王麗莎,劉新民,馮 利,曹芳瑞,陶 雪,常 琪
(中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院藥用植物研究所,北京 100193)
犬尿氨酸通路在神經(jīng)退行性疾病中的研究進展
王麗莎,劉新民,馮 利,曹芳瑞,陶 雪,常 琪
(中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院藥用植物研究所,北京 100193)
犬尿氨酸通路是色氨酸代謝的主要途徑,與亨廷頓病、阿爾茨海默病、帕金森氏癥等神經(jīng)退行性疾病的發(fā)生、發(fā)展有著密切聯(lián)系。本文主要綜述了犬尿氨酸通路代謝產(chǎn)物的神經(jīng)生物學(xué)活性及其與相關(guān)神經(jīng)退行性疾病的關(guān)系,為研究和治療神經(jīng)退行性疾病提供新的思路和方法。
犬尿氨酸通路;神經(jīng)退行性疾??;神經(jīng)生物學(xué)活性
色氨酸(tryptophan,TRP)是哺乳動物體內(nèi)維持細胞活化和增殖所必需的氨基酸,主要通過犬尿氨酸(kynurenine,KYN)和5-羥色胺(5-hydroxytryptamine,5-HT)兩條途徑代謝。哺乳動物體內(nèi)超過95%的TRP是通過犬尿氨酸通路(kynurenine pathway,KP)代謝的。最初人們認為KP的生理作用僅限于其最終代謝產(chǎn)物煙酰胺腺嘌呤二核苷酸輔酶(NAD+)的多種生物學(xué)過程。自20世紀70年代以來,許多研究證明KP代謝產(chǎn)物在中樞神經(jīng)系統(tǒng)(CNS)中發(fā)揮著重要作用:影響大腦神經(jīng)傳遞系統(tǒng)功能,發(fā)揮神經(jīng)保護和神經(jīng)毒性作用?,F(xiàn)已在亨廷頓病、阿爾茨海默病、帕金森氏癥等多種神經(jīng)退行性疾病中發(fā)現(xiàn)KP代謝產(chǎn)物和相關(guān)酶的水平有明顯變化。
本文綜述了KP的構(gòu)成及其代謝產(chǎn)物的神經(jīng)生物學(xué)作用,重點介紹了KP與亨廷頓病、阿爾茨海默病和帕金森氏癥等神經(jīng)退行性疾病的聯(lián)系,為KP作為防治神經(jīng)退行性疾病的治療靶點提供重要參考。
哺乳動物體內(nèi)TRP主要通過KP代謝(圖1)。首先,TRP在吲哚胺-2,3-雙加氧酶(IDO)或色氨酸-2,3-雙加氧酶(TDO)的催化下生成N-甲酰犬尿氨酸,進而在犬尿氨酸甲酰胺酶催化下生成犬尿氨酸(kynurenine,KYN)。然后,KYN沿三種途徑分別在犬尿氨酸氨基轉(zhuǎn)移酶(KATs)、犬尿氨酸酶(KYNU)和犬尿氨酸-3-單加氧酶(KMO)的催化下生成犬尿喹啉酸(kynurenic acid,KYNA)、鄰氨基苯甲酸(anthranilic acid,AA)和3-羥基犬尿氨酸(3-hydroxykynurenine,3-HK)。腦內(nèi)存在相對大量的3-羥基鄰氨基苯甲酸-3,4-雙加氧酶(3-HAO),可氧化3-HANA生成不穩(wěn)定的半醛類中間產(chǎn)物,后者立刻經(jīng)過非酶催化生成喹啉酸(quinolinic acid,QUIN)。QUIN在喹啉酸磷酸核糖轉(zhuǎn)移酶催化下生成KP的最終代謝產(chǎn)物NAD+。
KYN
KYN是芳香烴受體(AHR)的內(nèi)源性激動劑,與AHR結(jié)合后,引起一系列靶基因表達,促進調(diào)節(jié)性T細胞的生成[1],并抑制抗原呈遞細胞DCs的成熟,進而抑制免疫反應(yīng)[2],改善神經(jīng)損傷。
KYNA
圖1 犬尿氨酸代謝通路Fig.1 The kynurenine pathway
