黃磊 張飛
摘要:目前,發(fā)生率最高的心率失常被認(rèn)為是心房纖顫,且該病的發(fā)生率隨著年齡的增長而上升伴隨著我國人口年齡結(jié)構(gòu)的變化,心房纖顫在我國的發(fā)病率逐漸增加。了解該病的發(fā)生和發(fā)展的機(jī)制十分迫切。已經(jīng)證明,心房重構(gòu)是該病的重要發(fā)生機(jī)制:隨著研究的加深,研究人員對心房重構(gòu)與該病的病理學(xué)機(jī)制有了更加深刻的了解。現(xiàn)就心房纖顫和重構(gòu)在發(fā)病中的機(jī)制進(jìn)行回顧。關(guān)鍵詞:心房重構(gòu);心房纖顫;Connexin40; Kvl.5鐘通道中圖分類號:K541.75;R363.21 文獻(xiàn)標(biāo)識碼:A文章編號:1007-7847(2015)02-0185-04Research Progresses of Pathological Mechanism in Atrial Remodeling and Atrial FibrillationHUANG Lei, ZHANG Fei(Nanshan People's Hospital, Shenzhen 518057, Guangdong, China)Abstract: Atrial fibrillation is one of the most common arrhythmia. The incidence and mortality increase wilh age growth. As China entered the aging era, the needs for diagnosis and treatment of this disease are urgent. The mechanism of atrial fibrillation is atrial remodeling, including atrial electrical remodeling and a- trial structural remodeling.Insight into the mechanism of atrial remodeling is necessary for the diagnosis and treatment of atrial fibrillation. With the rapid development of molecular biology, the realization about atrial remodeling has more profound understanding. The research progresses of pathological mechanism in atrial remodeling and atrial fibrillation are reviewed.Key words: atrial remodeling; atrial fibrillation; Connexin40; Kvl.5 potassium channels(Life Science Research,2015,19(2):185?188) 心房纖顫是當(dāng)前臨床上發(fā)病率最高的心率失常病變,通常也簡稱為房顫[1]。通常,該病變也可能會演變?yōu)橐环N長期性的心率失常,隨著機(jī)體的衰老,發(fā)病率也會大大增加。隨著中國進(jìn)入老齡化,心房纖顫在公共衛(wèi)生中將成為最主要的問題之一,該研究領(lǐng)域也成為心血管方向亟待解決的研究熱點(diǎn)之一。雖然近年來心房纖顫的治療手段已經(jīng)取得了令人矚目的進(jìn)展,然而,藥物治療仍是最常規(guī)的治療手段。其原理是通過控制心率和心律兩條途徑抑制心房纖顫的發(fā)生[2]。通常,利用各種手段控制心律,是治療該病的重要策略。心律控制可以增加運(yùn)動(dòng)耐受力、減少癥狀發(fā)生及心房纖顫的死亡率[3]。根據(jù)目前臨床上的調(diào)查結(jié)果,通過心率控制,對該病有一定的治療效果。例如心房顫動(dòng)節(jié)律管現(xiàn)隨訪調(diào)查(AFFIRM)、持續(xù)性房顫心率控制/電轉(zhuǎn)律研究(RACE)、房顫治療策略研究(STAF)都證明心率控制也可以同樣降低癥狀發(fā)生及心房纖顫的死亡率。這些治療手段還能夠減少多種藥物刺激所帶來的各種附加反應(yīng)[4-7]。以上兩種不同的治療策略在臨床上各有其優(yōu)勢,只有深入了解其機(jī)制后才能正確地選擇病患所需的治療手段。與此同時(shí),新型藥物和各種治療策略及手段也在研發(fā)當(dāng)中,有望為治愈患者帶來福首。根據(jù)心房纖顫病程的長短,一般可以分為偶發(fā)性、長期性和永久性的病變。在48小時(shí)以下的被定義為偶發(fā)性心房纖顫,而病程達(dá)到一周以上,則為長期性心房纖顫。永久性的病變則不能恢復(fù)正常心律這幾種不同持續(xù)時(shí)間的心房纖顫病變,其發(fā)生機(jī)制都被認(rèn)為是發(fā)病之初心房重構(gòu)所引起的。心房纖顫出現(xiàn)后往往會伴隨心房體積增大、心房壁變薄以及內(nèi)壁血栓形成等結(jié)構(gòu)變化。這些心房組織變化與該病的發(fā)生發(fā)展有關(guān),了解該病的發(fā)生機(jī)制,必須從心房重構(gòu)入手。本文通過回顧心房重構(gòu)的兩種發(fā)生機(jī)制,探討了它們在心房纖顫這一常見病中的作用,以期為今后對該病的治療提供理論參考。1心房電重構(gòu)1995年,Wijffels提出心房電重構(gòu),為該研究心房纖顫開拓了新的領(lǐng)域其定義是在心房纖顫期間,心臟的有效不應(yīng)期縮短,結(jié)果引起心房纖顫發(fā)生頻率和發(fā)生時(shí)間延長。