趙文敏,蔣國軍,李 方,閻建華,覃小紅
(東華大學(xué)a.上海市微納米紡織重點(diǎn)實(shí)驗(yàn)室;b.紡織學(xué)院;c.環(huán)境科學(xué)與工程學(xué)院;d.研究院,上海 201620)
靜電紡PVDF/PAN共混納米纖維膜對含油污水的過濾性能
趙文敏a,b,蔣國軍a,b,李 方c,閻建華d,覃小紅a,b
(東華大學(xué)a.上海市微納米紡織重點(diǎn)實(shí)驗(yàn)室;b.紡織學(xué)院;c.環(huán)境科學(xué)與工程學(xué)院;d.研究院,上海 201620)
制備不同共混比的靜電紡聚偏氟乙烯/聚丙烯腈(PVDF/PAN)納米纖維膜.應(yīng)用掃描電子顯微鏡分析膜的表面形態(tài),并測試共混纖維膜的親水性、孔徑及對自制乳化油污水的過濾效率.試驗(yàn)結(jié)果表明:隨著PAN共混比例的增加,共混膜的纖維直徑減??;共混膜的水接觸角隨PAN共混比例的增加呈明顯下降趨勢,下降幅度為30°,親水性改善效果明顯;共混膜的平均孔徑為0.784~2.070μm;測得共混膜的純水通量為4 019~5 340 L/(m2·h),約是PVDF商品超濾膜的30倍;共混膜對乳化油的截留率最高達(dá)到95.31%,稍小于PVDF商品超濾膜的97%.
靜電紡;聚偏氟乙烯/聚丙烯腈(PVDF/PAN)納米纖維膜;含油污水;水接觸角;孔徑;純水通量;乳化油截留率
含油污水來源十分廣泛,如石油化工、開采、機(jī)械加工、皮革、紡織、食品等行業(yè),并且排放量大,其若直接排入水體,對自然生態(tài)平衡危害極大.對含油污水的傳統(tǒng)處理方法有物理法、化學(xué)法、物理化學(xué)方法和微生物法[1],但是傳統(tǒng)的污水處理方法效率低、成本高并且有的存在二次污染.隨著現(xiàn)代科技的發(fā)展,高分子膜材料越來越多地應(yīng)用于污水處理,其既能去除水中的微污染物和消毒副產(chǎn)物(DBP),又具有基建費(fèi)用低、運(yùn)行管理簡單等優(yōu)點(diǎn),因而膜技術(shù)在水處理中得到日益廣泛的應(yīng)用,被稱為“21世紀(jì)的水處理技術(shù)”.
靜電紡是一種有效制備納米纖維的技術(shù),其制備的納米纖維具有比表面積大、長徑比大和相對密度 低 等 特 點(diǎn),被 廣 泛 應(yīng) 用 在 組 織 工 程[2-4]、傳 感器[5-7]、防護(hù)服[8-9]、過濾材料[10-12]等 方 面.而 靜 電 紡納米纖維膜具有三維立體空間結(jié)構(gòu),不但具備納米級尺寸、比表面積高等優(yōu)點(diǎn),同時(shí)具有力學(xué)穩(wěn)定性好、纖維間孔徑小、孔隙率高、纖維連續(xù)性好等特性,這些特點(diǎn)使得納米纖維膜在含油污水的處理方面具有很好的應(yīng)用前景[13-15].