在mM水平的高濃度下,KYNA是非選擇性競爭性離子型谷氨酸受體的拮抗劑,與N-甲基-D-天門冬氨酸受體(NMDARs)的甘氨酸結(jié)合位點有很強的親和力[3],并且可以拮抗另外兩種離子型谷氨酸受體:α-氨基-3-羥基-5-甲基-4-異唑丙酸受體(AMPARs)和紅藻氨酸受體(KARs),從而阻斷興奮性神經(jīng)傳遞。通過抑制NMDARs,KYNA能夠阻斷興奮性氨基酸的毒性,避免其損傷腦組織,從而保護神經(jīng)系統(tǒng)。然而在低濃度下,KYNA是非競爭性α7煙堿型乙酰膽堿受體(α7nAChRs)的拮抗劑[4]。研究發(fā)現(xiàn)人體大腦內(nèi)新皮質(zhì)和大鼠紋狀體內(nèi)的谷氨酸軸突末梢表達α7nAChRs,促進谷氨酸釋放,KYNA通過拮抗α7nAChRs抑制突觸前谷氨酸釋放[5],這是KYNA的另一種抗谷氨酸機制,它進一步增強了KYNA對于NMDAR介導(dǎo)的興奮性氨基酸毒性的抑制作用。α7nAChRs是KYNA在生理濃度水平的作用靶點[4],因此抑制α7nAChRs成為腦內(nèi)內(nèi)源性KYNA最重要的作用機制。研究表明抑制KYNA的合成會導(dǎo)致乙酰膽堿、谷氨酸和多巴胺三種神經(jīng)遞質(zhì)水平上升,因此,KYNA與膽堿能、谷氨酸能和多巴胺能神經(jīng)傳遞系統(tǒng)相關(guān)的多種行為有密切聯(lián)系。此外,KYNA也是鳥苷酸結(jié)合蛋白孤兒受體35和AHR的激動劑[6-7];還可作為潛在的內(nèi)源性抗氧化劑[8];并通過調(diào)節(jié)免疫應(yīng)答反應(yīng)發(fā)揮抗炎作用[7]。
QUIN
研究發(fā)現(xiàn),QUIN可選擇性激活NMDARs[9],產(chǎn)生神經(jīng)興奮性毒性,并且紋狀體內(nèi)注射QUIN會導(dǎo)致注射部位附近產(chǎn)生軸突匱乏性神經(jīng)病變[10]。NMDARs拮抗劑MK-801可完全終止QUIN誘導(dǎo)的脂質(zhì)過氧化,這一發(fā)現(xiàn)證明了活化NMDARs是QUIN神經(jīng)毒性的主要作用機制[11]。此外,QUIN的復(fù)雜神經(jīng)毒性作用還可以歸因于其它一些機制,包括:促進突觸谷氨酸釋放,抑制星形膠質(zhì)細胞谷氨酸攝取,活性氧中間體生成,內(nèi)源性抗氧化劑消耗,線粒體功能障礙和脂質(zhì)分子過氧化[12]。QUIN還具有免疫調(diào)節(jié)作用。在興奮性毒性濃度下,QUIN作用于人原代星形膠質(zhì)細胞,促進IL-1β的表達,抑止谷氨酰胺合成酶的活性,引起星形膠質(zhì)細胞增生[13]。
3-HK和3-HANA
3-HK和3-HANA具有神經(jīng)毒性,可誘導(dǎo)羥自由基和過氧化氫等自由基的形成[14],提高氧化應(yīng)激水平,通過凋亡機制引起神經(jīng)元死亡[15]。當3-HK與自由基清除劑一起應(yīng)用時,可阻斷其毒性損傷效應(yīng)[16]。并且,3-HK和3-HANA產(chǎn)生自由基的作用與他們的抗氧化作用以及黃尿酸清除過氧化自由基的作用相平衡[17]。與其他氧化還原活性化合物一樣,3-HK和3-HANA根據(jù)所在部位的氧化還原環(huán)境的不同,分別表現(xiàn)出促氧化或抗氧化活性,從而調(diào)節(jié)組織的氧化還原狀態(tài)。體外實驗表明,3-HK的毒性依賴于它的細胞攝取過程[15],并且可能產(chǎn)生于細胞內(nèi)部。皮層和紋狀體比小腦更容易受到3-HK的毒性損害,這可能是因為在這些部位的神經(jīng)元中3-HK的轉(zhuǎn)運活動存在差異,表明3-HK的毒性作用具有腦區(qū)域選擇性[15]。此外,3-HK和QUIN的神經(jīng)興奮性毒性具有協(xié)同作用,當二者同時注射入紋狀體時可引起大量神經(jīng)元損傷,而在等同劑量下單獨應(yīng)用時卻不引起或只引起輕微的神經(jīng)退行性變化[18]。
亨廷頓?。╤untington’s disease,HD)
