氣氛中碳化以及600~1 200 ℃高溫下活化可制得碳?xì)饽z,調(diào)整間苯二酚和甲醛的質(zhì)量比以及不同的活化溫度可有效控制多孔碳材料的比表面積和孔徑分布[21, 30-31]. 將碳?xì)饽z用于鋰空氣電池可達(dá)到4 155 mA·h/g的比容量[32]. 本課題組在利用溶膠凝膠法制備碳?xì)饽z材料并用以構(gòu)筑具有雙孔結(jié)構(gòu)的空氣電極上取得了一定的進(jìn)展,提升氧氣傳輸速率的同時(shí)增大了放電產(chǎn)物的儲(chǔ)存空間,使得鋰空氣電池的循環(huán)性能與放電容量同時(shí)得到改善[31].模板法是通過(guò)模板的孔徑來(lái)控制目的產(chǎn)物的孔徑分布. Nie等[33]以兩種不同粒徑的SiO2膠體為硬模板合成雙孔多層結(jié)構(gòu)的模板碳,獲得了10 059 mA·h/g的高比容量. 溶膠凝膠法和模板法制備碳多孔材料的合成工藝簡(jiǎn)單、成本不高,但由于影響因素太多(前軀體的選擇,合成條件的控制等),很難制備得到一種理想狀態(tài)的多孔碳. 如何能確定一組最佳合成條件,且所得材料孔徑分布合理,將是鋰空氣電池正極材料的重點(diǎn)研究方向.

碳納米管(carbon nanotubes, CNTs)和石墨烯(graphene nanosheets, GNSs)具有獨(dú)特的結(jié)構(gòu)特征和良好的導(dǎo)電性,近年來(lái)也被廣泛用于鋰空氣電池的空氣電極,突出表現(xiàn)為電池容量的提升和循環(huán)的穩(wěn)定性. Chen等[34]利用浮動(dòng)催化法將多壁碳納米管互穿制備得到一種三維孔道結(jié)構(gòu)的材料,并直接用于空氣電極,在雙三氟甲基磺酸亞胺鋰/三甘醇二甲醚(LiTFSA/G3)的電解液體系、0.5 A/g的電流密度下,容量可達(dá)34 600 mA·h/g,若限制在1 000 mA·h/g、0.25 A/g,電池穩(wěn)定循環(huán)50圈后基本沒(méi)有明顯的過(guò)電勢(shì)增加.另外,近年采用N摻雜的CNTs(即N-CNTs)或是在CNTs中添加催化劑作為空氣電極的研究較多. N原子的加入使得N最外層電子與碳π鍵相結(jié)合,進(jìn)而可修飾碳納米管結(jié)構(gòu),利于放電產(chǎn)物覆蓋在正極表面,有優(yōu)化孔結(jié)構(gòu)和提升電池容量的傾向[35-36],催化劑則可在CNTs表面更好的發(fā)揮催化效應(yīng). Lim等[37]以Pt作催化劑制備CNTs/Pt電極,在2 A/g的條件下可循環(huán)130圈,有效地提高了電池的循環(huán)性能,即使是完全充放電測(cè)試也能循環(huán)100圈,是當(dāng)前鋰空氣電池的一大突破.

圖2 催化劑在碳基體上的沉積[41]Fig.2 Deposition of catalyst on carbon substrate[41]

GNSs的每個(gè)碳原子均為sp2雜化,p軌道上的剩余電子可形成大π鍵,π電子能自由移動(dòng),賦予GNSs良好的導(dǎo)電性[38]. 理想的單層GNSs具有超大的比表面積(2 630 m2/g)[39],可提供較大的反應(yīng)場(chǎng)所,且其獨(dú)特的結(jié)構(gòu)特征有利于氧氣的擴(kuò)散,促進(jìn)O2和Li+在正極表面充分接觸. 文獻(xiàn)[40]的研究表明,在相同測(cè)試參數(shù)下,GNSs電池體系的放電容量可達(dá)8 705.9 mA·h/g,而BP-2000和XC-72碳的放電比容量分別為1 909.1 和1 053.8 mA·h/g. 另外,GNSs還有較好的催化作用. 圖2(c)和圖2(d)中,Co3O4/GNSs為混合催化劑涂覆在碳基體上,GNSs的片狀結(jié)構(gòu)使得Co3O4納米顆粒在碳基體上很好地鋪展開,提供更大面積的催化活性區(qū)域,而不像圖2(a)和圖2(b)中的單Co3O4催化劑很容易板結(jié)分散不開. 在0.2 mA/cm2,2.5~4.4 V下,Co3O4/GNSs電池在循環(huán)10圈后,電池的比容量、電壓基本沒(méi)有發(fā)生變化,表現(xiàn)出較好的穩(wěn)定性[41]. 因此,GNSs確實(shí)具有一定的優(yōu)越性,但和傳統(tǒng)碳材料相比,其成本較高.