聚偏氟乙烯(polyvinylidene fluoride,PVDF)是一種被廣泛應(yīng)用的高分子膜材料,具有優(yōu)良的電化學(xué)性能、力學(xué)性能、耐熱性和化學(xué)穩(wěn)定性等,這些特點(diǎn)使PVDF成為一種理想的分離膜材料,適用于化工、電子、紡織、食品、生化等領(lǐng)域[16-22],并被廣泛應(yīng)用于超濾膜的制備.文獻(xiàn)[23]研究了靜電紡PVDF,并利用戊二醛和對苯二甲酰氯交聯(lián)改性殼聚糖涂敷在PVDF膜的表面,制得一種新型的超濾膜,測得其純水通量為70.5 L/(m2·h)(商品超濾膜的純水通量為57.1 L/(m2·h)),對牛血清蛋白(BSA)的截留率大于98%,與商品超濾膜不相上下.文獻(xiàn)[24]制備了一種新型的離子選擇性膜,即在商品PVDF超濾膜上鋪設(shè)一層PVDF靜電紡納米纖維,并在其上交聯(lián)超支化的聚乙烯亞胺(PEI)網(wǎng)絡(luò).對這種膜進(jìn)行鹽離子截留和水通量測試發(fā)現(xiàn),在p H值為6和壓力為0.7 MPa時(shí),水通量達(dá)到了30 L/(m2·h),對 MgCl2和NaCl的截留率分別達(dá)到了88%和65%,研究結(jié)果表明這種復(fù)合膜在水凈化方面有很好的應(yīng)用前景.文獻(xiàn)[25]研究了一種復(fù)合PVDF微濾膜,這種微濾膜由非對稱微孔膜、超細(xì)納米纖維和聚對苯二甲酸乙二酯(PET)非織造布組成.將此復(fù)合膜進(jìn)行過濾測試,得到比商品微濾膜和電紡膜更高的水通量和選擇性,以及更低的易污染性和更優(yōu)異的通量回復(fù)性能.
聚丙烯腈(polyacrylonitrile,PAN)是靜電紡的常用材料,制得的納米級纖維粗細(xì)均勻、纖維間孔隙率高,適合應(yīng)用于過濾材料.文獻(xiàn)[26]研究了靜電紡PAN納米纖維膜,并在膜表面涂敷殼聚糖,制得納米復(fù)合材料納濾膜比傳統(tǒng)商業(yè)膜的純水通量高出一個數(shù)量級,且截留率高達(dá)99.9%.文獻(xiàn)[27]采用靜電紡制備了PVA(聚乙烯醇)/PAN納米纖維復(fù)合膜,該復(fù)合膜是在靜電紡PAN膜基底上靜電紡一層很薄的PVA層,之后在戊二醇/丙酮溶液中對表層PVA進(jìn)行水蒸氣和化學(xué)交聯(lián)處理,形成PVA的阻擋層,然后進(jìn)行油/水乳液的過濾性能測試.結(jié)果顯示,當(dāng)操作壓力為0.3 MPa時(shí),PVA/PAN納米纖維復(fù)合膜的水通量高達(dá)2 101 L/(m2·h),截留率達(dá)到99.5%.文獻(xiàn)[28]研究了雙層PAN靜電紡膜,對其加入選擇性氧化黃麻纖維素納米晶須進(jìn)行增強(qiáng)處理,該膜的力學(xué)性能優(yōu)異,對7~40 nm的粒子有很好的過濾效率,可廣泛應(yīng)用于飲用水和工業(yè)廢水處理.
因單一組分的高分子膜材已不能滿足使用要求,越來越多的研究采用不同組分共混的方法來改善膜的性能.文獻(xiàn)[29]制備PVDF/PAN體系的超濾膜,探討不同共混比對鑄膜液的相容性及其膜性能的影響,結(jié)果表明,PVDF/PAN共混膜的透過性比純PVDF膜更好,而截留率基本不變.文獻(xiàn)[30]對PVDF/PAN共混體系的相容性進(jìn)行了理論分析和相容性預(yù)測,并通過試驗(yàn)對相容性進(jìn)行評價(jià),結(jié)果表明,PVDF/PAN為部分共混體系,利用該體系可制得性能優(yōu)良的PVDF/PAN共混超濾膜.
雖然PVDF制成膜的應(yīng)用廣泛,但是其水通量較低、親水性差、抗污染性差;而靜電紡PAN納米纖維在過濾方面雖然應(yīng)用頗多,但是其成膜柔軟、黏手,且過濾時(shí)易損失表層纖維.基于文獻(xiàn)[29-30]的研究,本文首次采用靜電紡的方法制備PVDF/PAN共混納米纖維膜,測試納米纖維膜的水接觸角和孔徑,觀察共混膜的親水性和孔徑大小,并用PET非織造布做基布支撐納米纖維膜,測試其純水通量以及對自制乳化油溶液的截留率,得到PVDF/PAN納米纖維膜對含油污水的過濾效果.