HD是一種常染色體顯性遺傳神經(jīng)退行性疾病,由亨廷頓基因突變所致,以紋狀體和大腦皮層中神經(jīng)元選擇性死亡為主要特征。NMDARs介導(dǎo)的神經(jīng)興奮性毒性是HD神經(jīng)退行性病變的重要機制之一。目前已證實有多種KP代謝產(chǎn)物水平在HD患者中發(fā)生變化,并且越來越多的研究為KP代謝紊亂和HD病理生理的關(guān)系提供直接支持。
一方面,HD患者早期階段紋狀體和皮質(zhì)中QUIN水平顯著增加[19],小膠質(zhì)細胞激活[20],產(chǎn)生興奮性毒性神經(jīng)元損傷。值得注意的是,在HD大腦中3-HK伴隨QUIN水平同步升高[19],這兩種具有協(xié)同致病能力的KP代謝產(chǎn)物在HD早期階段發(fā)揮重要作用。在轉(zhuǎn)基因HD小鼠腦中也存在類似的變化[21]。早期研究證明,HD患者的紋狀體中3-HAO的活性明顯增加;近期研究證明,JM6抑制HD R6/2模型小鼠的KMO活性,能夠延長動物壽命,保護神經(jīng)元和突觸,并抑制小膠質(zhì)細胞活化[22]。另一方面,HD患者的皮質(zhì)、紋狀體和腦脊液(CSF)中,KYNA的水平顯著降低[23-24],這加重了QUIN神經(jīng)毒性的易感性[25],加劇了HD病理改變。與此同時,催化KYNA生成的KATs的活性受到抑制[26]。另有研究發(fā)現(xiàn),在HD患者血液中和模型小鼠腦中KYN/TRP比值均顯著增加[27-28]。并且,血液中KYN的濃度與亨廷頓基因中DNA密碼子(CAG)過度重復(fù)顯著相關(guān),為KP代謝產(chǎn)物在HD中的作用提供強有力的支持[29]。
基于KP與HD的密切聯(lián)系,KP為HD的治療提供了新的治療方法,通過逆轉(zhuǎn)KP毒性代謝產(chǎn)物的生成,提高KYNA水平,可以起到神經(jīng)保護作用,抵抗HD中的興奮性毒性。KMO抑制劑和KYNA衍生物對于HD模型的退行性神經(jīng)損傷均有保護作用[30-31]。然而,在提高腦內(nèi)KYNA(一種NMDARs拮抗劑)水平時,應(yīng)當注意其帶來的負面作用。NMDARs在CNS中普遍存在,當突觸NMDARs被阻斷時,cAMP反應(yīng)元件結(jié)合蛋白(CREB)和腦源性神經(jīng)營養(yǎng)因子(BDNF)介導(dǎo)途徑的保護作用就會受到抑制,最終發(fā)生神經(jīng)損傷[32]。相反,當采用低劑量選擇性作用于突觸外NMDARs的抑制劑時,則可以起到保護作用[33]。新型犬尿喹啉酸酰胺類化合物對HD模型N17182Q轉(zhuǎn)基因小鼠有保護作用[34]。該類化合物選擇性抑制主要存在于突觸外區(qū)域含有NR2B亞基的NMDARs,因此具有較好的療效[35]。
阿爾茨海默?。╝lzheimer’s disease,AD)
陸游乾道九年六月二十一日在成都所作的《東樓集序》云:“余少讀地志,至蜀、漢、巴僰,輒悵然有游歷山川、攬觀風俗之志,私竊自怪,以為異時或至其地以償素心,未可知也?!雹僖虼耍四甑牧阂娴貐^(qū)生活②,可算是冥冥之中上天有意一償陸游“素心”的安排。八年之中,陸游在梁益地區(qū)寫了大量詩文詞,而離開梁益之后的三十余年間,追憶梁益地區(qū)又成為陸游寫作的一個重要主題。這些作品向當時以及后人講述著南宋時期西部地區(qū)的山川風俗、歷史文化,至今讓生活與游歷這一地區(qū)的人們?nèi)阅芨惺艿酱┰桨税俣嗄陼r空而依然鮮活的濃厚的歷史人文氣息。
AD是發(fā)生在老年期的一種神經(jīng)系統(tǒng)慢性漸進性退行性疾病,以細胞外淀粉樣蛋白斑塊、細胞內(nèi)神經(jīng)纖維纏結(jié)和營養(yǎng)不良性神經(jīng)突起為主要病理特征。炎癥反應(yīng)是AD重要病理機制之一,雖然尚不清楚炎癥反應(yīng)是如何引發(fā)AD的,但已發(fā)現(xiàn)KP在AD中起重要作用。許多炎性因子激活KP,產(chǎn)生與AD發(fā)病機制密切相關(guān)的代謝產(chǎn)物[36]。