碳材料種類很多,結(jié)構(gòu)不一,各種性能參數(shù)及在電池上的表現(xiàn)差異較大. 表1列出了本節(jié)主要涉及的碳空氣電極材料的最高比容量,并簡(jiǎn)要了描述其優(yōu)缺點(diǎn).

表1 碳多孔材料空氣電極性能比較

3.2 非碳多孔材料

碳多孔材料是目前鋰空氣電池應(yīng)用最廣泛的正極材料. 然而,直到文獻(xiàn)[8]報(bào)道采用LiNO3/DME電解液體系消除充電過(guò)程中碳正極的鈍化之前,還沒(méi)有無(wú)CO2釋放的鋰空氣電池(正極為碳). Bruce團(tuán)隊(duì)[42]在研究中發(fā)現(xiàn),碳材料在充電電壓低于3.5 V時(shí)較穩(wěn)定,而當(dāng)電壓高于3.5 V時(shí),易被氧化生成Li2CO3,并會(huì)促進(jìn)電解液(如TEGDME和DMSO)的分解,對(duì)Li2O2形成或分解的可逆循環(huán)性造成障礙,嚴(yán)重影響電池的電化學(xué)性能. 所以,避開碳材料空氣電極,而采用非碳多孔空氣電極可減少副反應(yīng)的發(fā)生. Bruce團(tuán)隊(duì)先是選用納米多孔金(nanoporous gold, NPG),較大的比表面積和合適的孔徑分布滿足鋰空氣電池空氣電極的要求. 以NPG為正極,鋰片作負(fù)極,0.1 mol/L LiClO4/DMSO為電解液構(gòu)建電池體系,當(dāng)電流密度為500 mA/g,循環(huán)100圈后,電池剩余容量還有95%[10]. 但NPG較高的造價(jià)使電池的成本成倍增加,而且其質(zhì)量較大,打破了鋰空氣電池輕便這一重要優(yōu)勢(shì). 因此,該團(tuán)隊(duì)又以TiC替換NPG電極,在0.5 mol/L的LiClO4/DMSO 電解液體系,1 A/cm2的電流密度下循環(huán)100圈后,剩余容量仍達(dá)到98%,表現(xiàn)出較好的穩(wěn)定性和可行性[43]. 近期,Zhao等[44]首次采用TiO2納米管陣列覆蓋在Ti泡沫上,并以Pt作催化劑制備電極,無(wú)任何碳材料和黏結(jié)劑的添加. 得益于TiO2在充放電過(guò)程中優(yōu)良的穩(wěn)定性,在1 000 mA·h/g、1 A/g的條件下,電池循環(huán)了140圈,甚至在5 A/g的電流密度下,也成功實(shí)現(xiàn)了150次循環(huán),值得人們關(guān)注.

到目前為止,關(guān)于非碳正極的研究還不廣泛,卻是一個(gè)很好的研究方向. 一方面,NPG、TiC和TiO2等自身具有良好催化效應(yīng);另一方面,能避免碳材料作為電極的缺陷. 若沒(méi)有好的方法解決碳正極的化學(xué)穩(wěn)定性,非碳正極將會(huì)很快被廣泛采納.

4 正極催化劑

現(xiàn)階段,鋰空氣電池的充電電壓高,循環(huán)壽命短、效率低,阻礙其商業(yè)化生產(chǎn).催化劑可改善充放電電化學(xué)過(guò)程的動(dòng)力學(xué)行為,提高放電電壓平臺(tái),降低充電電壓平臺(tái),延長(zhǎng)電池壽命提升電池循環(huán)效率. 因此,國(guó)內(nèi)外開展了眾多的研究,致力于設(shè)計(jì)和開發(fā)合理的、應(yīng)用在鋰空氣電池的空氣電極上的催化劑. 其主要分類及進(jìn)展如下.

