張佳佳 張逸成 韋 莉 葉尚斌 姚勇濤
(同濟(jì)大學(xué)電子與信息工程學(xué)院 上海 201804)
隨著電力電子設(shè)備的不斷增多,電磁干擾(ElectroMagnetic Interference,EMI)問(wèn)題越來(lái)越嚴(yán)重。根據(jù)耦合通路的不同,電磁干擾可分為傳導(dǎo)干擾和輻射干擾。抑制傳導(dǎo)干擾的主要途徑之一是使用EMI濾波器[1]。EMI濾波器的性能由插入損耗(Insertion Loss,IL)來(lái)表征,源阻抗和負(fù)載阻抗都會(huì)對(duì)插入損耗產(chǎn)生影響[2,3]。設(shè)計(jì) EMI濾波器的基本流程可以概括為根據(jù)需實(shí)現(xiàn)的插入損耗目標(biāo),以及噪聲源阻抗和負(fù)載阻抗的特征,選擇合適的拓?fù)?,確定差共模電感和電容的值[4,5],并進(jìn)行濾波元件的設(shè)計(jì)或選型及組合。
噪聲測(cè)試系統(tǒng)中的線性阻抗穩(wěn)定網(wǎng)絡(luò)(Linear Impedance Stabilization Network,LISN)為濾波器提供穩(wěn)定的純阻性阻抗[6],即差模負(fù)載阻抗為100Ω,共模負(fù)載阻抗為25Ω。而噪聲源阻抗的相角和幅值都隨頻率而變化,并受較多因素影響[7],因此需要通過(guò)測(cè)試的方式獲得源阻抗的信息。
源阻抗的測(cè)試方法包括:插入損耗法[8,9]、散射參數(shù)法[10]、單電流探頭法[11,12]和雙電流探頭法[13]等。其中,散射參數(shù)法、單電流探頭法和雙電流探頭法[14]對(duì)于測(cè)試設(shè)備要求都比較高,測(cè)試過(guò)程較為復(fù)雜[15],并且測(cè)試準(zhǔn)確度會(huì)因電流探頭的非理想傳輸特性而降低。插入損耗法的測(cè)試過(guò)程簡(jiǎn)單,計(jì)算原理也易理解,在工程方面應(yīng)用較多。但是,現(xiàn)有插入損耗法引入了一些假設(shè)條件作為簡(jiǎn)化依據(jù),在一些情況下,無(wú)法保證簡(jiǎn)化計(jì)算的精度和可信性。
本文在分析傳統(tǒng)插入損耗法的基礎(chǔ)上,推導(dǎo)了精確的源阻抗幅值計(jì)算公式,實(shí)現(xiàn)全部數(shù)據(jù)點(diǎn)的準(zhǔn)確計(jì)算,并對(duì)該方法進(jìn)行了數(shù)學(xué)驗(yàn)證。以電動(dòng)汽車(chē)用 DC-DC變換器為測(cè)試對(duì)象,實(shí)現(xiàn)了源阻抗幅值的測(cè)試和計(jì)算,通過(guò)傳統(tǒng)方法和修正方法的計(jì)算結(jié)果對(duì)比,驗(yàn)證了該方法的有效性和適用性。在此基礎(chǔ)上進(jìn)行濾波元件的選型和濾波性能測(cè)試,證明修正方法可以避免過(guò)設(shè)計(jì),有利于濾波元件的選型和設(shè)計(jì),有助于濾波器體積和重量的優(yōu)化。
并聯(lián)電容可為差模噪聲提供通路。因此,測(cè)試差模噪聲源阻抗時(shí),在噪聲源與負(fù)載(LISN)之間并聯(lián)插入電容,通過(guò)測(cè)試電容插入前后差模噪聲的變化比例(即電容的差模插入損耗),確定差模噪聲源阻抗的最大值和最小值。
式中,ATDM可以通過(guò)測(cè)試獲得,ATDM=|ATDM|。
圖1 差模源阻抗測(cè)試等效電路Fig.1 Equivalent DM source impedance test equivalent circuit
若|ZSDM|<<|ZloadDM|=100,則上式可簡(jiǎn)化為
記差模電容阻抗的實(shí)部和虛部分別為RfDM和XfDM,則式(2)的解軌跡[3]是以(–RfDM,–XfDM)為圓心,以ATDM|ZfDM|為半徑的圓。因此有
差模源阻抗的計(jì)算假設(shè)源阻抗遠(yuǎn)小于負(fù)載阻抗100Ω。該假設(shè)條件限制了其使用范圍。后文的計(jì)算實(shí)例顯示,按傳統(tǒng)計(jì)算公式進(jìn)行計(jì)算,得到的結(jié)果可能不滿足假設(shè)的前提,那么這樣的結(jié)果是無(wú)效的。
共模噪聲源阻抗的測(cè)試方法與差模的情況類(lèi)似。由于串聯(lián)電感為共模噪聲提供通路,因此在噪聲源與負(fù)載之間串聯(lián)插入電感。圖2a和圖2b分別是電感插入前后的測(cè)試等效電路,各參數(shù)的含義與差模情況一一對(duì)應(yīng),其中共模負(fù)載阻抗ZloadCM是穩(wěn)定的25Ω。