促炎細胞因子IFN-γ誘導(dǎo)淀粉樣蛋白斑塊周圍的小膠質(zhì)細胞過度表達IDO,使其活性增加[37]。另有研究發(fā)現(xiàn),AD患者和模型小鼠腦中TDO和IDO的表達水平均有所提高,但只有TDO的變化具有統(tǒng)計學(xué)差異[38]。并且,AD患者血液中KYN/TRP比值增加[39]。此外,在AD患者大腦和血清中,3-HK水平升高[40-41]。3-HK和3-HANA介導(dǎo)氧化應(yīng)激,損傷神經(jīng)組織,并可能通過隨后的β淀粉樣蛋白積聚、神經(jīng)膠質(zhì)激活和KP上調(diào)等機制進一步加劇神經(jīng)退行性病變[42]。而且,3-HK和3-HANA均能顯著抑制線粒體呼吸鏈酶復(fù)合物I和II的活性,3-HK和AA還分別能抑制復(fù)合物IV和I-III的活性,這些均可導(dǎo)致AD的能量損失[43]。
淀粉樣前體蛋白的裂解產(chǎn)物淀粉樣肽Aβ-1-42可誘導(dǎo)IDO的表達,導(dǎo)致巨噬細胞和小膠質(zhì)細胞中QUIN的生成增加[44]。QUIN在神經(jīng)膠質(zhì)細胞中的免疫反應(yīng)與淀粉樣蛋白斑塊幾乎一樣強烈,并標記神經(jīng)纖維纏結(jié),表明QUIN誘導(dǎo)的興奮性毒性或氧化應(yīng)激可能參與了AD的致病過程[45]。還有研究表明,在人原代培養(yǎng)的神經(jīng)元中給予QUIN,可誘導(dǎo)參與tau蛋白磷酸化的基因的表達。并且,QUIN與超磷酸化tau蛋白共定位,抑制磷酸酶介導(dǎo)的去磷酸化過程,使tau蛋白在AD皮層神經(jīng)元中超磷酸化[46]。QUIN毒性的另一主要原因是脂質(zhì)過氧化,這也是AD的標志物之一。因此,QUIN可能是AD神經(jīng)損傷病理機制中的關(guān)鍵因素。
在AD患者腦內(nèi)尤其是紋狀體中,KYNA水平上升[47],增加其阻斷谷氨酸和膽堿能受體的能力,促進認知功能障礙。但在AD患者CSF和血漿中,KYNA濃度顯著下降,而KAT活性基本保持不變[48-49]。最近的研究發(fā)現(xiàn),AD患者和正常人相比,CSF中KYNA水平?jīng)]有統(tǒng)計學(xué)差異[50]。因此,這有待于進一步深入研究。
上述研究結(jié)果表明,KP可以為AD提供一種很有前途的治療方法。KMO抑制劑不僅提高腦內(nèi)KYNA水平,也會導(dǎo)致轉(zhuǎn)基因AD模型小鼠中谷氨酸水平降低,并改善空間學(xué)習(xí)記憶能力,減少大腦突觸損失和焦慮行為[22]。此外,黃連堿能夠抑制AD模型小鼠IDO的活性及膠質(zhì)細胞的活化,從而阻斷神經(jīng)元丟失,減少淀粉樣蛋白斑塊生成,改善認知功能損傷,為治療AD提供一種新的思路[51]。
帕金森氏癥(parkinson’s disease,PD)
在PD患者CSF中,TRP水平下降,KYN/TRP比值增加,3-HK水平上升[53-55];而其血漿中KYNA水平下降,KAT I和KAT II活性降低[56]。在PD動物模型中也發(fā)現(xiàn)類似的KP變化。經(jīng)過1-甲基-4-苯基-1,2,3,6-四氫吡啶或6-羥基多巴胺處理后,黑質(zhì)中的KATI表達水平下降[57-58],這為PD中KYNA水平下降提供了實驗依據(jù)。而KYNA能夠?qū)?-甲基-4-苯基吡啶在大鼠紋狀體多巴胺能神經(jīng)末梢的神經(jīng)毒性,這種神經(jīng)保護作用主要是通過AMPA-kainate亞型所介導(dǎo)的,而非NMDARs[59]。
目前還沒有治療PD有效的方法。臨床上常用的左旋多巴和多巴胺能激動劑替代紋狀體內(nèi)的多巴胺,僅能緩解PD癥狀,不能減慢神經(jīng)退行性病變進程。并且,長期使用該類藥物會導(dǎo)致嚴重的副作用。在PD和左旋多巴引起的副作用中,多巴胺和谷氨酸之間的平衡狀態(tài)被打破,導(dǎo)致皮質(zhì)紋狀體谷氨酸功能上調(diào)。KMO抑制劑Ro 61-8048能夠提高KYNA水平,增強其對于NMDARs的拮抗作用,降低興奮性毒性,與左旋多巴聯(lián)合使用,可以產(chǎn)生適度療效,緩解左旋多巴引起的副作用,為治療PD提供了新的方案和思路[60]。