4.1 貴金屬類催化劑

貴金屬如Au、Ag、Pt、Pd、Ir和Ru等常用作鋰空氣電池的催化劑,其中,采用Pt和Pd作催化劑的電池有最小的過(guò)電勢(shì),應(yīng)用較為廣泛[45]. 文獻(xiàn)[46-47]的研究表明,貴金屬在有機(jī)電解液體系中可有效促進(jìn)氧氣的電化學(xué)反應(yīng),且不同金屬對(duì)氧還原和氧析出的催化能力差別較大. 對(duì)于非水電解液中Li+參與的氧還原反應(yīng),催化活性順序?yàn)镻d>Pt>Ru≈Au>玻碳,但由于Pt和Pd存在d軌道空穴,所以能夠最大程度地進(jìn)行氧還原,有效提高電池的放電電壓. Guo等[48]采用具自組裝能力的蛋白質(zhì)纖維為模板制備納米Pt和Pd作為正極催化劑,電池的放電平臺(tái)為2.4~2.5 V,充電平臺(tái)僅為3.7~4.0 V,比純碳正極電池的充電電壓低約0.7 V. Ru、Au和Ag等或兩種貴金屬的合金催化劑,在電池正極上的應(yīng)用也表現(xiàn)出良好的催化效應(yīng)[49-51]. Lu等[50]采用PtAu納米合金作催化劑,電池在OER過(guò)程中,充電電壓降低最多有900 mV,而在ORR過(guò)程中,放電電壓增大了150~300 mV,效果明顯.

4.2 金屬氧化物類催化劑

過(guò)渡金屬氧化物催化劑包括MnO2、Fe2O3、Fe3O4、NiO、CuO和Co3O4等.其中,得到廣泛研究的是MnO2和Co3O4,其來(lái)源廣,成本低,且對(duì)環(huán)境友好. MnO2主要有(α、β、γ和λ)-MnO2幾種型號(hào),α-MnO2型對(duì)電池性能的提升最為優(yōu)越. Cao等[52]在GNSs的基體上,得到以α-MnO2為催化劑的電池,呈現(xiàn)出了11 520 mA·h/g的高比容量(以GNS為基體計(jì)算),當(dāng)控制比容量為2 900 mA·h/g時(shí),循環(huán)25圈后電壓一直保持平穩(wěn),沒(méi)有出現(xiàn)過(guò)電勢(shì)增加的現(xiàn)象. 同樣,在GNSs基體中,添加了Co3O4的電池也表現(xiàn)出了良好的電化學(xué)性能[53]. Black等[54]在LiPF6/TEGDME的電解液體系下,以生長(zhǎng)在還原氧化石墨烯(reduced graphene oxide, Co3O4/RGO)上的Co3O4為混合催化劑,70%的KB多孔碳為基底,構(gòu)成空氣電池,與純KB正極相比,Co3O4/RGO電池的充電平臺(tái)為3.5~3.75 V,比KB降低了0.35 V,容量也增加了近2 500 mA·h/g,性能得到明顯改善.

4.3 復(fù)合氧化物類催化劑

除單金屬氧化物外,由兩種或兩種以上金屬元素組成的鈣鈦礦型和燒綠石型復(fù)合氧化物也被用于空氣電極. 鈣鈦礦型催化劑具陽(yáng)離子陣列的結(jié)構(gòu)穩(wěn)定性,可容納移動(dòng)氧離子,且多空位,具有較高的電子/離子電導(dǎo)率和催化活性. Xu等[55]首次利用加熱靜電紡絲技術(shù)可控合成了多孔納米鈣鈦礦氧化物作為鋰空氣電池催化劑(圖3),這種多孔納米管狀結(jié)構(gòu)不僅有利于增加催化劑的活性位點(diǎn),同時(shí)也可以合理調(diào)控空氣電極的孔道結(jié)構(gòu),有利反應(yīng)物的傳質(zhì). 由于該催化劑的添加,鋰空氣電池首次實(shí)現(xiàn)了比容量高于10 000 mA·h/g的可逆循環(huán),當(dāng)控制比容量為1 000 mA·h/g時(shí),電池的循環(huán)壽命可達(dá)到125次. 近期,Kalubarme等[56]制備了一系列的LaNixCo1-xO3-δ型催化劑,其中,LaNi0.25Co0.75O3-δ以最大放電容量7 720 mA·h/g表現(xiàn)出優(yōu)越的催化效應(yīng). 燒綠石結(jié)構(gòu)的復(fù)合氧化物(A2B2O6O)由Oh等[57]成功合成,此結(jié)構(gòu)氧化物表現(xiàn)出較高的比容量(>10 000 mA·h/g)及較好的容量保持率:循環(huán)3次后,比容量依然能保持8 000 mA·h/g以上,且其釋放氧的活性也有較大提高.

