羅純 武紅霞 姚全勝 王松標(biāo) 許文天 馬小衛(wèi)
摘 要 利用MicroSAtellite軟件分析篩選芒果轉(zhuǎn)錄組中的SSR位點(diǎn)。結(jié)果表明,在54 207條Unigene中共搜索得到4 103個SSR位點(diǎn),出現(xiàn)頻率為7.57%。其中,三核苷酸重復(fù)為主導(dǎo)重復(fù)類型,占SSR總數(shù)的38.19%,其次是單核苷酸重復(fù)(26.91%)。AG/CT和AAG/CTT分別是二核苷酸和三核苷酸重復(fù)的優(yōu)勢基元。根據(jù)SSR側(cè)翼序列共設(shè)計(jì)6 915對SSR引物,隨機(jī)挑選了230對進(jìn)行PCR檢測,獲得93對多態(tài)性引物。由此可見,芒果轉(zhuǎn)錄組數(shù)據(jù)可以作為大量開發(fā)SSR標(biāo)記的資源,這些SSR標(biāo)記也將有助于芒果遺傳多樣性和種質(zhì)資源鑒定的研究。
關(guān)鍵詞 芒果;轉(zhuǎn)錄組;SSR信息;多態(tài)性
中圖分類號 S667.7 文獻(xiàn)標(biāo)識碼 A
Abstract A MicroSAtellite software was used to find the SSR loci in the mango transcriptome. As a result, a total of 4 103 SSRs were found from 54 207 unigenes, with a frequency of 7.57%. The trinucleotide repeats were the most frequent SSRs among them(38.19%). AG/CT and AAG/CTT were the most common motifs in the dinucleotide and trinucleotide repeats, respectively. Based on the flanking sequences of these SSR loci, 6 915 SSR primer pairs were designed. A total of 230 primer pairs were randomly selected to be verified by PCR, and 93 pairs(40.43%)of them exhibited to be polymorphism. The results showed that transcriptome data would be an effective source for the exploration of SSR markers for mango and these SSR markers would contribute greatly to the research into genetic diversity and germplasm characterization in mango.
Key words Mango; Transcriptome; SSR information; Polymorphism
doi 10.3969/j.issn.1000-2561.2015.07.013
Simple sequence repeat(SSR,簡單重復(fù)序列)是指以1~6個核苷酸為單位多次串聯(lián)重復(fù)的DNA序列,在人類和其他動植物基因組中普遍存在且隨機(jī)分布[1]。SSR重復(fù)單位的數(shù)目高度變異,但是某一特定SSR序列的側(cè)翼序列通常為高度保守的單一序列,根據(jù)SSR側(cè)翼序列設(shè)計(jì)引物通過PCR技術(shù)即可分析SSR的多態(tài)性。與其它分子標(biāo)記技術(shù)相比,SSR標(biāo)記具有多態(tài)性高、共顯性、易用PCR檢測、重復(fù)性高、數(shù)量豐富和對基因組有很好的覆蓋性等特點(diǎn)[2]。基于以上這些特點(diǎn),SSR已成為在生物上應(yīng)用廣泛和重要的DNA分子標(biāo)記。