YB 302型電子天平,03-2型恒溫磁力攪拌器,EST804A型電子高壓發(fā)生器,LSP01-1A型注射泵,TM-3000型掃描電子顯微鏡(SEM),SL200C型接觸角儀,Porometer3G型孔徑分析儀,九陽豆?jié){機(jī)攪拌器,Model 8400型杯式過濾器,LS 13320型激光粒度分析儀.
PVDF粉末,F(xiàn)R904型,相對分子質(zhì)量為100萬,上海三愛富新材料股份有限公司;PAN粉末,相對分子質(zhì)量為8萬,上海國藥集團(tuán)化學(xué)試劑有限公司;N-N二甲基甲酰胺(DMF),分析純,上海凌峰化學(xué)試劑有限公司;PET非織造布;API-SG型機(jī)油,上海安曼潤滑油有限公司;重鉻酸鉀標(biāo)準(zhǔn)溶液,上海國藥集團(tuán)化學(xué)試劑有限公司.
將一定質(zhì)量的PVDF和PAN粉末按共混質(zhì)量比10∶0,9∶1,7∶3,5∶5,3∶7,1∶9,0∶10分別置于DMF中,配制質(zhì)量分?jǐn)?shù)為14%的溶液,加熱60℃并攪拌6 h至溶液混合均勻.PVDF/PAN溶液的質(zhì)量配比如表1所示.
表1 PVDF/PAN溶液質(zhì)量配比Table 1 The mass proportion of PVDF/PAN solution
采用自制的水平式靜電紡絲裝置進(jìn)行靜電紡絲,該裝置主要是由水平注射泵、高壓發(fā)生器和鋁箔接收裝置3部分組成.使用10 m L的注射器抽取一定量的PVDF/PAN溶液,用內(nèi)徑為0.5 mm的針頭與高壓發(fā)生器的正極相連,接收裝置接地,設(shè)置接收裝置與針頭間的距離為15 cm、紡絲電壓為13 k V和紡絲液的流量為0.8 m L/h,所紡納米纖維膜的平均厚度為0.15 mm,其斷裂強(qiáng)度為0.61~1.39 MPa,且隨著PAN共混比例的增加,膜斷裂強(qiáng)度呈下降的趨勢.
對靜電紡絲得到的不同共混比的7塊PVDF/PAN納米纖維膜剪取試樣,進(jìn)行噴金處理約90 s,然后采用掃描電鏡對纖維膜的表面形貌進(jìn)行觀察,掃描電壓為15 k V.之后用Photoshop軟件在SEM圖中隨機(jī)選取50根纖維測量纖維的平均直徑.
采用接觸角儀對7塊PVDF/PAN納米纖維膜進(jìn)行接觸角測試,每個樣品測3次取平均值,觀察不同共混比的PVDF/PAN納米纖維膜的浸潤性.
采用孔徑分析儀對7塊不同共混比的PVDF/PAN納米纖維膜進(jìn)行孔徑測試,得到孔徑的最大值、最小值和平均值.
采用過濾器進(jìn)行死端過濾測試,將7塊PVDF/PAN納米纖維膜(厚度為0.15 mm)分別剪成面積為41.8 cm2的圓形,再將PET非織布(厚度為0.05 mm)剪成相同的圓形,放在PVDF/PAN納米纖維膜兩邊組合后一同放入超濾杯中,然后通入氮?dú)?.2 MPa預(yù)壓0.5 h后加壓0.1 MPa進(jìn)行試驗(yàn),超濾杯中轉(zhuǎn)子的轉(zhuǎn)速為300 r/min.根據(jù)靜電紡膜的特點(diǎn),設(shè)定過濾時(shí)間為1 min.
1.5.1 純水通量測試
儲液罐中通入去離子水,計(jì)算單位時(shí)間通過單位面積膜的水體積,即純水通量J(L/(m2·h)).純水通量的計(jì)算式為
其中:Q為過濾水的體積(L);A為納米纖維膜的有效過濾面積(m2);Δt為測試時(shí)間(h).