臨床和動(dòng)物模型的研究結(jié)果均證明,心房電重構(gòu)確實(shí)能夠引起心房纖顫的效應(yīng)增強(qiáng)。當(dāng)前,對心房電重構(gòu)的研究尚處于起步階段,僅限于各種基因水平的表達(dá)變化和Kvl.5鉀離子在發(fā)病中的各種變化。1.1基因表達(dá)變化與心房電重構(gòu)基于巳有的各項(xiàng)研究,在發(fā)病過程中,多種心房電重構(gòu)的分子信號通路有所變化。目前最熱門的是鉀電流相關(guān)分子變化。已經(jīng)報(bào)道的鉀離子通道多種多樣,在生物途徑中發(fā)揮不同作用。在心肌細(xì)胞中,目前發(fā)現(xiàn)的這些通道電流包括瞬時(shí)性、持續(xù)性和ATP依賴的3種電流。有研究表明,在心房纖顫的病患中,瞬時(shí)性和持續(xù)性外向的鉀電流在不同去極化電壓下比竇性心律病人的電流明顯減弱[12]。同時(shí),有研究者報(bào)道,有心房纖顫的病患其心肌的鉀離子電流密度明顯下降,低于正常心律的人群[13]。對各種心房纖顫的病人的研究表明,Kv4.3的α亞基基因表達(dá)量在慢性患者中表達(dá)明顯降低。因此,在電重構(gòu)過程中導(dǎo)致的瞬時(shí)性外向鉀電流密度下降是由Kv4.3通道中α基因表達(dá)下降所引發(fā)的。然而,α基因表達(dá)的異常是因何引起,目前還未有明確的證據(jù)。1.2Kvl.5鉀離子通道與心房纖顫相關(guān)研究進(jìn)展Kvl.5鉀離子通道與心率相關(guān)最早的報(bào)道見于對大鼠的研究[14]。該結(jié)果顯示,經(jīng)過30min心動(dòng)過速后的大鼠,Kvl.5的mRNA表達(dá)水平明顯增加。而鄧玉蓮等研究發(fā)現(xiàn),在接受了換瓣的風(fēng)心病患者中,持續(xù)性心房纖顫的患者Kvl.5表達(dá)量明顯下降[15]。與此矛盾的是,研究結(jié)果表明在陣發(fā)性心房纖顫患者中蛋白水平降低而mRNA水平則未見有變化[16]。在高血壓中,由于心房壁壓力的增加,內(nèi)向延遲加電流相關(guān)基因表達(dá)量增加[17]。同樣的,心力衰竭小鼠也表現(xiàn)為心肌細(xì)胞Kvl.5表達(dá)水平也降低[18]?;诓煌膶?shí)驗(yàn)室,根據(jù)材料和研究方法的不同,也得到了不同的實(shí)驗(yàn)結(jié)果。然而,在心房纖顫中Kvl.5表達(dá)水平確有不同程度的下降。根據(jù)Kvl.5鉀離子通道在該病中的表達(dá)失調(diào),研究者也開發(fā)了多種干預(yù)該通道的藥物。隨著研究的深入,人們逐漸發(fā)現(xiàn)了很多新的Kvl.5阻抑物。這些藥物可以通過特異性抑制心肌中的離子通道,從而對心律失常有較好治療效果。在這些發(fā)現(xiàn)的藥物中,化合物S9947被證實(shí)對人類Kvl.5有明顯的抑制[19]。其半效抑制濃度為0.42mmol/L。新型的Kvl.5阻滯劑AVE0118可以對心房收縮力有較好的恢復(fù)作用[20]。而胞外Bertosamil對Kvl.5電流的抑制表現(xiàn)出劑量依賴性效應(yīng)[21、22]。此外,NIP-142也能夠抑制Kvl.5的鉀離子通道,對心肌的不應(yīng)期有明顯的延續(xù)作用。有報(bào)道稱苯唑卡因從細(xì)胞內(nèi)抑制KW.5通道,且有時(shí)間和劑量依賴效應(yīng)[23]。雖然,現(xiàn)有的胺碘酮、多非利特、氟卡尼、普羅帕酮等藥物,已經(jīng)應(yīng)用于臨床治療,并獲得了一定的療效[24]。但也存在著療效指數(shù)小、可能危及生命等嚴(yán)重不良反應(yīng)。值得注意的是,這些藥物對不同的個(gè)體也效應(yīng)不一,需要對個(gè)性化的基因變異對藥物反應(yīng)的影響進(jìn)行進(jìn)一步的探討。因此,進(jìn)一步研究和開發(fā)針對Kvl.5鉀離子通道阻滯劑的相關(guān)藥物,可能為心房纖顫的治療提供更加安全而高效的選擇。2心房結(jié)構(gòu)重構(gòu)當(dāng)發(fā)生心房纖顫時(shí),能夠引起心房電重構(gòu),并且誘導(dǎo)心肌細(xì)胞的結(jié)構(gòu)發(fā)生變化,如心房的擴(kuò)張和纖維化的改變,這些變化稱為心房結(jié)構(gòu)重構(gòu)。心房結(jié)構(gòu)重構(gòu)表現(xiàn)出細(xì)胞膜穩(wěn)定性的下降,心肌間質(zhì)組織增生,以及細(xì)胞器的形態(tài)、數(shù)量等發(fā)生改變心房結(jié)構(gòu)重構(gòu)的分子生物學(xué)基礎(chǔ)包括,離子通道蛋白變化、縫隙連接蛋白變化以及收縮蛋白和結(jié)構(gòu)蛋白的變化。目前研究得最為深入的是縫隙連接蛋白變化,下面主要介紹心房結(jié)構(gòu)重構(gòu)的組織變化和縫隙連接蛋白Cx40變化。2.1心房結(jié)構(gòu)重構(gòu)的組織變化在研究快速心房起搏狗的過程中,首次對心房肌細(xì)胞的超微結(jié)構(gòu)的改變進(jìn)行了闡述,發(fā)現(xiàn)狗心肌細(xì)胞的變化與慢性心室肌缺血心肌的改變是一致的[25]。它們的細(xì)胞均有胚胎表型發(fā)展的傾向,表現(xiàn)出去分化的狀態(tài)。心肌結(jié)構(gòu)重構(gòu)的變化特征包括有:細(xì)胞和組織的增厚;肌纖維的溶解;糖原在細(xì)胞核內(nèi)的沉積;線粒體腫脹;肌漿網(wǎng)斷裂等[26]。