在植物遺傳育種中,SSR標(biāo)記已經(jīng)在植物遺傳多樣性研究、品種鑒定、分子標(biāo)記輔助選擇育種(MAS)、遺傳連鎖圖譜的構(gòu)建和外源染色體片段或目的基因鑒定和定位等方面得到應(yīng)用。根據(jù)SSR的來源可將其分為基因組SSR和EST-SSR。傳統(tǒng)的基因組SSR標(biāo)記引物設(shè)計(jì)過程較慢,需要構(gòu)建基因組DNA文庫,探針雜交,重復(fù)序列克隆的識別和篩選,測序等許多繁瑣的過程,不但耗時費(fèi)力,而且開發(fā)成本也比較高,效率較低[3]。另外,利用該方法所獲得的SSR還會受開發(fā)過程所采用探針的SSR重復(fù)單元種類限制[4]。而EST-SSR分子標(biāo)記與基因組SSR標(biāo)記相比,在不同的物種之間具有較好通用性,其開發(fā)方法較簡單而且成本又較低。
芒果(Mangifera indica L.)是世界五大水果之一,且因其風(fēng)味獨(dú)特、營養(yǎng)豐富,經(jīng)濟(jì)效益高等優(yōu)點(diǎn),種植面積不斷擴(kuò)大,產(chǎn)量也逐年上升。中國是世界芒果主要生產(chǎn)國之一,芒果種植在國民經(jīng)濟(jì)上具有重要作用。目前,國內(nèi)外學(xué)者利用多種DNA分子標(biāo)記技術(shù)如RAPD[5-7]、ISSR[8]、AFLP[9-10]等對芒果進(jìn)行了品種或真實(shí)雜種鑒定,并且對野生、砧木或栽培品種等資源進(jìn)行了親緣關(guān)系及遺傳多樣性分析。芒果SSR標(biāo)記也有開發(fā)[11-13],但是目前基于EST數(shù)據(jù)開發(fā)的SSR標(biāo)記非常少,限制了芒果分子水平的研究發(fā)展。因此,本研究對芒果轉(zhuǎn)錄組測序產(chǎn)生的海量EST序列進(jìn)行全轉(zhuǎn)錄組SSR鑒定及引物設(shè)計(jì),揭示芒果轉(zhuǎn)錄組SSR的分布規(guī)律和特性,為芒果遺傳圖譜構(gòu)建、系譜分析和MAS育種提供高效的分子標(biāo)記資源。
1 材料與方法
1.1 材料
以‘Zill4個發(fā)育時期的果皮和果肉混合樣品為材料進(jìn)行轉(zhuǎn)錄組測序,共獲得54 207條Unigene[14],總長度為45 425 223 bp。
1.2 方法
1.2.1 芒果轉(zhuǎn)錄組SSR的篩選 利用SSR軟件 MicroSAtellite(MISA,http://pgrc.ipk -gatersleben.de/misa/)對‘Zill轉(zhuǎn)錄組Unigene序列進(jìn)行SSR查找,具體篩選標(biāo)準(zhǔn)為:SSR重復(fù)基元的長度為1~6 bp,單核苷酸重復(fù)次數(shù)≥12,二核苷酸重復(fù)次數(shù)≥6,三、四核苷酸重復(fù)次數(shù)≥5,五、六核苷酸重復(fù)次數(shù)≥4。只保留SSR重復(fù)單元在Unigene上前后序列均不小于150 bp的SSR,使用Primer3軟件設(shè)計(jì)引物。
1.2.2 芒果SSR-PCR擴(kuò)增及產(chǎn)物檢測 PCR反應(yīng)體系20 μL,其中包括:1×buffer,40 ng DNA模板,1.8 mmol/L MgCl2,0.4 mmol/L dNTPs,0.2 μmol/L引物,0.75 U Taq酶。擴(kuò)增反應(yīng)是在TaKaRa PCR Thermal Cycler Dice儀器上進(jìn)行,擴(kuò)增程序如下:94 ℃預(yù)變性2.5 min;94 ℃變性30 s,58 ℃復(fù)性45 s,72 ℃延伸1 min,35個循環(huán);72 ℃延伸5 min。擴(kuò)增產(chǎn)物在6%變性聚丙烯酰胺凝膠上電泳分離。
2 結(jié)果與分析
2.1 芒果轉(zhuǎn)錄組中SSR位點(diǎn)的數(shù)量與分布