綜上所述:內(nèi)源性KP代謝產(chǎn)物在多種神經(jīng)退行性疾病中發(fā)生改變而偏離生理穩(wěn)態(tài)。因此,維持KP代謝產(chǎn)物的正常水平在腦部功能方面極為重要。預(yù)防或糾正KP的異常改變可以減緩神經(jīng)退行性疾病的病理進程。靶向于KP的新治療方式已引起人們的廣泛關(guān)注,KYNA類似物、前體藥物和KP代謝酶抑制劑等新化合物有望被用于治療神經(jīng)退行性疾病。
然而,神經(jīng)退行性疾病非常復(fù)雜,目前尚不清楚KP作用于此類疾病的準確機制。并且,許多實驗都是在動物身上進行的,針對人體的臨床實驗仍需進一步的研究確認。另外,早期研究是在較高的非生理濃度下進行的,KYNA和QUIN基本上是充當探針藥物來檢測谷氨酸受體的后續(xù)改變,這并不能充分說明內(nèi)源性KP代謝產(chǎn)物在動物體內(nèi)的生物學(xué)作用。基因突變小鼠和酶抑制劑的應(yīng)用有助于改善上述問題[61-62]。基于病理狀態(tài)下KP的復(fù)雜變化過程,需要在多種腦細胞模型和各種疾病模型中進行全面評估KP功能,才能從根本上找到大腦由生理向病理轉(zhuǎn)變的真正原因。
[1]Mezrich JD,F(xiàn)echner JH,Zhang XJ,et al.An Interaction between Kynurenine and the Aryl Hydrocarbon Receptor Can Generate Regulatory T Cells[J].J Immunol,2010,185(6):3190-3198.
[2]Benson JM,Shepherd DM.Dietary Ligands of the Aryl Hydrocarbon Receptor Induce Anti-Inflammatory and Immunoregulatory Effects on Murine Dendritic Cells[J].Toxicol Sci,2011,124(2):327-338.
[3]Birch PJ,Grossman CJ,Hayes AG.Kynurenic Acid Antagonises Responses to Nmda Via an Action at the Strychnine-Insensitive Glycine Receptor[J].European journal of pharmacology,1988,154(1):85-87.
[4]Hilmas C,Pereira EF,Alkondon M,et al.The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression:physiopathological implications[J].The Journal of neuroscience:the official journal of the Society for Neuroscience,2001,21(19):7463-7473.
[5]Marchi M,Risso F,Viola C,et al.Direct evidence that releasestimulating alpha7*nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals[J].Journal of neurochemistry,2002,80(6):1071-1078.
[6]Wang J,Simonavicius N,Wu X,et al.Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35[J].The Journal of biological chemistry,2006,281(31):22021-22028.