在這些變化中,細(xì)胞組織的增厚和肌纖維的溶解是最主要的變化特征心律失常發(fā)生的可能性隨著心肌細(xì)胞的肥大而增加;由于心肌細(xì)胞體積的增大,心房內(nèi)的電傳導(dǎo)的各向異性增加,導(dǎo)致信號傳導(dǎo)的空間離散程度增加,在高血壓患者發(fā)生心房重構(gòu)后,心房纖顫復(fù)發(fā)幾率增加,心房肌肉的收縮能力降低,影響心臟功能的正常發(fā)揮。另外,心房結(jié)構(gòu)重構(gòu)導(dǎo)致了心房肌數(shù)量減少,心房的分泌活動(dòng)減弱,心房分泌因子減少,最終影響心臟的生理活動(dòng)。在心房重構(gòu)中也發(fā)現(xiàn),心房內(nèi)徑增大,分泌活動(dòng)降低,活性因子在心房中的含量減少[27]。2.2縫隙連接蛋白Cx40在心房纖顫中的作用心肌細(xì)胞的電位在心房纖顫發(fā)生過程中發(fā)生變化細(xì)胞間電沖動(dòng)傳導(dǎo)的結(jié)構(gòu)基礎(chǔ)是細(xì)胞間隙連接連接蛋白(cormexin,Cx)是細(xì)胞縫隙連接的蛋白簡稱[28]。Cx40、Cx43和Cx45是存在于人體心肌細(xì)胞中的3種主要連接蛋白[29]。在心臟的4個(gè)心腔中都有Cx43的分布,心肌傳導(dǎo)束及浦肯野纖維中分布的主要是Cx45[30]。作為心房中電沖動(dòng)的結(jié)構(gòu)基礎(chǔ),Cx40主要在心房肌中表達(dá)[31、32]。Cx40在心臟的心房和心室中有廣泛的分布,并且在心房和心室間的表達(dá)呈現(xiàn)出差異性。Cx40在心肌細(xì)胞中表達(dá)豐富,而在心室細(xì)胞中的表達(dá)水平很低,幾乎檢測不到其表達(dá)[33、34]??p隙連接蛋內(nèi)的表達(dá)和分布受到心肌炎、纖維化以及壞死等心房內(nèi)環(huán)境改變等的影響。作為電壓的動(dòng)態(tài)結(jié)構(gòu)基礎(chǔ),縫隙連接的開關(guān)受到細(xì)胞膜電位的調(diào)節(jié)。因而,由房顫引起的細(xì)胞膜電位的變化能夠影響縫隙連接的狀態(tài)及其表達(dá)量[35]。已有研究對房顫發(fā)生過程中Cx40的表達(dá)水平進(jìn)行了分析,但是研究結(jié)果卻大相徑庭。在電生理重塑誘發(fā)的慢性房顫中,房顫患者心房細(xì)胞細(xì)胞膜外的Cx的蛋白表達(dá)水平上升[36]。與對照組相比,房顫復(fù)發(fā)組Cx40的mRNA表達(dá)水平和蛋白質(zhì)水平都顯著上升[37]。同時(shí),在人和鼠的房顫對比實(shí)驗(yàn)中也發(fā)現(xiàn)有類似的結(jié)果,Cx40的表達(dá)水平上升[38]。在房顫模型中,發(fā)現(xiàn)Cx40在心肌細(xì)胞中的表達(dá)比對照組中水平要低[39]。同樣,在患有慢性房顫病人中,Cx40的mRNA表達(dá)水平也顯暑降低,而絲氨酸磷酸化的Cx40的表達(dá)水平卻上升[40]。接受迷宮手術(shù)的AF患者的右心耳中的Cx40的蛋白減少[41]。同樣在術(shù)后新發(fā)陣的房顫中,Cx40蛋白的表達(dá)水平也是下降的[42]。以上這些結(jié)果表明,房顫的發(fā)生能夠誘導(dǎo)Cx40的表達(dá)量與空間分布上發(fā)生變化。然而,關(guān)于Cx40對心房纖顫發(fā)生的機(jī)制以及預(yù)后過程中的影響還需要進(jìn)一步的研究:1小結(jié)與展望總的來說,關(guān)于心房重構(gòu)與心房纖顫的病現(xiàn)學(xué)機(jī)制的研究報(bào)道,近年來有了較大的進(jìn)展。然而,對于心房重構(gòu)的分子生物學(xué)機(jī)制研究,往往集中于單個(gè)基因的功能研究,并未考慮到多基因的相關(guān)性。在今后的研究中,應(yīng)該著重對蛋白相互作用、轉(zhuǎn)錄因子調(diào)控基因表達(dá)、表觀遺傳學(xué)等網(wǎng)絡(luò)信號調(diào)控進(jìn)行研究,為治療心房纖顫提供新的線索。參考文獻(xiàn)(References):[1]SAVELIEVA I, KAKOUROS N, K0URL10UR0.S A, el al. Up-slream therapies for management of atrial fibrillation: review of clinical evidence and implications for European Society of Cardiology guidelines. Part I: primary prevention[J]. Europace. 2011,13(3):308-328.[2]FRASURE-SMITH N, LESP^KANCE F, TALAJK; M, ct d. Anxiety sensitivity moderates prognostic importance of rhythm-versus rate-control strategies in patienls wilh atrial fibrillation and congestive heart failure: insights from the AF- CHF trial[J]. Circulation: Heart Failure, 2012. 5(3): 322-330.[31 STEINBERG B A, HOI.MKS D N, EZEKOWITZ M D, el al. Rate versus rhythm control for management of atrial fibrillation in clinical practice: results from the outcomes registry for better informed treatment of atrial fibrillation (ORBIT-AF) reistry[Jl. American Heart Journal,2013,165(4):622-629.