1.5.2 乳化液截留率的測試
由于乳化油濃度較低,沒有加乳化劑也可以保持長時(shí)間不分層.配制質(zhì)量濃度為1 g/L的乳化油溶液,用攪拌器以20 000 r/min的轉(zhuǎn)速攪拌3 min.將配制的乳化油溶液放入儲液罐中,經(jīng)納米纖維膜過濾1 min后,取原液和過濾出的液體,用重鉻酸鉀滴定法測試兩種液體的COD值,截留率R(%)計(jì)算式為
其中:A1為乳化油原液的COD值(mg/L);A2為乳化油濾出液的COD值(mg/L).
PVDF/PAN按不同共混比靜電紡制得的納米纖維膜的SEM圖如圖1所示.由圖1可知,純PVDF納米纖維的直徑偏大,且粗細(xì)均勻度稍差,而純PAN納米纖維的直徑小且粗細(xì)相對均勻.對每一種共混比靜電紡納米纖維膜中選取50根纖維,利用Photoshop軟件求得纖維平均直徑,得到纖維直徑隨PVDF/PAN共混比變化的趨勢,如圖2所示.由圖2可知,隨著PAN共混比例的增加,纖維直徑呈逐漸變細(xì)的趨勢.
圖1 不同共混比下PVDF/PAN納米纖維形態(tài)Fig.1 The morphology of PVDF/PAN nanofibers under different blend ratios
圖2 不同共混比下PVDF/PAN納米纖維的直徑變化趨勢Fig.2 The diameter tendency of PVDF/PAN nanofibers under different blend ratios
不同共混比的PVDF/PAN納米纖維膜的水接觸角測試結(jié)果如圖3所示.由圖3可知,隨著PAN共混比例的增加,共混膜的水接觸角呈下降趨勢.這是因?yàn)镻VDF的分子鏈?zhǔn)怯商細(xì)滏I和碳氟鍵組成,其無親水基團(tuán),從而導(dǎo)致純PVDF膜的親水性很差,測得的水接觸角高達(dá)140.98°;而PAN分子中有氰基存在,具有一定的親水性,因而隨著PAN共混比例的增加,共混膜的親水性得到一定的改善,所以當(dāng)共混比為1∶9時(shí)膜的水接觸角僅為109.58°.當(dāng)PVDF/PAN共混比為0∶10時(shí),由于靜電紡純PAN膜的表面有許多纖維覆蓋,纖維之間粘連并不貼服,使得水接觸角測試?yán)щy,無法得到準(zhǔn)確值.
圖3 不同共混比的PVDF/PAN納米纖維膜的水接觸角Fig.3 The water contact angle of PVDF/PAN nanofiber membrane under different blend ratios
不同共混比的PVDF/PAN納米纖維膜的水接觸角和純水通量的關(guān)系如圖4所示.由圖4可知,加入PAN后共混納米纖維膜的純水通量均超過了純PVDF膜的純水通量4 019 L/(m2·h),最高達(dá)到5 340 L/(m2·h),主要由于膜親水性的改善能夠在一定程度上提高純水通量[31].
圖4 不同共混比PVDF/PAN納米纖維膜的水接觸角和純水通量的關(guān)系Fig.4 The relationship between water contact angle and pure water flux of PVDF/PAN nanofiber membrane under different blend ratios
納米纖維膜的孔徑與纖維的直徑和纖維覆蓋的厚度等都有密切關(guān)系,由于納米纖維的直徑均為納米級,所以膜孔徑相對較小,孔隙率較高,因而過濾效果很好.不同共混比的PVDF/PAN納米纖維膜的孔徑測試結(jié)果如表2所示.由表2可知,隨著PAN共混比例的增加,孔徑基本呈現(xiàn)先增加后降低的趨勢.純PVDF納米纖維膜的纖維之間排列相對緊密,而純PAN納米纖維膜的纖維之間排列相對疏松,所以孔徑受到一定影響.當(dāng)PVDF/PAN共混比從10∶0變化到5∶5時(shí),納米纖維直徑降低,但隨著PAN共混比例的增加,膜的致密性稍差,使得膜孔徑稍有增加;而當(dāng)PAN的共混比例繼續(xù)增加時(shí),纖維直徑越來越小,因而膜孔徑又有降低的趨勢.