[7]DiNatale BC,Murray IA,Schroeder JC,et al.Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling[J].Toxicol Sci,2010,115(1):89-97.
[8]Thevandavakkam MA,Schwarcz R,Muchowski PJ,et al.Targeting Kynurenine 3-Monooxygenase(KMO):Implications for Therapy in Huntington’s Disease[J].Cns Neurol Disord-Dr,2010,9(6):791-800.
[9]Stone TW,Perkins MN.Quinolinic Acid-a Potent Endogenous Excitant at Amino-Acid Receptors in Cns[J].European journal of pharmacology,1981,72(4):411-412.
[10]Schwarcz R,Whetsell WO,Mangano RM.Quinolinic Acid-an Endogenous Metabolite That Produces Axon-Sparing Lesions in Rat-Brain[J].Science,1983,219(4582):316-318.
[11]Santamaria A,Rios C.MK-801,an N-methyl-D-aspartate receptor antagonist,blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum[J].Neurosci Lett,1993,159(1-2):51-54.
[12]Guillemin GJ.Quinolinic acid,the inescapable neurotoxin[J].Febs J,2012,279(8):1356-1365.
[13]Ting KK,Brew BJ,Guillemin GJ.Effect of quinolinic acid on human astrocytes morphology and functions:implications in Alzheimer’s disease[J].Journal of neuroinflammation,2009,6:36.
[14]Goldstein LE,Leopold MC,Huang XD,et al.3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction[J].Biochemistry-Us,2000,39(24):7266-7275.
[15]Okuda S,Nishiyama N,Saito H,et al.3-Hydroxykynurenine,an endogenous oxidative stress generator,causes neuronal cell death with apoptotic features and region selectivity[J].Journal of neurochemistry,1998,70(1):299-307.
[16]Guidetti P,Schwarcz R.3-Hydroxykynurenine and quinolinate:pathogenic synergism in early grade Huntington’s disease?[J].Advances in experimental medicine and biology,2003,527:137-145.
[17]Christen S,Peterhans E,Stocker R.Antioxidant Activities of Some Tryptophan-Metabolites-Possible Implication for Inflammatory Diseases[J].Proceedings of the National Academy of Sciences of the United States of America,1990,87(7):2506-2510.
[18]GuidettiP,Schwarcz R.3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum[J].The European journal of neuroscience,1999,11(11):3857-3863.
[19]Guidetti P,Luthi-Carter RE,Augood SJ,et al.Neostriatal and corticalquinolinate levels are increased in early grade Huntington’s disease[J].Neurobiol Dis,2004,17(3):455-461.
[20]Tai YF,Pavese N,Gerhard A,et al.Microglial activation in presymptomatic Huntington’s disease gene carriers[J].Brain,2007,130:1759-1766.
[21]Guidetti P,Bates GP,Graham RK,et al.Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice[J].Neurobiol Dis,2006,23(1):190-197.
[22]Zwilling D,Huang SY,Sathyasaikumar KV,et al.Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration[J].Cell,2011,145(6):863-874.
[23]Beal MF,Matson WR,Storey E,et al.Kynurenic Acid Concentrations Are Reduced in Huntingtons-Disease Cerebral-Cortex[J].J Neurol Sci,1992,108(1):80-87.
[24]Beal MF,Matson WR,Swartz KJ,et al.Kynurenine pathway measurements in Huntington’s disease striatum:evidence for reduced formation of kynurenic acid [J].Journal of neurochemistry,1990,55(4):1327-1339.
[25]Sapko MT,Guidetti P,Yu P,et al.Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate:Implications for Huntington’s disease[J].Exp Neurol,2006,197(1):31-40.
[26]Jauch D,Urbanska EM,Guidetti P,et al.Dysfunction of Brain Kynurenic Acid Metabolism in Huntingtons-Disease-Focus on Kynurenine Aminotransferases[J].J Neurol Sci,1995,130(1):39-47.
[27]Stoy N,Mackay GM,F(xiàn)orrest CM,et al.Tryptophan metabolism and oxidative stress in patients with Huntington’s disease[J].Journal of neurochemistry,2005,93(3):611-623.
[28]Veres G,Molnar M,Zadori D,et al.Central nervous systemspecific alterations in the tryptophan metabolism in the 3-nitropropionic acid modelofHuntington’sdisease[J].Pharmacology,biochemistry,and behavior,2015,132:115-124.