[4]ALAM M, BANDEAU S J,SHAHZAD S A, et al. Real-life global survey evaluating patients with atrial fibrillation (RK-ALISE-AF):results of an international observational registiy[J]. Expert Review of Cardiovascular Therapy,2012,10(3): 283-291.[5]HEIST E K, MANSOUR M, RUSKIN J N. Rate conlrol in atri?al fibrillation targets, methods, resynchronization consid era tions[J].Circulation,2011,124(24): 2746-2755.[6]TU§KAN -MOHAR L. Understanding the standard treatments and the treatment options of alrial fibrillation [J]. Ada Clinica Croatica,2011,50(Supplement 2):54-56.[7]CALDEIRA D, DAVID C, ET ALSAMPAIO C. Rate versus rhythm control in atrial fibrillation and clinical oulcomes: up?dated systematic review and meta-analysis of randomized controlled trials[J]. Archives of Cardiovascular Diseases,2012,105(2):226-238.[8]CHIANG C E, INADITCH-BROLEL, MURIN J, et al. Distri?bution and risk profile of paroxysmal, persistent, and permanent atrial fibrillation in routine clinical practice insight from the real-life global survey evaluating patients with atrial fibrillation international registry[J].Circulation:Arrhythmia and Electrophysiology,2012,5(4):632-639.[9]BALL J, CARRINGTON M, STEWART S. Mild cognitive impairment in high-risk patients with chronic atrial fibrillation:a forgotten component of clinical management?[J]. Heart,2013, 99(8):542-547.[10]NCHEZ C, BUENO-OROVIO A, WETTWER E, et al. Inter-subject variability in human atrial action potential in sinus rhythm versus chronic atrial fibrillation[J]. PLoS one,2014,9(8):el05897.[11]WIJFFELS M, KIRCHHOF C, DORLAND R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats[J]. Circulation, 1995, 92(7):1954-1968.[12] OOSTERHOFF P. The use of repolarization variability for arrhythmic risk monitoring[J]. Utrecht:Utrecht University, 2011.[13]STAUDACHER K, STAUDACHER I, FICKER E, et al. Carvedilol targets human K2p3.1 (TASK1) K+ leak channels[J].British Journal of Pharmacology,2011,163(5):1099-1110.[14]YAMASHITA T, SEKIGUCHI A, IWASAK1 Y K, et al. Ciben-zoline attenuates upregulation of Kvl. 5 channel gene expres?sion by experimental paroxysmal atrial fibrillation[J].Interna?tional Heart Journal,2005,46(2):279-288.[15]鄧玉蓮,高峰,許春萱,等.心房顫動(dòng)患者心房組織延遲整流鉀通道基因表達(dá)的研究[J]中華心律失常學(xué)雜志(DENG Yu-lian, GAO Feng, XU Chun-xuan, el al. Gene expression of atrial delayed rectifier potassium channeks in human atrial fib?rillation[J]. Chinese Journal of Cardiac Arrhythmias),2006,9(6):445-448.