圖3 鈣鈦礦催化劑的合成路線[55]Fig.3 Synthesis route of perovskite catalyst[55]

貴金屬、過(guò)渡金屬氧化物及復(fù)合氧化物催化劑在鋰空氣電池的應(yīng)用中各有利弊:貴金屬催化效應(yīng)好,價(jià)格昂貴;過(guò)渡金屬氧化物雖成本低,但該類催化劑催化活性的穩(wěn)定性能還無(wú)法與貴金屬相媲美,若能開發(fā)一種該類的催化劑,成功提升電池性能,并直接取代貴金屬催化劑,必將大大降低電池成本;復(fù)合氧化物是一種新型催化劑,對(duì)電池性能有明顯改善,發(fā)展空間廣闊.到目前為止,還沒(méi)有一種催化劑能完美匹配鋰空氣電池,因此,需要更深入的探索.

4.4 其他催化劑

除上述催化劑外,聚合物、Li2O2和N修飾等也可用作催化劑提升電池電化學(xué)性能.

圖4 添加可溶性LiI催化劑的聚多巴胺-CNTs電極反應(yīng)示意圖[59]Fig.4 Schematic of reactions on the polydopamine-coated CNTs electrode with the dissolved LiI catalyst[59]

圖5 VA-NCCF電極的循環(huán)性能圖[62]Fig.5 Rate performance of the VA-NCCF electrode[62]

鋰空氣電池具有超高的理論比能量,其潛在開發(fā)價(jià)值高,應(yīng)用前景廣闊. 用于電動(dòng)車充電一次,可行駛500 km以上. 近年,鋰空氣電池的研究取得了一定的成果,但要將鋰空氣電池用于人們實(shí)際生活尚面臨許多挑戰(zhàn):電化學(xué)性質(zhì)穩(wěn)定的電解液、合適的正極材料及修飾、有效催化劑的開發(fā)及優(yōu)化空氣電極結(jié)構(gòu)的設(shè)計(jì)等. 綜上所述,碳?xì)饽z、模板碳可以調(diào)控碳材料微孔結(jié)構(gòu),且其制備工藝較為簡(jiǎn)便,但合成技術(shù)尚不成熟,還需要進(jìn)一步的深入探索. 碳納米管和石墨烯均具有獨(dú)特的微觀結(jié)構(gòu),在鋰空氣電池中表現(xiàn)了高比容量、高倍率、長(zhǎng)壽命等優(yōu)異的電池性能. 如果采用一種合適的催化劑對(duì)這些碳材料進(jìn)行改性,將使鋰空氣電池有著更好的發(fā)展. 同時(shí),空氣電極結(jié)構(gòu)的優(yōu)化可有效提升電池的電化學(xué)性能的穩(wěn)定性及循環(huán)壽命. 因此,在構(gòu)筑雙孔結(jié)構(gòu)的基礎(chǔ)上,本課題組將進(jìn)一步深入探索鋰空氣電池的電化學(xué)過(guò)程和機(jī)理,結(jié)合穩(wěn)定電解液的發(fā)展,從催化劑、正極材料優(yōu)選及結(jié)構(gòu)優(yōu)化等方面共同促進(jìn)鋰空氣電池綜合性能的提升,以加快其實(shí)用化和商業(yè)化進(jìn)程.

除空氣電極外,負(fù)極鋰也是影響鋰空氣電池高性能、長(zhǎng)壽命發(fā)揮的一大問(wèn)題.雖然鋰本身有高比容量和低電極電勢(shì),但其在反復(fù)的充放電過(guò)程中會(huì)形成不均勻沉積,引起樹枝樣的結(jié)晶,如果結(jié)晶穿過(guò)隔膜則會(huì)引起電池內(nèi)部短路,存在嚴(yán)重的安全隱患,而且半開放的體系環(huán)境使負(fù)極表面發(fā)生副反應(yīng)的幾率增加,導(dǎo)致庫(kù)倫效率較低[6,64]. 因此,采取某種手段使負(fù)極鋰表面形成一層保護(hù)膜或鈍化膜,從而抑制鋰枝晶的生長(zhǎng)和副反應(yīng)的發(fā)生,將是鋰空氣電池能夠從實(shí)驗(yàn)研究進(jìn)入實(shí)際應(yīng)用的必要前提.