[29]Forrest CM,Mackay GM,Stoy N,et al.Blood levels of kynurenines,interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington’s disease[J].Journal of neurochemistry,2010,112(1):112-122.
[30]Toledo-Sherman LM,Prime ME,Mrzljak L,et al.Development of a Series of Aryl Pyrimidine Kynurenine Monooxygenase Inhibitors as Potential Therapeutic Agents for the Treatment of Huntington’s Disease[J].J Med Chem,2015,58(3):1159-1183.
[31]Fulop F,Szatmari I,Vamos E,et al.Syntheses,transformations and pharmaceutical applications of kynurenic acid derivatives[J].Curr Med Chem,2009,16(36):4828-4842.
[32]Hardingham GE,F(xiàn)ukunaga Y,Bading H.Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways[J].Nature neuroscience,2002,5(5):405-414.
[33]Okamoto SI,Pouladi MA,Talantova M,et al.Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin[J].Nat Med,2009,15(12):1407-U1408.
[34]Zadori D,Nyiri G,Szonyi A,et al.Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington’s disease[J].Journal of neural transmission,2011,118(6):865-875.
[35]Borza I,Kolok S,Galgoczy K,et al.Kynurenic acid amides as novel NR2B selective NMDA receptor antagonists[J].Bioorg Med Chem Lett,2007,17(2):406-409.
[36]Tan L,Yu JT,Tan L.The kynurenine pathway in neurodegenerative diseases:mechanistic and therapeutic considerations[J].J Neurol Sci,2012,323(1-2):1-8.
[37]Yamada A,Akimoto H,Kagawa S,et al.Proinflammatory cytokine interferon-gamma increases induction of indoleamine 2,3-dioxygenase in monocytic cells primed with amyloid beta peptide 1-42:implications for the pathogenesis of Alzheimer’s disease[J].Journal of neurochemistry,2009,110(3):791-800.
[38]Wu W,Nicolazzo JA,Wen L,et al.Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer’s disease brain[J].Plos One,2013,8(4):e59749.
[39]Greilberger J,F(xiàn)uchs D,Leblhuber F,et al.Carbonyl Proteins as a Clinical Marker in Alzheimer’s Disease and its Relation to Tryptophan Degradation and Immune Activation[J].Clin Lab,2010,56(9-10):441-448.
[40]Bonda DJ,Mailankot M,Stone JG,et al.Indoleamine 2,3-dioxygenase and 3-hydroxy-kynurenine modifications are found in the neuropathology of Alzheimer’s disease[J].Redox Report,2010,15(4):161-168.
[41]Schwarz MJ,Guillemin GJ,Teipel SJ,et al.Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls[J].European archives of psychiatry and clinical neuroscience,2013,263(4):345-352.
[42]Gulaj E,Pawlak K,Bien B,et al.Kynurenine and its metabolites in Alzheimer’s disease patients[J].Adv Med Sci-Poland,2010,55(2):204-211.
[43]Schuck PF,Tonin A,da Costa Ferreira G,et al.Kynurenines impair energy metabolism in rat cerebral cortex[J].Cellular and molecular neurobiology,2007,27(1):147-160.
[44]Guillemin GJ,Smythe GA,Veas LA,et al.A beta 1-42 induces production of quinolinic acid by human macrophages and microglia[J].Neuroreport,2003,14(18):2311-2315.
[45]Guillemin GJ,Brew BJ,Noonan CE,et al.Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus[J].Neuropath Appl Neuro,2005,31(4):395-404.
[46]Rahman A,Ting K,Cullen KM,et al.The excitotoxin quinolinic acid induces tau phosphorylation in human neurons[J].Plos One,2009,4(7):e6344.
[47]Baran H,Jellinger K,Deecke L.Kynurenine metabolism in Alzheimer’s disease[J].Journal of neural transmission,1999,106(2):165-181.
[48]Heyes MP,Saito K,Crowley JS,et al.Quinolinic Acid and Kynurenine Pathway Metabolism in Inflammatory and Noninflammatory Neurological Disease[J].Brain,1992,115:1249-1273.
[49]Hartai Z,Juhasz A,Rimanoczy A,et al.Decreased serum and red blood cell kynurenic acid levels in Alzheimer’s disease[J].Neurochem Int,2007,50(2):308-313.