[16] BRUNDEL B J, VAN GELDER I C, HENNING R H, et al. Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillationfj]. Circulation,2001,103(5):684-690.[17]JEPPS T, CHADHA P, DAVIS A, et al. Downregulation of Kv7.4 channel activity in primary and secondary hypertension[J]. Circulation,2011.124(5):602-611.[18]張曉偉,李廣平.Kvl.5鉀通道與心房顫動(dòng)[J].中國心血管雜志(ZHANG Xiao-wei,LI Guang-ping. Kvl. 5 potassium channels and atrial fibrillation[J] Chinese Journal of Cardiovas?cular Medicine),2008,13(2):144-146.[19]FRIEDERICH P, PFIZENMAYER H. The novel Kvl.5 chan?nel blocker vernakalant for successful treatment of new-onset atrial fibrillation in a critically ill abdominal surgical patient[J]. British Journal of Anaesthesia,2011,107(4):644-645.[20]DECHER N, KUMAR P, GONZALEZ T, el al. Binding site of a novel Kvl. 5 blocker: a “foot in the door”against atrial fib-rillation[J]. Molecular Pharmacology, 2006,70(4):1204-1211.[21]LAGRUTl'A A, WANG J, FERMINI B, et al. Novel, potent in-hibitors of human Kvl. 5 K + channels and ultrarapidly acti vating delayed rectifier potassium current [J]. Journal of Pharmacology and Experimental Therapeutics,2006,317(3):1054-1063.[22]GODREAU D, VRANCKX R, ET ALHATEM S N. Mechanisms of action of anti arrhythmic agent bertosamil on hKvl.5 channels and outward potassium current in human atrial my-ocytes[J]. Journal of Pharmacology and Experimental Therapeutics,2002,300(2): 612-620.[23]WU H, WU W, SUN H, et al. Acacetin causes a frequency-and use-dependent blockade of hKvl .5 channels by binding to the S6 domain [J].Journal of Molecular and Cellular Cardiology,2011,51(6):966-973.[24]CALKTNS H, REYNOLDS M R, SPECTOR P, et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation two systematic literature reviews and meta-analy-ses[J]. Circulation: Arrhythmia and Electrophysiology,2009,2(2):349-361.[25]IWASAKI Y, NISHIDA K, KATO T, et al. Atrial fibrillation pathophysiology implications for management[J].Circulation,2010,124:2264-2274.[26]OAKES R S, BADGER T J, KHOLMOVSKI E G, et al. Detec?tion and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation[J]. Circulation,2009,119(13):1758- 1767.[20]ROSSI A, CICOIRA M, ZANOLLA L, et al. Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy[J].Journal of the American College of Cardiology, 2002, 40(8): 1425-1430.[21]MYLVAGANAM S, RAMANI M, KRAWCZYK M, et cd. Roles of gap junctions, connexins, and pannexins in epilepsy[J]. Frontiers in Physiology,2014,5(1):172.