利用軟件MISA對芒果轉(zhuǎn)錄組54 207條Unigene進(jìn)行分析查找,共3 683條Unigene含有SSR,發(fā)生頻率(含有SSR的Unigene數(shù)目/總Unigene數(shù)目)為6.79%。其中,3 301條Unigene含有單個SSR位點(diǎn),占含有SSR序列條數(shù)的89.63%,其余382條Unigene含有多個SSR位點(diǎn),占含有SSR序列條數(shù)的10.37%。芒果轉(zhuǎn)錄組中共查找到SSR位點(diǎn)4 103個,出現(xiàn)頻率為(檢出的SSR個數(shù)/總Unigene數(shù)目)7.57%,平均距離(芒果轉(zhuǎn)錄組Unigene總長度/SSR數(shù)目)為11.07 kb,即芒果轉(zhuǎn)錄組中平均每11.07 kb出現(xiàn)1個SSR(表1)。
芒果轉(zhuǎn)錄組SSR數(shù)量較為豐富,單核苷酸重復(fù)至六核苷酸重復(fù)均有分布,但是類型SSR出現(xiàn)頻率存在差異(表1),主要是單、二和三核苷酸重復(fù)類型。三核苷酸重復(fù)類型數(shù)量最多,占全部SSR的38.19%;其次是單核苷酸和二核苷酸重復(fù)類型,分別占26.91%和25.83%,四核苷酸重復(fù)類型數(shù)量最少,占2.10%。
芒果轉(zhuǎn)錄組中SSR位點(diǎn)重復(fù)次數(shù)以5次(1 017)最多,占總SSR的24.79%;其次為重復(fù)次數(shù)6、7、4、8、9和10次,SSR位點(diǎn)個數(shù)在97~859。統(tǒng)計(jì)4~10次重復(fù)的SSR位點(diǎn)共有2 932個,占71.46%;11~23次重復(fù)的SSR位點(diǎn)共有1 171個,占總SSR數(shù)量的28.54%(圖1)。
2.2 芒果轉(zhuǎn)錄組中SSR特性
芒果轉(zhuǎn)錄組中共查找到153種重復(fù)基元,其中以單核苷酸重復(fù)基元A/T最多,占總SSR位點(diǎn)的26.81%,其次是二核苷酸重復(fù)基元AG/CT和三核苷酸重復(fù)基元AAG/CTT,分別占總SSR數(shù)目的19.79%和13.21%。具體來說,二核苷酸重復(fù)基元共查找到3種,AG/CT占主導(dǎo)地位,占該重復(fù)類型的76.60%,其它2種AC/GT和AT/AT數(shù)量相當(dāng);三核苷酸重復(fù)基元共10種,出現(xiàn)次數(shù)最多的是AAG/CTT,占該重復(fù)類型的34.59%,其次是ATC/ATG和ACC/GGT,分別占16.46%和13.08%,出現(xiàn)次數(shù)最少的是ACT/AGT,僅占該重復(fù)類型的1.21%;四、五和六核苷酸重復(fù)基元最多的分別是AAAG/CTTT、AAGAG/CTCTT和ACCCTG/AGGGTC,其它重復(fù)基元出現(xiàn)頻率較低(表2)。
2.3 芒果轉(zhuǎn)錄組SSR的可用性評價(jià)
SSR多態(tài)性的高低是評價(jià)其有用性的主要標(biāo)準(zhǔn),而SSR的長度影響其多態(tài)性。當(dāng)SSR長度在20 bp以上時,在不同品種間顯示出較高的多態(tài)性,長度在12~20 bp的SSR多態(tài)性低些,而長度在12 bp以下的SSR多態(tài)性很低[15],因此本研究在查找SSR時將長度小于12 bp的已經(jīng)除去。芒果轉(zhuǎn)錄組SSR的長度為12~60 bp,長度在12~20 bp的SSR數(shù)量最多,共3 532個,占全部SSR的86.08%。其次是21~30 bp的SSR,共561個(13.67%)(圖2)。依據(jù)高級基元SSR多態(tài)性普遍比低級基元的低[16],而在長度大于20 bp的芒果SSR中,主要是低級基元SSR,包含單、二和三核苷酸SSR,共378個,可以預(yù)計(jì)這部分多態(tài)性潛能高的SSR在芒果上應(yīng)具有較高的利用價(jià)值。
2.4 芒果轉(zhuǎn)錄組SSR引物設(shè)計(jì)與篩選