圖2 共模源阻抗測(cè)試等效電路Fig.2 Equivalent CM source impedance test equivalent circuit
串聯(lián)電感導(dǎo)致的電壓變化為
傳統(tǒng)的方法將式(4)移項(xiàng)取模,整理可得
由于傳導(dǎo)噪聲發(fā)射測(cè)試只能獲得ATCM的幅值信息,式(5)等式右端的分母無(wú)法確定,因此文獻(xiàn)[3]采用了分段等效的方式進(jìn)行計(jì)算。
當(dāng)ATCM>10時(shí),將|ATCM-1|近似為ATCM。該式的解軌跡[3]是以(-25,0)為圓心,以|ZfCM|/ATCM為半徑的圓,因此共模源阻抗的最大值和最小值為
當(dāng)ATCM<10時(shí),分別將|ATCM-1|近似為|ATCM-1|或ATCM+1,解軌跡[3]仍是圓,只是半徑的表達(dá)式有所改變,因此共模源阻抗最大值和最小值為
然而,這種假設(shè)近似在數(shù)學(xué)方面并不是嚴(yán)格成立的。當(dāng) 0.1<ATCM<10,特別是ATCM實(shí)際值在 1附近時(shí),這種近似會(huì)造成較大的誤差。為了說(shuō)明該誤差,分別取|ATCM|為 0.8、0.9、1.1和1.2,ATCM的相角α取為 0°、90°、180°和270°,計(jì)算|ATCM-1|、|ATCM-1|和ATCM+1,計(jì)算結(jié)果見(jiàn)表1。
表1 |ATCM-1|近似導(dǎo)致的誤差Tab.1 Errors caused by |ATCM-1| approximation
從表1中可以看出,近似計(jì)算是將|ATCM-1|的范圍擴(kuò)大。盡管這種近似計(jì)算的絕對(duì)誤差很小,但是相對(duì)誤差可能很大,進(jìn)而導(dǎo)致源阻抗的計(jì)算誤差。以|ATCM|=0.9,α=90°為例,兩種近似的相對(duì)誤差分別為-92.54%和41.79%,故ZSCMmax的絕對(duì)誤差為0.925|ZfCM|/(0.9×0.075)=13.7|ZfCM|,ZSCMmin絕對(duì)誤差為 0.418|ZfCM|/(0.9×1.418)=0.33|ZfCM|。|ZfCM|一般較大,因此將導(dǎo)致很大的源阻抗幅值計(jì)算誤差。為了評(píng)估絕對(duì)誤差的等級(jí),將表1中各情況下源阻抗最大值和最小值的誤差與|ZfCM|的比值,即絕對(duì)誤差系數(shù),分別進(jìn)行計(jì)算,結(jié)果列于表2。從表2的數(shù)據(jù)可以發(fā)現(xiàn),當(dāng) 0.1<ATCM<10,特別是ATCM實(shí)際值在1附近時(shí),兩種近似計(jì)算會(huì)分別導(dǎo)致共模源阻抗最大值和最小值的誤差。
表2 兩種近似導(dǎo)致的ZSCMmax和ZSCMmin誤差Tab.2ZSCMmaxandZSCMminerror by approximation
由于傳統(tǒng)計(jì)算差模源阻抗的方法采用近似假設(shè),在應(yīng)用中受到約束,因此采用精確解析法,取消假設(shè)條件對(duì)公式適用范圍的限定。推算過(guò)程如下。
將差模源阻抗和并聯(lián)電容阻抗均表示為電阻和電抗組合的形式,代入基本等式(1)中,并將右端分式進(jìn)行整理,可得到簡(jiǎn)化表達(dá)為
其中,過(guò)渡變量分別為
將簡(jiǎn)化表達(dá)式(8)兩端平方去除模,整理后得
式(10)的解軌跡是圓。圓心的橫坐標(biāo)x0DM為(104RfDM-100m)/n,縱坐標(biāo)y0DM為 104XfDM/n,半徑rDM為104ATDM|ZfDM|/n。因此,差模源阻抗的最大值和最小值為
為了驗(yàn)證推導(dǎo)的解析結(jié)果的正確性,進(jìn)行數(shù)學(xué)驗(yàn)證。根據(jù)式(8)的解軌跡特征,可以寫(xiě)出解軌跡中任意一點(diǎn)的坐標(biāo)為
將式(12)代入原始計(jì)算式(1)中,等式恒成立。因此,用改進(jìn)的源阻抗計(jì)算法得到的解析結(jié)果是正確的。這種求解的方式不包含化簡(jiǎn)假設(shè),在差模噪聲源阻抗為任意值情況下都成立。
將電感阻抗和共模源阻抗均表示為電阻和電抗的形式,代入原始計(jì)算式(4)并取模得