[29]MEENS M, SABINE A, PETROVA T, et al. Connexins in lymphatic vessel physiology and disease[J].FEBS letters,2014,588(8):1271-1277.[30]SHIBATA Y, KUMAI M, NISHII K, et al. Diversity and molecular anatomy of gap j unctions[J]. Medical Electron Microscopy,2001,34(3):153-159.[31]COTTRELL G T, WU Y, ET ALBURT J M. Cx40 and Cx43 expression ratio influences heteromeric/heterotypic: gap junc tion channel properties[J]. American Journal of Physiology-Cell Physiology,2002,282(6):C1469-C1482.[32]KURTZ A. Connexins, renin cell displacement and hypertension[J].Current Opinion in Pharmacology,2015,21(1):1-6.[33]BASTIDE B, NEYSES L, GANTEN D, et al. Gap junction protein connexin40 is preferentially expressed in vascular endothelium and conductive bundles of rat myocardium and is increased under hypertensive conditions[J]. Circulation Research, 1993,73(6):1138-1149.[34]VEERARAGHAVAN R, GOURDIE R, POELZING S. Mechanisms of cardiac conduction: a history of revisions [J]. Ameri?can Journal of Physiology-Heart and Circulatory Physiology,2013,306(5): H619-H627.[35]HARRIS A L. Emerging issues of connexin channels: biophysics fills the gap[J]. Quarterly Reviews of Biophysics,2001,34(3):325-472.[36]POLONTCHOUK L, HAEFLIGER J A, EBELT B, et al. Effects of chronic atrial fibrillation on gap junction distribution in human and rat atriafj].Journal of the American College of Cardiology,2001,38(3):883-891.[37]KATO T, IWASAKI Y, NATTEL S. Connexins and atrial fibrillation filling in the gaps[J].Circulation.2012,125(2):203— 206.[38]MAEDA S, TSUKIHARA T. Structure of the gap junction channel and its implications for its biological functions [J]. Cellular and Molecular Life Sciences.2011,68(7): 1115-1129.[39]AUSMA J, VAN DER VELDEN H M, LENDERS M H, et al. Reverse structural and gap-junctional remodeling after prolonged atrial fibrillation in the goat[J]. Circulation,2003,107(15):2051 - 2058.[40]NAO T, OHKUSA T, HISAMATSU Y, et al. Comparison of expression of connexin in right atrial myocardium in patients with chronic atrial fibrillation versus those in sinus rhythm[J].The American Journal of Cardiology,2003,91(6):678-683.[41] KOSTIN S, KLEIN G, SZALAY Z,et al. Structural correlate of atrial fibrillation in human patients[J].Cardiovascular Research,2002,54(2):361-379.[42]WILHELM M, KIRSTE W, KULY S, et al. Atrial distribution of connexin 40 and 43 in patients with intermittent, persistent,and postoperative atrial fibrillation[J]. Heart, Lung and Circulation, 2006,15(1):30-37.