/ References:

[1] Rahman M A, Wang X, Wen C. A review of high energy density lithium-air battery technology[J].Journal of Applied Electrochemistry, 2013, 44(1): 5-22.

[2] Guo Xiangxin, Huang Shiting, Zhao Ning, et al. Rapid development and critical issues of secondary lithium-air batteries[J]. Journal of Inorganic Materials, 2014, 29(2): 113-123.(in Chinese) 郭向欣, 黃詩(shī)婷, 趙 寧, 等. 二次鋰空氣電池研究的快速發(fā)展及其急需解決的關(guān)鍵科學(xué)問(wèn)題[J]. 無(wú)機(jī)材料學(xué)報(bào), 2014, 29(2): 113-123.

[3] Hu Xinguo. Power battery technology and application[M]. Beijing: Chemical Industry Press, 2013: 277-290.(in Chinese) 胡信國(guó). 動(dòng)力電池技術(shù)與應(yīng)用[M]. 北京: 化學(xué)工業(yè)出版社, 2013: 277-290.

[4] Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium oxygen battery[J]. Journal of the Electrochem Society, 1996, 143(1): 1-5.

[5] Ogasawara T, Debart A, Holzapfel M, et al. Rechargeable Li2O2electrode for lithium batteries[J]. Journal of the American Chemical Materials, 2006, 128(4): 1390-1393.

[6] Lu Jun, Li Li, Park J B, et al. Aprotic and aqueous Li-O2batteries[J]. Chemical Reviews, 2014, 114: 5611-5640.

[7] Balaish M, Kraytsberg A, Ein-Eli Y. A critical review on lithium-air battery electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16(7): 2801-2822.

[8] Kang S J, Mori T, Narizuka S, et al. Deactivation of carbon electrode for elimination of carbon dioxide evolution from rechargeable lithium-oxygen cells[J]. Nature Communications, 2014, 5: 3937-3943.

[9] Jung H G, Hassoun J, Park J B, et al. An improved high-performance lithium-air battery[J]. Nature Communications, 2012, 4(7): 579-585.

[10] Peng Zhangquan, Freunberger S A, Chen Yuhui, et al. A reversible and higher-rate Li-O2battery[J]. Science, 2012, 337(6094): 563-566.

[11] Peng Zhangquan, Freunberger S A, Hardwick L J, et al. Oxygen reactions in a non-aqueous Li+electrolyte[J]. Angewandte Chemie International Edition. 2011, 123(28): 6475 -6479.

[12] Chen Yuhui, Freunberger S A, Peng Zhangquan, et al. Li-O2battery with a dimethylformamide electrolyte[J]. Journal of the American Chemical Society, 2012, 134(18): 7952-7957.

[13] Mccloskey B D, Scheffler R, Speidel A, et al. On the mechanism of nonaqueous Li-O2electrochemistry on C and its kinetic overpotentials: some implications for Li-air batteries[J].The Journal of Physical Chemistry C, 2012, 116(45): 23897-23905.

[14] Nanda J, Bilheux H, Voisin S, et al. Anomalous discharge product distribution in lithium-air cathodes[J]. The Journal of Physical Chemistry C, 2012, 116(15): 8401-8408.

[15] Laoire C O, Mukerjee S, Abraham K M. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable[J]. Journal of the Physical Chemisty C, 2010, 114(19): 9178-9186.

[16] Cao Ruiguo, Walter E D, Xu Wu, et al. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries[J]. ChemSusChem, 2014, 7(9): 2436-2440.

[17] Jiang Xie, Liu Xiaofei, Zhao Shiyong, et al. Research progress of organic electrolyte based lithium-air batteries[J]. Acta Chimica Sinica, 2014, 72: 417-426.(in Chinese) 蔣 頡, 劉曉飛, 趙世勇, 等. 基于有機(jī)電解液的鋰空氣電池研究進(jìn)展[J]. 化學(xué)學(xué)報(bào), 2014, 72: 417-426.

[18] Zhang Yining, Zhang Huamin, Li Jing, et al. The use of mixed carbon materials with improved oxygen transport in a lithium-air battery[J]. Journal of Power Sources. 2013, 240: 390-396.