式(13)的解軌跡是到點(diǎn)(-25-RfCM,-XfCM)和(-25,0)距離之比為ATCM的點(diǎn)軌跡,即阿波羅尼斯圓。將式(13)兩端進(jìn)行平方展開(kāi),整理后得
因此,式(14)解軌跡的圓心橫縱坐標(biāo)分別為x0CM=-25+RfCM/(),y0CM=XfCM/(),半徑rCM=ATCM|ZfCM|/||。
相應(yīng)地,共模源阻抗的最大值和最小值為
該公式的驗(yàn)證方法與差模源阻抗修正計(jì)算公式的驗(yàn)證方法一致,文中不再贅述。
以電動(dòng)汽車(chē)用DC-DC變換器為研究對(duì)象,按照汽車(chē)級(jí)零部件傳導(dǎo)發(fā)射測(cè)試標(biāo)準(zhǔn)[16]的要求,布置如圖3所示的傳導(dǎo)發(fā)射測(cè)試平臺(tái)。在測(cè)試中,DC-DC變換器輸入電壓為12V,由蓄電池供電;輸出功率為60W。在蓄電池與待測(cè)端口間,使用FCC 25A等級(jí)LISN;LISN的信號(hào)端通過(guò)端阻抗為50Ω的同軸電纜與EMCIS EA2100差/共模分離儀相連;分離出的噪聲送入Agilent E7402A EMI接收機(jī)進(jìn)行分析。
圖3 傳導(dǎo)發(fā)射測(cè)試平臺(tái)Fig.3 Conducted emission test bench
利用圖3的平臺(tái),測(cè)試電容、電感插入前后的噪聲頻譜,計(jì)算電壓幅值變化,結(jié)果如圖4和圖5所示。插入電容為標(biāo)稱(chēng)1nF的電容,插入電感為Coilcraft Q4018-A共模扼流圈。二者的阻抗均通過(guò) Agilent 4395A阻抗分析儀測(cè)試獲得。
圖5 插入電感導(dǎo)致的共模電壓幅值變化比例Fig.5 Change ratio of CM voltage amplitude caused by inductor insertion
根據(jù)圖4的結(jié)果和插入電容阻抗的測(cè)試數(shù)據(jù),分別按照式(3)和式(11)兩種方法,計(jì)算差模源阻抗的最大值和最小值,結(jié)果如圖6所示。其中,虛線為傳統(tǒng)方法的結(jié)果,實(shí)線為修正方法的結(jié)果。
圖6 差模源阻抗計(jì)算結(jié)果Fig.6 The calculated DM source impedance
從圖6a和圖6b可以看出,在許多頻段,傳統(tǒng)方法得到的差模源阻抗都在 100Ω及以上等級(jí),不滿足假設(shè)條件,這些頻段的傳統(tǒng)方法的結(jié)果是無(wú)效的。表3列出了部分無(wú)效頻段傳統(tǒng)方法和修正方法的計(jì)算結(jié)果及傳統(tǒng)方法的相對(duì)誤差。從中可以發(fā)現(xiàn),在這些無(wú)效的頻段,差模源阻抗的最大值和最小值均有較大誤差,最大相對(duì)誤差可達(dá)1個(gè)數(shù)量級(jí)。
表3 傳統(tǒng)法與修正法的ZSDM最大/最小值結(jié)果對(duì)比Tab.3ZSDMmax/ZSDMminresult comparison between conventional method and corrected method
類(lèi)似地,根據(jù)圖5和插入電感阻抗的測(cè)試數(shù)據(jù),分別按照式(6)、式(7)和式(15)計(jì)算共模源阻抗的最大值和最小值,結(jié)果如圖7所示。其中,虛線為傳統(tǒng)方法的計(jì)算結(jié)果,實(shí)線為修正方法的計(jì)算結(jié)果。
圖7 共模源阻抗計(jì)算結(jié)果Fig.7 The calculated CM source impedance
圖7中,共模源阻抗結(jié)果在低頻段的誤差相對(duì)較大,這是由于該頻段的|ATCM|接近于1。為了定量分析誤差,將低頻段頻段傳統(tǒng)法和修正法的結(jié)果及相對(duì)誤差列于表4。其中,205kHz的誤差最明顯,最大值的相對(duì)誤差為107.2%,最小值的相對(duì)誤差為-52.91%。一般而言,需要根據(jù)共模噪聲源阻抗的范圍和轉(zhuǎn)折頻率需求確定共模電感量。因此,若根據(jù)表4中傳統(tǒng)方法的計(jì)算結(jié)果對(duì)共模扼流圈進(jìn)行設(shè)計(jì)或選型,那么將導(dǎo)致近1倍的過(guò)設(shè)計(jì)。