表2 不同共混比的PVDF/PAN納米纖維膜的孔徑Table 2 The pore size of PVDF/PAN nanofiber membrane under different blend ratios
由表2可知,不同共混比的PVDF/PAN納米纖維膜的平均孔徑為0.784~2.070μm,均小于已測得的油滴平均粒徑5μm,油滴的粒徑分布用激光粒度儀測定,粒徑圖如圖5所示.此外,PET非織造布的孔徑很大,其值為0.5~1.0 mm,遠(yuǎn)大于油滴平均粒徑,對過濾效果影響不大.
圖5 油滴粒徑圖Fig.5 The figure of droplet size
膜的純水通量和截留效果與孔徑尺寸和孔徑分布密切相關(guān)[32].不同共混比的PVDF/PAN納米纖維膜的孔徑和純水通量關(guān)系如圖6所示.由圖6可以看出,膜的純水通量隨著孔徑的增加而增加.當(dāng)PVDF/PAN共混比為5∶5時(shí),膜孔徑最大,為2.070μm,純水通量最大,為5 339.71 L/(m2·h),之后又逐漸降 低.當(dāng) PVDF/PAN 共混比 為10∶0時(shí),膜孔徑最小,為0.784μm,純水通量最小,為4 019 L/(m2·h).
圖6 不同共混比的PVDF/PAN納米纖維膜的孔徑和純水通量的變化趨勢Fig.6 The tendency of pore size and pure water flux of PVDF/PAN nanofiber membrane under different blend ratios
不同共混比的PVDF/PAN納米纖維膜的孔徑和乳化液截留率之間的關(guān)系如圖7所示.由圖7可知,乳化油截留率隨著孔徑的增加而減小,這是因?yàn)槟た讖皆酱?,截獲油滴粒子的效率相對越差.當(dāng)PVDF/PAN共混比為5∶5時(shí),膜孔徑最大,為2.070μm,乳化油截留率最低,為 88.24%;當(dāng)PVDF/PAN共混比為10∶0時(shí),膜孔徑最小,為0.784μm,乳化油截留率最高,為95.31%.
圖7 不同共混比的PVDF/PAN納米纖維膜的孔徑和乳化油截留率的變化趨勢Fig.7 The tendency of pore size and emulsion rejection rate of PVDF/PAN nanofiber membrane under different blend ratios
由圖6和7可以看出,加入PAN后共混納米纖維膜的純水通量均在4 000 L/(m2·h)以上,約是PVDF商品超濾膜純水通量(180 L/(m2·h))的30倍,是文獻(xiàn)[33]研究的復(fù)合膜純水通量的10倍以上.本文經(jīng)綜合考慮后選用PVDF/PAN最優(yōu)共混比為7∶3,此時(shí)共混納米纖維膜的純水通量為4 665 L/(m2·h),乳化油截留率為94.04%,整體表現(xiàn)為過濾時(shí)間短和截留效果好的優(yōu)勢,顯示了納米纖維膜對乳化油溶液有很好的過濾效果.
(1)PVDF/PAN共混納米纖維膜的親水性改性結(jié)果顯示,隨著PAN共混比例的增加,膜的水接觸角逐漸下降,下降幅度為30°,在一定程度上改善了膜的親水性.
(2)PVDF/PAN納米纖維膜的孔徑測試結(jié)果表明,不同共混比的納米纖維膜的平均孔徑為0.784~2.070μm,均小于已測得的油滴平均粒徑5μm,因此,該納米纖維膜可適用于過濾含油污水.
(3)過濾效率測試結(jié)果顯示,PVDF/PAN納米纖維膜的純水通量均在4 000 L/(m2·h)以上,最高達(dá)到5 340 L/(m2·h),而乳化油截留率在純PVDF膜時(shí)最高,為95.31%,與商品膜的乳化液截留率97%相差不大,表現(xiàn)為過濾時(shí)間短、截留效果好,顯示了納米纖維膜對乳化油溶液有很好的過濾效果.
(4)經(jīng)綜合考慮,選用PVDF/PAN最優(yōu)共混比為7∶3,此時(shí)PVDF/PAN納米纖維膜的純水通量為4 665 L/(m2·h),乳化油截留率為94.04%,兼顧了過濾速度和截留效果.
[1]任玉森.含油廢水處理技術(shù)綜述[J].節(jié)能與環(huán)保,2003(7):22-25.