[19] Bardenhagen I, Dreher W, Fenske D, et al. Fluid distribution and pore wettability of monolithic carbon xerogels measured by 1H NMR relaxation[J]. Carbon, 2014, 68: 542-552.

[20] Meini S, Piana M, Beyer H, et al. Effect of carbon surface area on first discharge capacity of Li-O2cathodes and cycle-life behavior in ether-based electrolytes[J]. Journal of the Electrochemical Society, 2012, 159(12): A2135-A2142.

[21] Mirzaeian M, Hall P J, Sillars F B, et al. The effect of operation conditions on the performance of lithium/oxygen batteries[J]. Journal of the Electrochemical Society, 2012, 160(1): A25-A30.

[22] Xue K H, Nguyen T K, Franco A A. Impact of the cathode microstructure on the discharge performance of lithium air batteries: a multiscale model[J]. Journal of the Electrochemical Society, 2014, 161(8): E3028-E3035.

[23] Xu Jijing, Wang Zhongli, Xu Dan, et al. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries[J]. Nature Communications, 2013, 4: 2438-2447.

[24] Cui Yanming, Wen Zhaoyin, Liu Yu. A free-standing-type design for cathodes of rechargeable Li-O2batteries[J]. Energy & Environmental Science, 2011, 4(11): 4727-4734.

[25] Li Xianglin, Faghri A. Optimization of the cathode structure of lithium-air batteries based on a two-dimensional, transient, non-isothermal model[J]. Journal of the Electrochemical Society, 2012, 159(10): A1747-A1754.

[26] Ma Zhong, Yuan Xiangxia, Sha Haodong, et al. Influence of cathode process on the performance of lithium-air batteries[J]. International Journal of Hydrogen Energy, 2013, 38(25): 11004-11010.

[27] Li Qing, Cao Ruiguo, Cho J, et al. Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(27): 13568-13582.

[28] Park C K, Park S B, Lee S Y, et al. Electrochemical performances of lithium-air cell with carbon materials[J]. Bulletin of the Korean Chemical Society, 2010, 31(11): 3221-3224.

[29] Xiao Jie, Wang Donghai, Xu Wu, et al. Optimization of air electrode for Li/air batteries[J]. Journal of the Electrochemical Society, 2010, 157(4): A487-A492.

[30] Al-muhtaseb, Ritter J A. Preparation and properties of resorcinol-formaldehyde organic and carbon gels[J]. Advance Materials, 2003, 15(2): 101-114.

[31] Wang Fang, Xu Yanghai, Luo Zhongkuan, et al. A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery[J]. Journal of Power Sources, 2014, 272: 1061-1071.

[32] Ma S B, Lee D J, Roev V, et al. Effect of porosity on electrochemical properties of carbon materials as cathode for lithium-oxygen battery[J]. Journal of Power Sources, 2013, 244: 494-498.

[33] Nie Hongjiao, Zhang Yining, Li Jing, et al. Synthesis of a meso-macro hierarchical porous carbon material for improvement of O2diffusivity in Li-O2batteries[J]. RSC Advances, 2014, 4(33): 17141-17145.

[34] Chen Yong, Li Fujun, Tang Daiming, et al. Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li-O2batteries[J]. Journal of Materials Chemistry A, 2013, 1(42): 13076-13081.

[35] Mi Rui, Liu Hao, Wang Hao, et al. Effects of nitrogen-doped carbon nanotubes on the discharge performance of Li-air batteries[J]. Carbon, 2014, 67: 744-752.

[36] Li Yongliang, Wang Jiajun, Li Xifei, et al. Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries[J]. Electrochemistry Communications, 2011, 13(7): 668-672.

[37] Lim H D, Song H, Gwon H, et al. A new catalyst-embedded hierarchical air electrode for high-performance Li-O2batteries[J]. Energy & Environmental Science, 2013, 6(12): 3570-3575.

[38] Huang Shu, Wang Wei, Wang Kangli, et al. Recent progress about graphene for chemical energy storage applications[J]. Energy Storage Science and Technology, 2014, 3(2): 85-94.(in Chinese) 黃 澍, 王 瑋, 王康麗, 等. 石墨烯在化學(xué)儲(chǔ)能中的研究進(jìn)展[J]. 儲(chǔ)能科學(xué)與技術(shù), 2014, 3(2): 85-94.