表4 傳統(tǒng)法與修正法的ZSCM最大/最小值結(jié)果對(duì)比Tab.4ZSCMmax/ZSCMminresults comparison between conventional method and corrected method
為進(jìn)一步說(shuō)明過(guò)設(shè)計(jì)的影響,進(jìn)行濾波元件選型和性能分析。差共模源阻抗范圍分別如圖 6和7所示,原始噪聲為圖3所示平臺(tái)測(cè)得的未插入電容和電感情況下的噪聲,噪聲頻率和限值設(shè)計(jì)目標(biāo)為汽車(chē)級(jí)零部件傳導(dǎo)噪聲Level III級(jí),在確定需實(shí)現(xiàn)的差共模插入損耗目標(biāo)時(shí)增加6dB的裕量。
濾波器設(shè)計(jì)的主要依據(jù)有兩項(xiàng):一是通過(guò)測(cè)試獲得的差共模源阻抗范圍;二是根據(jù)需實(shí)現(xiàn)的插入損耗確定的濾波器最大轉(zhuǎn)折頻率。根據(jù)源阻抗和負(fù)載阻抗的數(shù)量級(jí),選擇圖8的單級(jí)濾波結(jié)構(gòu)。根據(jù)阻抗失配的原則,綜合轉(zhuǎn)折頻率的限值,共模參數(shù)應(yīng)滿足:①共模電感的阻抗應(yīng)遠(yuǎn)大于共模噪聲源阻抗(工程應(yīng)用中取2倍以上);②諧振頻率不高于轉(zhuǎn)折頻率的設(shè)計(jì)目標(biāo)。因此,若共模源阻抗的測(cè)試結(jié)果偏大,那么所需的共模電感量也相應(yīng)地增大。差模電感和電容的計(jì)算與此類(lèi)似。表5列出了根據(jù)兩種方法計(jì)算結(jié)果確定的濾波參數(shù)最小值。
圖8 濾波結(jié)構(gòu)Fig.8 Filter structure
表5 傳統(tǒng)法與修正法的濾波參數(shù)計(jì)算結(jié)果Tab.5 Calculation results of filter parameters between conventional method and corrected method
根據(jù)表5的結(jié)果,共模電容均選擇Muruta公司的22μF電容,差模電容均選擇Muruta公司的0.1μF電容。兩種方法所需要的差模電感量均可降低為4.1μH,而共模電感量主要由共模源阻抗決定,所以仍按照表5中的結(jié)果進(jìn)行選型。考慮到電流裕量問(wèn)題,從Coilcraft公司9A等級(jí)的扼流圈中進(jìn)行選型,無(wú)法找到滿足傳統(tǒng)方法需要的扼流圈,而根據(jù)修正方法的結(jié)果選擇CMT4-17-9L型號(hào)扼流圈。該款扼流圈的共模感量為 17mH,差模漏感為 220μH。根據(jù)選好的扼流圈和電容制成濾波器,安裝在 DC-DC變換器電源輸入端,測(cè)試濾波器加裝前后的正線噪聲,結(jié)果如圖9所示。從中可以看出,按照修正方法結(jié)果進(jìn)行選型制作的濾波器,除 200kHz處外,在10MHz以下均能保證30dB以上的插入損耗,部分頻點(diǎn)(如500kHz)甚至能達(dá)到60dB的噪聲衰減。
圖9 濾波器加裝前后的正線傳導(dǎo)噪聲測(cè)試結(jié)果Fig.9 Conducted noise of power line measured with and without the filter
圖9的結(jié)果說(shuō)明,按照修正計(jì)算結(jié)果選擇器件制成的濾波器可以實(shí)現(xiàn)期望的插入損耗。因此,傳統(tǒng)方法所得出的器件參數(shù),特別是共模電感量需求,處于過(guò)設(shè)計(jì)的狀態(tài),這也正是無(wú)法進(jìn)行共模扼流圈選型的原因。
若自行設(shè)計(jì)制作共模扼流圈,那么根據(jù)表5中共模電感量的計(jì)算結(jié)果,修正計(jì)算方法所需的共模電感量?jī)H為傳統(tǒng)方法的一半。若選擇相同的磁心材料,那么修正方法所需的扼流圈的匝數(shù)也為傳統(tǒng)方法的一半,相應(yīng)的窗口面積也可以減小,扼流圈的體積和重量得以降低。此外,由于傳統(tǒng)方法所需的匝數(shù)較多,在大電流應(yīng)用場(chǎng)合,扼流圈的繞制和散熱設(shè)計(jì)都十分困難。
傳統(tǒng)的電壓插入損耗法需要在一定的假設(shè)條件下,對(duì)源阻抗的幅值范圍進(jìn)行近似計(jì)算,適用范圍較窄。本文對(duì)計(jì)算方法進(jìn)行了修正,去除假設(shè)條件的約束,推導(dǎo)源阻抗幅值的精確解析表達(dá)式,經(jīng)過(guò)數(shù)學(xué)驗(yàn)證推導(dǎo)結(jié)果成立,其精確解析結(jié)果適用于實(shí)際電壓變化比例和源阻抗幅值為任意值的情況。