[50]Wennstrom M,Nielsen HM,Orhan F,et al.Kynurenic Acid levels in cerebrospinal fluid from patients with Alzheimer’s disease or dementia with lewy bodies[J].International journal of tryptophan research,2014,7:1-7.
[51]Yu D,Tao BB,Yang YY,et al.The IDO inhibitor coptisine ameliorates cognitive impairment in a mouse model of Alzheimer’s disease[J].Journal of Alzheimer’s disease,2015,43(1):291-302.
[52]Kincses ZT,Vecsei L.Pharmacological therapy in Parkinson’s disease:focus on neuroprotection[J].CNS neuroscience&therapeutics,2011,17(5):345-367.
[53]Molina JA,Jimenez-Jimenez FJ,Gomez P,et al.Decreased cerebrospinal fluid levels of neutral and basic amino acids in patients with Parkinson’s disease[J].J Neurol Sci,1997,150(2):123-127.
[54]WidnerB,LeblhuberF,F(xiàn)uchsD.Increased neopterin production and tryptophan degradation in advanced Parkinson’s disease[J].Journal of neural transmission,2002,109(2):181-189.
[55]Lewitt PA,Li J,Lu M,et al.3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis[J].Movement disorders:official journal of the Movement Disorder Society,2013,28(12):1653-1660.
[56]Hartai Z,Klivenyi P,Janaky T,et al.Kynurenine metabolism in plasma and in red blood cells in Parkinson’s disease[J].J Neurol Sci,2005,239(1):31-35.
[57]Knyihar-Csillik E,Csillik B,Pakaski M,et al.Decreased expression of kynurenine aminotransferase-I(KAT-I)in the substantia nigra of mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)treatment[J].Neuroscience,2004,126(4):899-914.
[58]Knyihar-Csillik E,Chadaide Z,Mihaly A,et al.Effect of 6-hydroxydopamine treatment on kynurenineaminotransferase-I(KAT-I)immunoreactivity of neurons and glial cells in the rat substantia nigra[J].Acta neuropathologica,2006,112(2):127-137.
[59]Merino M,Vizuete ML,Cano J,et al.The non-NMDA glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline,but not NMDA antagonists,block the intrastriatal neurotoxic effect of MPP+[J].Journal of neurochemistry,1999,73(2):750-757.
[60]Samadi P,Gregoire L,Rassoulpour A,etal.Effectof kynurenine 3-hydroxylaseinhibition on thedyskinetic and antiparkinsonian responses to levodopa in Parkinsonian monkeys[J].Movement disorders:official journal of the Movement Disorder Society,2005,20(7):792-802.
[61]Kanai M,F(xiàn)unakoshi H,Takahashi H,et al.Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice[J].Molecular brain,2009,2:8.
[62]Wu HQ,Okuyama M,Kajii Y,et al.Targeting kynurenine aminotransferase II in psychiatric diseases:promising effects of an orally active enzyme inhibitor[J].Schizophrenia bulletin,2014,40 Suppl 2:S152-158.
Research progress in the kynurenine pathway related with neurodegenerative diseases
WANG Li-sha,LIU Xin-min,F(xiàn)ENG Li,CAO Fang-rui,TAO Xue,CHANG Qi
(Institute of Medicinal Plant Development,Chinese Academy of Medical Science and Peking Union Medical College,Beijing 100193,China)
The kynurenine pathway,a major route of tryptophan metabolism,is involved in the occurrence and development of some neurodegenerative diseases,such as Huntington’s disease,Alzhermier’s disease and Parkinson’s disease.This article is focused on the literature review on the neurobiological properties of kynurenine pathway metabolites and theircrucialrole in related neurodegenerative diseases,for providing novel therapeutic interventions to neurodegenerative diseases.
Kynurenine pathway;Neurodegenerative diseases;Neurobiological properties
R-332
A
1671-7856(2015)11-0069-07
10.3969.j.issn.1671-7856.2015.11.015
科技部對歐盟科技合作專項(1108);新疆科技廳資助項目(20146021和201491174)。
王麗莎(1990-),女,碩士,主要從事藥物吸收代謝研究;E-mail:gawlsv@163.com。
常琪,博士生導(dǎo)師,主要從事藥物吸收代謝研究;E-mail:qchang@implad.ac.cn。
﹞2015-10-21