[39] Kim H, Lim H D, Kim J, et al. Graphene for advanced Li/S and Li/air batteries[J]. Journal of Materials Chemistry A, 2014, 2(1):33-47.

[40] Li Yongliang, Wang Jiajun, Li Xifei, et al. Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery[J]. Chemical Communications (Cambridge), 2011, 47(33): 9438-9440.

[41] Lim H D, Gwon H, Kim H, et al. Mechanism of Co3O4/graphene catalytic activity in Li-O2batteries using carbonate based electrolytes[J]. Electrochimica Acta, 2013, 90: 63-70.

[42] Ottakamthotiyl M M, Freunberger S A, Peng Zhangquan, et al. The carbon electrode in nonaqueous Li-O2cells[J]. Journal of the American Chemical Society, 2013, 135(1): 494-500.

[43] Ottakamthotiyl M M, Freunberger S A, Peng Zhangquan, et al. A stable cathode for the aprotic Li-O2battery[J]. Nature Materials, 2013, 12(11): 1050-1056.

[44] Zhao Guangyu, Mo Runwei, Wang Baoyu, et al. Enhanced cyclability of Li-O2batteries based on TiO2supported cathodes with no carbon or binder[J]. Chemistry of Materials. 2014, 26(8): 2551-2556.

[45] Dathar G K P,Shelton W A,Xu Y.Trends in the catalytic activity of transition metals for the oxygen reduction reaction by lithium[J]. The Journal of Physical Chemistry Letters, 2012, 3(7): 891-895.

[46] Cheng Fangyi, Chen Jun. Nanoporous catalysts for rechargeable Li-air batteries[J]. Acta Chimica Sinica, 2013, 71(04): 473-477.(in Chinese) 陳方益,陳 軍. 可充鋰空氣電池多孔納米催化劑[J]. 化學(xué)進(jìn)展,2013,71(04): 473-477.

[47] Gittleson F S, Sekol R C, Doubek G, et al. Catalyst and electrolyte synergy in Li-O2batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(7): 3230-3237.

[48] Guo Guilie, Truong T H A, Tan Huiteng, et al. Platinum and palladium nanotubes based on genetically engineered elastin-mimetic fusion protein-fiber templates: synthesis and application in lithium-O2batteries[J]. Chemistry an Asian Journa, 2014, 9(9): 2555-2559.

[49] Sun Bing, Munroe P, Wang Guoxiu. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance[J]. Scientific Reports, 2013, 3: 2247-2253.

[50] Lu Yichun, Xu Zhichuan, Gasteiger H A, et al. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemistry Society, 2010, 132(35): 12170-12171.

[51] Li Fujun, Zhang Tao, Zhou Haoshen. Challenges of non-aqueous Li-O2batteries: electrolytes, catalysts, and anodes[J]. Energy & Environmental Science, 2013, 6(4):1125-1141.

[52] Cao Yong, Wei Zhikai, He Jiao, et al. α-MnO2nanorods grown in situ on graphene as catalysts for Li-O2batteries with excellent electrochemical performance[J]. Energy & Environmental Science, 2012, 5(12): 9765-9768.

[53] Sun Chunwen, Li Fan, Ma Chao, et al. Graphene-Co3O4nanocomposite as an efficient bifunctional catalyst for lithium-air batteries[J]. Journal of Materials Chemistry A, 2014, 2(20): 7188.

[54] Black R, Lee J H, Adams B, et al. The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angewandte Chemie, 2013, 52(1): 392-396.

[55] Xu Jijing, Xu Dan, Wang Zhongli, et al. Synthesis of perovskite-based porous La(0.75)Sr(0.25)MnO3nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries[J]. Angewandte Chemie, 2013, 52(14): 3887-3890.

[56] Kalubarme R S, Park G E, Jung K N, et al. LaNixCo1-xO3-perovskites as catalyst material for non-aqueous lithium-oxygen batteries[J]. Journal of the Electrochemical Society, 2014, 161(6): A880-A889.

[57] Oh S H, Nazar L F. Oxide catalysts for rechargeable high-capacity Li-O2batteries[J]. Advanced Energy Materials, 2012, 2(7): 903-910.

[58] Nasybulin E, Xu W, Engelhard M H, et al. Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (PEDOT) in Li-O2battery[J]. Electrochemistry Communications, 2013, 29: 63-66.