[2]JIA L, PRABHAKARAN M P, QIN X H, et al.Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering[J].Journal of Materials Science,2013,48(15):5113-5124.
[3]JIA L,PRABHAKARAN M P,QIN X H,et al.Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering [J]. Materials Science and Engineering C,2013,33(8):4640-4650.
[4]VATANKHAH E,PRABHAKARAN M P,JIN G R,et al.Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications [J].Journal of Biomaterials Applications,2014,28(6):909-921.
[5]ZHANG H N,LI Z Y,LIU L,et al.Enhancement of hydrogen monitoring properties based on Pd-SnO2composite nanofibers[J].Sensors and Actuators B:Chemical,2010,147(1):111-115.
[6]ZHANG H N,LI Z Y,LIU L,et al.Mg2+/Na+-doped rutile TiO2nanofiber mats for high-speed and anti-fogged humidity sensors[J].Talanta,2009,79(3):953-958.
[7]ZHANG H N,LI Z Y,WANG W,et al.Na+-doped zinc oxide nanofiber membrane for high speed humidity sensor[J].Journal of the American Society,2010,93(1):142-146.
[8]GORJI M,JEDDI A A A,GHAREHAGHAJI A A.Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications[J].Journal of Applied Science,2012,125(5):4135-4141.
[9]PANT H R,BAJGAI M P,NAM K T,et al.Electrospun nylon-6 spider-net like nanofiber mat containing TiO2nanoparticles:A multifunctional nanocomposite textile material[J].Journal of Hazardous Materials,2011,185(1):124-130.
[10]覃小紅,王善元.靜電紡納米纖維的過濾機(jī)理及性能 [J].東華大學(xué)學(xué)報(bào):自然科學(xué)版,2007,33(1):52-56.
[11]WANG X F,F(xiàn)ANG D F,YOON K,et al.High performance ultrafiltration composite membranes based on poly(vinyl alcohol)hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol)scaffold[J].Journal of Membrane Science,2006,278(1):261-268.
[12]WANG R,LIU Y,LI B,et al.Electrospun nanofibrous membranes for high flux microfiltration [J].Journal of Membrane Science,2012,392:167-174.
[13]丁彬,斯陽,俞建勇.靜電紡納米纖維材料在環(huán)境領(lǐng)域中的應(yīng)用研究[J].中國材料進(jìn)展,2013,32(8):492-502.
[14]THAVASI V,SINGH G,RAMAKRISHNA S.Electrospun nanofibers in energy and environmental applications [J].Energy &Environmental Science,2008,1(2):205-221.
[15]RAMAKRISHNA S,F(xiàn)UJIHARA K,TEO W E,et al.Electrospun nanofibers:Solving global issues[J].Materials Today,2006,9 (3):40-50.
[16]OSHIMA K H,EVANS-STRICKFADEN T T,HIGHSMITH A K,et al.The use of a microporous polyvinylidene fluoride(PVDF)membrane filter to separate contaminating viral particles from biologically important proteins[J].Biologicals,1996,24(2):137-145.
[17]ALCOUTLABI M,LEE H,WATSON J V,et al.Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning[J].Journal of Materials Science,2013,48(6):2690-2700.
[18]黃祥瑞.聚偏氟乙烯塑料的性能及其應(yīng)用 [J].腐蝕與防護(hù),1998,19(6):278-283.
[19]FIGOLI A,SIMONE S,CRISCUOLI A,et al.Hollow fibers for seawater desalination from blends of PVDF with different molecular weights: Morphology, properties and VMD performance[J].Polymer,2014,55(6):1296-1306.
[20]宮木義行,任偉成.聚偏氟乙烯系聚合物的應(yīng)用 [J].有機(jī)氟工業(yè),1998(4):40-45.
[21]LEE B S,PARK B,YANG H S,et al.Effects of substrate on piezoelectricity of electrospun poly (vinylidene fluoride)-nanofiber-based energy generators[J].Applied Materials and Interfaces,2014,6(5):3520-3527.
[22]員延濱,劉麗英,馬潤宇.聚偏氟乙烯膜的研究進(jìn)展 [J].膜科學(xué)與技術(shù),2003,23(2):57-61.
[23]ZHAO Z G,ZHENG J F, WANG M J,et al. High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds[J].Journal of Membrane Science,2012,394:209-217.