使用Primer 3軟件對上下游序列均不小于150 bp的SSR設(shè)計(jì)引物,每條序列產(chǎn)生5對引物,共有1 383條芒果SSR序列獲得6 915對引物。為了驗(yàn)證這些引物的有效性和多態(tài)性,隨機(jī)挑選230對引物對7個不同的芒果品種進(jìn)行PCR擴(kuò)增(圖3)。結(jié)果表明除12對引物未獲得目的產(chǎn)物外,其余218對引物均獲得穩(wěn)定和可重復(fù)的目的產(chǎn)物,表現(xiàn)多態(tài)性的引物共93對,多態(tài)性比例為40.43%(表3)。
3 討論與結(jié)論
本研究在芒果轉(zhuǎn)錄組54 207條Unigene序列中搜索到SSR位點(diǎn)4 103個,分布于3 683條Unigene上,出現(xiàn)頻率為7.57%,平均距離為11.07 kb。與其他植物相比,芒果轉(zhuǎn)錄組SSR出現(xiàn)頻率低于枇杷(22.02%)、油棕(22.6%)和橡膠樹(35.58%)[17-19],但高于大麥(2.8%)、棉花(5.29%)和小麥(7.4%)[20-22],與蓮花(7.6%)和木豆(7.6%)相當(dāng)[23-24]。SSR的出現(xiàn)頻率在不同物種、不同研究結(jié)果中存在差異主要是搜索重復(fù)類型和長度等標(biāo)準(zhǔn)不同以及分析數(shù)據(jù)量的大小不同所造成的[25]。
已報(bào)道的大多數(shù)植物中SSR以二核苷酸和三核苷酸重復(fù)類型最為豐富,與芝麻、獼猴桃、咖啡、橡膠樹等二核苷酸SSR為主導(dǎo)的植物不同[26-29],芒果轉(zhuǎn)錄組中三核苷酸SSR數(shù)量最多,占全部SSR的38.19%(表1),與甘蔗、小麥、紅薯和柑橘等植物類似[30-33]。芒果中二核苷酸優(yōu)勢重復(fù)基元為AG/CT,與多數(shù)植物中報(bào)道的情況相同[26,29]。前人研究發(fā)現(xiàn)雙子葉植物中三核苷酸重復(fù)以AAG/CTT重復(fù)為主,CCG/CGG出現(xiàn)頻率很低[34-35],芒果三核苷酸SSR中AAG/CTT數(shù)量最多,占總SSR的13.21%,而CCG/CGG僅占0.95%,驗(yàn)證了前人研究。
在芒果上,國內(nèi)外已報(bào)道的SSR標(biāo)記數(shù)量并不多,主要是通過構(gòu)建基因組文庫,利用探針雜交富集篩選得到,如Duval等[36]、Viruel等[37]、Honsho等[38]和Chiang等[39]通過該方法分別開發(fā)了28、16、6和20個SSR標(biāo)記。國內(nèi)黃啟星等[40]利用公共數(shù)據(jù)庫中1 665條芒果EST序列分析查找到EST-SSR位點(diǎn)32個,EST-SSR平均距離為20.2 kb,大于本研究中利用轉(zhuǎn)錄組數(shù)據(jù)查找的SSR的平均距離,可能是由于轉(zhuǎn)錄組測序數(shù)據(jù)較豐富,從而含有SSR位點(diǎn)也更豐富。同時黃啟星等[40]還發(fā)現(xiàn)芒果EST-SSR以三核苷酸重復(fù)類型數(shù)量最多,其中又以AAG/CTT重復(fù)為主,與本研究得到的結(jié)果一致。
總的來說,芒果轉(zhuǎn)錄組中SSR的出現(xiàn)頻率雖然不高,但是類型比較豐富,長度大于20 bp的主要是低基元重復(fù),多態(tài)性潛能高,設(shè)計(jì)的引物經(jīng)實(shí)驗(yàn)驗(yàn)證其有效性也高。本研究結(jié)果為進(jìn)一步構(gòu)建芒果遺傳圖譜、系譜分析和MAS育種提供了高效的分子標(biāo)記資源。
參考文獻(xiàn)
[1] Tautz D, Renz M. Simple sequence repeats are ubiquitous repetitive components of eukaryotic genomes[J]. Nucl Acids Res, 1984, 12(10): 4 127-4 138.
