国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

不等式證明技巧

2015-09-10 14:29吳捷云
考試周刊 2015年69期
關(guān)鍵詞:不等式證明技巧

吳捷云

摘 ? ?要: 不等式是研究數(shù)學(xué)問(wèn)題的重要工具。不等式的證明方法靈活多樣,本文通過(guò)實(shí)例說(shuō)明不等式證明的某些技巧。

關(guān)鍵詞: 不等式 ? ?證明 ? ?技巧

不等式是研究數(shù)學(xué)問(wèn)題的重要工具,它滲透在數(shù)學(xué)的各個(gè)分支學(xué)科,有重要的應(yīng)用。不等式的證明方法靈活多樣,它可以和很多內(nèi)容相結(jié)合,對(duì)不等式的證明進(jìn)行探討無(wú)疑是十分有益的。本文通過(guò)實(shí)例說(shuō)明不等式證明的某些技巧,提高分析問(wèn)題與解決問(wèn)題的能力。

例1:設(shè)x,y,z是不全為零的實(shí)數(shù),求證:

5x +y +5z >8xz-4xy+4yz.

證明:設(shè)二次型f(x,y,z)=5x +y +5z -8xz+4xy-4yz,則f的矩陣是

A=5 ? ? ? 2 ? ?-42 ? ? ? 1 ? ?-2-4 ? ?-2 ? ?5.

因?yàn)锳的各階順序主子式為:

|5|=5>0;5 ? ?22 ? ?1=1>0; 5 ? ? ?2 ? ?-4 2 ? ? ?1 ? ?-2-4 ? ?-2 ? ?5=1>0;

所以,A正定,從而,二次型f(x,y,z)正定,當(dāng)x,y,z不全為零時(shí)f(x,y,z)>0.即5x +y +5z -8xz+4xy-4yz>0,

因此5x +y +5z >8xz-4xy+4yz.

例2:求證:n x ?≥( x ) .

證明:令f(x ,x ,…,x )=n x ?-( x ) ,則f為二次型,其矩陣為

A=n-1 ? ?-1 ? ?… ? ?-1 ? ? ?-1-1 ? ? n-1 ? ?… ? ?-1 ? ? -1… ? ? … ? ? ?… ? ?… ? ? ?…-1 ? ? -1 ? ? ?… ? ?n-1 ? ?-1-1 ? ? -1 ? ? ?… ? ?-1 ? ? n-1,

將第2,3,…,n列加到第1列,則第1列元素全為零,故|A|=0;用同樣的方法可求出A的i階主子式為(n-i)n >0(i=1,2,…,n-1).

因?yàn)锳的主子式都大于或等于零,所以A是半正定的;從而二次型f(x ,x ,…,x )半正定,所以f(x ,x ,…,x )≥0,即

n x ?≥( x ) .

例3:設(shè)A,B,C是一個(gè)三角形的三個(gè)內(nèi)角,證明對(duì)任意實(shí)數(shù)x,y,z,都有

x +y +z ≥2xycosA+2xzcosB+2yzcosC.

證明:記f(X)=X′AX=x +y +z -2xycosA-2xzcosB-2yzcosC,其中

X=(x,y,z)′,P= ? ?1 ? ? ? -cosA ? ?-cosB-cosA ? ? ? 1 ? ? ? ?-cosC-cosB ? ?-cosC ? ? ? ?1,A+B+C=π,cosC=-cos(A+B).

對(duì)P做初等行變換得:

P~1 ? ?-cosA ? ?-cosB0 ? ? sinA ? ? ?-sinB0 ? ? ? ?0 ? ? ? ? ? ?0,

于是P的特征值為0,1,sinA,從而得二次型f(X)是半正定的,即對(duì)于任意實(shí)數(shù)x,y,z,f(X)≥0,即x +y +z ≥2xycosA+2xzcosB+2yzcosC成立.

例4:設(shè)A是實(shí)對(duì)稱矩陣,其特征根為λ ≤λ ≤…≤λ ,則對(duì)任意的實(shí)向量X有

λ X′X≤X′AX≤λ X′X.

證明:A是實(shí)對(duì)稱矩陣,存在正交矩陣T,使

T AT=λ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? λ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?塤 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?λ ,

于是T AT-λ I特征根非負(fù),即矩陣A-λ I半正定.這樣

X′(A-λ I)X≥0.

因此

X′AX≥λ X′X.

同理可證

X′AX≤λ X′X.

例5:設(shè)a ∈R,(i=1,2,…,n)證明:

n(a ?+a ?+…+a ?)≥(a +a +…+a )

證明:設(shè)D=n(a ?+a ?+…+a ?)-(a +a +…+a ) ,只要證D≥0.

由于

D=a ?+a  +…+a ? ? ?a +a +…+a a +a +…+a ? ? ? ? ? ? ? ? n

= a ? ? ?a +a +…+a a ? ? ? ? ? ?   ? n

= ?a ? ? ?a a ? ? 1= ?a a ? ? a 1 ? ?1

所以

D= ?a a ? ? a 1 ? ?1= ?(-a )a ? ? a 1 ? ?1,

因此

2D=D+D= ?(a -a )a ? ? -a 1 ? ?1= ?(a -a ) ≥0.

這就證明了D≥0.

參考文獻(xiàn):

[1]張榮.輔助函數(shù)在不等式證明中的應(yīng)用[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2007,37(20):224-226.

[2]高淑娥.不等式證明中輔助函數(shù)的構(gòu)造[J].甘肅聯(lián)合大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,27(1):79-81.

[3]梁波.例談行列式的幾個(gè)應(yīng)用[J].畢節(jié)學(xué)院學(xué)報(bào),2006(04):27-29.

基金項(xiàng)目:廣東省高等教育特色創(chuàng)新項(xiàng)目(2014GXJK125)

猜你喜歡
不等式證明技巧
肉兔短期增肥有技巧
獲獎(jiǎng)證明
判斷或證明等差數(shù)列、等比數(shù)列
開(kāi)好家長(zhǎng)會(huì)的幾點(diǎn)技巧
指正要有技巧
提問(wèn)的技巧
高中數(shù)學(xué)不等式易錯(cuò)題型及解題技巧
用概率思想研究等式與不等式問(wèn)題
一道IMO試題的完善性推廣
淺談構(gòu)造法在不等式證明中的應(yīng)用
盘山县| 阆中市| 双江| 伊宁县| 青川县| 怀柔区| 兰考县| 昌都县| 新乐市| 吉林市| 含山县| 龙口市| 楚雄市| 天全县| 江北区| 天峨县| 内乡县| 泌阳县| 常熟市| 商南县| 固始县| 庐江县| 杭锦后旗| 嘉义县| 平邑县| 神木县| 盐城市| 扶绥县| 赞皇县| 神农架林区| 丹江口市| 凤城市| 东明县| 探索| 柳江县| 阿瓦提县| 武夷山市| 江口县| 惠州市| 五大连池市| 星子县|