[24]PARK S J,CHEEDRALA R K,DIALLO M S,et al.Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks[J].Journal of Nanoparticle Research,2012,14(7):884.
[25]ZHAO Z G,ZHENG J F,PENG B,et al.A novel composite microfiltration membrane:Structure and performance [J].Journal of Membrane Science,2013,439:12-19.
[26]YOON K, HSIAN B S, CHU B,et al. High flux ultrafiltration nanofibrous membranes based on polyacrylonitrile electrospun scaffolds and crosslinked polyvinyl alcohol coating[J].Journal of Membrane Science,2009,338(1):145-152.
[27]WANG X F,ZHANG K,YANG Y,et al.Development of hydrophilic barrier layer on nanofibrous substrate as composite membrane via a facile route[J].Journal of Membrane Science,2010,356(1/2):110-116.
[28]CAO X W, HUANG M L, DING B,et al.Robust polyacrylonitrile nanofibrous membrane reinforced with jute cellulose nanowhiskers for water purification[J].Desalination,2013,316:120-126.
[29]程洪斌,尹秀麗.聚偏氟乙烯/聚丙烯腈共混膜的研究 [J].天津紡織工學(xué)院學(xué)報(bào),1998,17(1):54-60.
[30]于志輝,錢英,付麗,等.聚偏氟乙烯/聚丙烯腈共混超濾膜的研究 [J].膜科學(xué)與技術(shù),2000,20(5):10-15.
[31]HUANG L W,ARENA J T,MANICKAM S S,et al.Improved mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification [J].Journal of Membrane Science,2014,460:241-249.
[32]ARKHANGELSKY M,DUEK A,GITIS V.Maximal pore size in UF membranes [J].Journal of Membrane Science,2012,394:89-97.
[33]WANG X F,CHEN X M,YOON K,et al.High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating [J].Environmental Science Technology,2005,39(19):7684-7691.
Filtration Properties of Electrospun PVDF/PAN Nanofiber Membrane for Oily Wastewater
ZH AOWen-mina,b,JIANGGuo-juna,b,LIFangc,YANJian-huad,QINXiao-honga,b
(a.Key Laboratory of Micro-nano Textile of Shanghai;b.College of Textiles;c.School of Environmental Science and Engineering;d.Research Institute,Donghua University,Shanghai 201620,China)
The electrospun polyvinylidene fluoride/polyacrylonitrile(PVDF/PAN)nanofiber membranes under different blend ratios were prepared.Scanning electron microscopy was used to characterize the morphology of electrospun PVDF/PAN nanofiber membrane.Additionally,the pore size and surface hydrophilicity of electrospun membrane were tested.And most importantly,the filtration properties of electrospun PVDF/PAN membranes under different blend ratios on self-emulsified oily wastewater were explored.The experiment results showed that the fiber diameter decreased with PAN increasing;the water contact angle decreased as the proportion of PAN increased,and the drop rate was 30°,which indicated that the hydrophilicity of membrane was improved by adding PAN.Moreover,the average pore size of all the blend membranes ranged from 0.784μm to 2.070μm.Finally,the filtration experiments revealed that the pure water flux of blend membrane was 4 019-5 340 L/(m2·h),which was about 30 times of the PVDF commercial ultra-filtration membrane;and the highest emulsion rejection rate reached 95.31%,which was just a little smaller than that of PVDF commercial ultrafiltration membrane(97%).
electrospinning; polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) nanofiber membrane;oily wastewater;water contact angle;pore size;pure water flux;emulsion rejection rate
TQ 342.69
A
2014-07-08
國家自然科學(xué)基金資助項(xiàng)目(50973014,11172064);教育部霍英東基金資助項(xiàng)目(121071);上海市曙光計(jì)劃資助項(xiàng)目(11SG33);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目;東華大學(xué)“勵志計(jì)劃”資助項(xiàng)目
趙文敏(1989—),女,河北遷安人,碩士研究生,研究方向?yàn)殪o電紡絲.E-mail:zhaowenmin.0102@163.com
覃小紅(聯(lián)系人),女,教授,E-mail:xhqin@dhu.edu.cn
1671-0444(2015)05-0565-07