[2] Powell W, Machray G C, Provan J. Polymorphism revealed by simple sequence repeat[J]. Trends Plant Sci, 1996, 1(7): 215-222.
[3] Roder M S, Korzun V, Wendehake K, et al. A microsatellite map of wheat[J]. Genetics, 1998, 149(4): 2 007-2 023.
[4] Chen C, Zhou P, Choi Y A, et al. Mining and characterizing microsatellites from citrus ESTs[J]. Theor Appl Genet, 2006, 112(7): 1 248-1 257.
[5] Karihaloo J L, Dwivedi Y K, Sunil A, et al. Analysis of genetic diversity of Indian mango cultivars using RAPD markers[J]. J Hortic Sci Biotech, 2003, 78: 285-289.
[6] Shukla M, Babu R, Mathur V K, et al. Diverse genetic bases of Indian polyembryonic and monoembryonic mango(Mangifera indica L)cultivars[J]. Curr Sci, 2004, 87: 870-871.
[7] Rahman M L, Rabbani M G, Siddique M N A, et al. Molecular characterization of 28 mango germplasm using RAPD[J]. Plant Tiss Culture Biotech, 2007, 17(1): 71-77.
[8] Rocha A, Carlos L, Salomao C, et al. Genetic diversity of ‘Ubá mango tree using ISSR markers[J]. Mol Biotechnol, 2012, 50(2): 108-113.
[9] 房經(jīng)貴, 章 鎮(zhèn), 馬正強(qiáng), 等. AFLP標(biāo)記在兩個芒果品種間雜交F1代的多態(tài)性及分離方式[J]. 中國農(nóng)業(yè)科學(xué), 2000, 33(3): 19-24.
[10] Kashkush K, Fang J G, Tomer E, et al. Cultivar identification and genetic map of mango(Mangifera indica)[J]. Euphytica, 2001, 122: 129-136.
[11] Hirano R, Ishii H, Oo T H, et al. Propagation management methods have altered the genetic variability of two traditional mango varieties in Myanmar, as revealed by SSR[J]. Plant Genet Resour, 2011, 9(3): 404-410.
[12] Tsai C C, Chen Y H, Chen C H, et al. Cultivar identification and genetic relationship of mango(Mangifera indica)in Taiwan using 37 SSR markers[J]. Sci Hortic, 2013, 164: 196-201.
[13] Surapaneni M, Vemireddy L R, Begum H, et al. Population structure and genetic analysis of different utility types of mango(Mangifera indica L.)germplasm of Andhra Pradesh state of India using microsatellite markers[J]. Plant Syst Evol, 2013, 299(7): 1 215-1 229.
[14] Wu H X, Jia H M, Ma X W, et al. Transcriptome and proteomic analysis of mango(Mangifera indica Linn)fruits[J]. J Proteomics, 2014, 105: 19-30.
[15] Temnykh S, De Clerck G, Lukashova L, et al. Computational andexperimental analysis of microsatellites in rice(Oryzasativa L.)[J]. Genome Res, 2001, 11: 1 441-1 452.
[16] Dreisigacker S, Zhang P, Warburton M L, et al. SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different mega environments[J]. Crop Sci, 2004, 44: 381-388.
[17] Li X Y, Xu H X, Feng J J, et al. Development and application of genic simple sequence repeat markers from the transcriptome of loquat[J]. J Amer Soc Hort Sci, 2014, 139(5): 507-517.
[18] 周麗霞, 肖 勇, 楊耀東. 油棕轉(zhuǎn)錄組SSR標(biāo)記開發(fā)研究[J]. 廣東農(nóng)業(yè)科學(xué), 2014(14): 136-138.