[59] Yoon T H, Park Y J. New strategy toward enhanced air electrode for Li-air batteries: apply a polydopamine coating and dissolved catalyst[J]. RSC Advances, 2014, 4(34): 17434-17442.

[60] Kim D S, Park Y J. Effect of multi-catalysts on rechargeable Li-air batteries[J]. Journal of Alloys and Compounds, 2014, 591: 164-169.

[61] Lin Xijing, Lu Xu, Huang Tao, et al. Binder-free nitrogen-doped carbon nanotubes electrodes for lithium-oxygen batteries[J]. Journal of Power Sources, 2013, 242: 855-859.

[62] Shui Jianglan, Du Feng, Xue Chenming, et al. Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2batteries[J]. Article, 2014, 8(3): 3015-3022.

[63] Luo Zhongkuan, Liang Chunsheng, Wang Fang, et al. Optimizing main materials for a lithium-air battery of high cycle life[J]. Advanced Functional Materials, 2013, 24(14): 2101-2105.

[64] Bhatt M D, Geaney H, Nolan M, et al. Key scientific challenges in current rechareable non-aqueous Li-O2batteries: experient and theory[J]. Physical Chemistry Chemical Physics. 2014, 16(24): 12093-12130.

【中文責(zé)編:晨 兮;英文責(zé)編:新 谷】

Research progress on air electrode in organic electrolyte lithium-air battery

Luo Zhongkuan,Yin Chunli, Wu Qixing, Wang Fang?, Huang Yang,Li Haojun, and Wei Mengmeng

Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials,College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, P.R.China

Due to the advantages of ultra-high energy density, lithium-air batteries based on organic electrolyte system have received widespread concern. To seek after a high-performance, safety and applicable lithium-air battery, a lot of scholars have conducted numerous research works on cathode materials, catalysts, electrolyte, and lithium cathode. Air electrode optimization and electrolyte stability are the keys to obtaining high performance lithium-air batteries. We review some of the latest research progress on air electrode reaction mechanisms, influence factors of air electrode, materials for air cathode and catalysts in organic electrolyte lithium-air batteries. Meanwhile, advantages and disadvantages of all kinds of porous materials and catalysts, as well as impact on the electrochemical performance of batteries, were analysed. Based on these studies, we put forward the future direction for air electrodes of lithium-air batteries is to build a unique porous electrode structure with new composite oxide catalysts, to achieve high-capacity, long-life lithium-air batteries.

applied chemistry; lithium-air battery; air electrode; reaction mechanism; carbon materials; catalysts

:Luo Zhongkuan, Yin Chunli, Wu Qixing, et al.Research progress on air electrode in organic electrolyte lithium-air battery [J]. Journal of Shenzhen University Science and Engineering, 2015, 32(2): 111-120.(in Chinese)

O 69

A

10.3724/SP.J.1249.2015.02111

廣東省自然科學(xué)基金資助項(xiàng)目(S2013040016860);深圳市戰(zhàn)略新興產(chǎn)業(yè)發(fā)展專項(xiàng)基金資助項(xiàng)目(JCYJ20130329102936684)

羅仲寬(1962—),男(漢族),浙江省岱山縣人,深圳大學(xué)教授、博士生導(dǎo)師,E-mail:lzk@szu.edu.cn

Received:2014-10-13;Accepted:2014-12-12

Foundation:Natural Science Foundation of Guangdong Province (S2013040016860); Shenzhen Science and Technology Fund (JCYJ20130329102936684)

? Corresponding author:Professor Wang Fang.E-mail: wangfsz@szu.edu.cn

引 文:羅仲寬,尹春麗,吳其興,等. 有機(jī)電解液型鋰空氣電池空氣電極研究進(jìn)展[J]. 深圳大學(xué)學(xué)報(bào)理工版,2015,32(2):111-120.

猜你喜歡
電解液容量電極
水瓶的容量
平行流銅電解液凈化一次脫銅生產(chǎn)實(shí)踐
IQ下午茶,給腦容量加點(diǎn)料
小桶裝水
防過(guò)充鋰離子電池電解液添加劑的研究
硫酸鋅電解液中二(2-乙基己基)磷酸酯的測(cè)定
三維電極體系在廢水處理中的應(yīng)用
三維鎳@聚苯胺復(fù)合電極的制備及其在超級(jí)電容器中的應(yīng)用
Ti/SnO2+Sb2O4+GF/MnOx電極的制備及性能研究
鋅空氣電池準(zhǔn)中性電解液的研究