[19] Mantello C C, Cardoso-Silva C B, da Silva C C, et al. De Novo assembly and transcriptome analysis of the rubber tree (Hevea brasiliensis)and SNP markers development for rubber biosynthesis pathways[J]. PLoS ONE, 2014, 9: e102 665.
[20] Varshney R, Grosse I, Hahnel U, et al. Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome[J]. Theor Appl Genet, 2006, 113(2): 239-250.
[21] Zhang X W, Ye Z W a, Wang T K, et al. Characterization of the global transcriptome for cotton(Gossypium hirsutum L.)anther and development of SSR marker[J]. Gene, 2014, 551(2): 206-213.
[22] Peng J, Lapitan N L V. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers[J]. Funct Integr Genomic, 2005, 5(2): 80-96.
[23] Zhang W, Tian D, Huang X, et al. Characterization of flower-bud transcriptome and development of genic SSR markers in asian lotus(Nelumbo nucifera Gaertn.)[J]. PLoS ONE, 2014, 9(11): e112 223.
[24] Dutta S, Kumawat G, Singh B P, et al. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan(L.)Millspaugh][J]. BMC Plant Biol, 2011, 11: 17.
[25] Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: features and applications[J]. Trends Biotechnol, 2005, 23(1): 48-55.
[26] Wei W, Qi X, Wang L, et al. Characterization of the sesame (Sesamum indicum L.)global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers[J]. BMC Genomics, 2011, 12: 451.
[27] Fraser L G, Harvey C F, Crowhurst R N, et al. EST-derived microsatellites from Actinidia species and their potential for mapping[J]. Theor Appl Genet, 2004, 108(6): 1 010-1 016.
[28] Aggarwal R K, Hendre P S, Varshney R K, et al. Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species[J]. Theor Appl Genet, 2007, 114(2): 359-372.
[29] Li D, Deng Z, Qin B, et al. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree(Hevea brasiliensis Muell. Arg.)[J]. BMC Genomics, 2012, 13: 192.
[30] Marconi T G, Costa E, Miranda H R, et al. Functional markers for gene mapping and genetic diversity studies in sugarcane[J]. BMC Res Notes, 2011, 4: 264.
[31] La Rota M, Kantety R V, Yu J K, et al. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley[J]. BMC Genomics, 2005, 6: 23.
[32] Wang Z, Fang B, Chen J, et al. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato(Ipomoea batatas)[J]. BMC Genomics, 2010, 11: 726.
[33] Chen C, Zhou P, Choi Y, et al. Mining and characterizing microsatellites from citrus ESTs[J]. Theor Appl Genet, 2006, 112(7): 1 248-1 257.
[34] Kumpatla S, Mukhopadhyay S. Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species[J]. Genome, 2005, 48(6): 985-998.
[35] Liang X, Chen X, Hong Y, et al. Utility of EST-derived SSR in cultivated peanut(Arachis hypogaea L.)and Arachis wild species[J]. BMC Plant Biol, 2009, 9: 35.
[36] Duval M F, Bunel J, Sitbon C, et al. Development of microsatellite markers for mango(Mangifera indica L.)[J]. Mol Ecol Notes, 2005, 5(4): 824-826.
[37] Viruel M A, Escribano P, Barbieri M, et al. Fingerprinting, embryo type and geographic differentiation in mango(Mangifera indica L., Anacardiaceae)with microsatellites[J]. Mol Breeding, 2005, 15(4): 383-393.
[38] Honsho C, Nishiyama K, Eiadthong W, et al. Isolation and characterization of new microsatellite markers in mango(Mangifera indica)[J]. Mol Ecol Notes, 2005, 5(1): 152-154.
[39] Chiang Y C, Tsai C M, Chen Y K H, et al. Development and characterization of 20 new polymorphic microsatellite markers from Mangifera indica(Anacardiaceae)[J]. Am J Bot, 2012, 99(3): e117-e119.
[40] 黃啟星, 左 嬌, 孔 華, 等. 11種熱帶植物EST-SSR標(biāo)記的開發(fā)和多樣性分析[J]. 熱帶作物學(xué)報(bào), 2012, 33(7): 1 208-1 214.