通過(guò)對(duì) DC-DC變換器源阻抗的測(cè)試與計(jì)算分析發(fā)現(xiàn):差模情況下,部分頻段傳統(tǒng)方法的結(jié)果無(wú)效,且與修正方法得到的精確解析結(jié)果相差近1個(gè)數(shù)量級(jí);共模情況下,當(dāng)插入電感導(dǎo)致的電壓變化比例在 0.1~10之間時(shí),傳統(tǒng)方法與修正方法的結(jié)果相差較大,傳統(tǒng)方法的近似結(jié)果相對(duì)于修正的精確結(jié)果的最大相對(duì)誤差可達(dá) 100%以上,由此可能導(dǎo)致共模扼流圈近1倍的過(guò)設(shè)計(jì)。計(jì)算結(jié)果的對(duì)比證明了修正方法的有效性和準(zhǔn)確性?xún)?yōu)勢(shì)。濾波元件選型和濾波性能測(cè)試結(jié)果進(jìn)一步證明,修正方法避免了過(guò)設(shè)計(jì),為濾波元件的選型和設(shè)計(jì)提供了便利,并有助于濾波器體積、重量等的優(yōu)化。
[1] 石磊磊,王世山,徐晨琛. 二端口網(wǎng)絡(luò)散射參數(shù)理論及其在平面EMI濾波器測(cè)試中的應(yīng)用[J]. 電工技術(shù)學(xué)報(bào),2013,28(2): 78-85.
Shi Leilei,Wang Shishan,Xu Chenchen. Theory of scatter parameters of two port network and its application in the test of planar EMI filter[J]. Transactions of China Electrotechnical Society,2013,28(2): 78-85.
[2] Vuttipon Tarateeraseth. EMI filter design Part III:selection of filter topology for optimal performance[J].IEEE Electromagnetic Compatibility Magazine,2012,1(2): 60-73.
[3] Sheng Y,Eberle W,Liu Y. A novel EMI filter design method for switching power supply[J]. IEEE Transactions on Power Electronics,2004,19(6): 1668-1678.
[4] 王世山,朱葉,石磊磊. 基于環(huán)形感容集成結(jié)構(gòu)單元的平面EMI濾波器設(shè)計(jì)理論及實(shí)施[J]. 電工技術(shù)學(xué)報(bào),2013,28(1): 126-135.
Wang Shishan,Zhu Ye,Shi Leilei. Design theory and implementation of planar EMI filter based on annular integrated inductor-capacitor unit[J]. Transactions of China Electrotechnical Society,2013,28(1): 126-135.
[5] 溫志偉,伍曉峰,徐德鴻,等. 集成 EMI濾波器原理與設(shè)計(jì)[J]. 電工技術(shù)學(xué)報(bào),2011,26(9): 160-166.
Wen Zhiwei,Wu Xiaofeng,Xu Dehong,et al. Principles and design on Integrated EMI filter[J]. Transactions of China Electrotechnical Society,2011,26(9): 160-166.
[6] International Special Committee on Radio Interference. CISPR 16-1-2: 2006 Specification for radio disturbance and immunity measuring apparatus and methods-Part1-2: Radio disturbance and immunity measuring apparatus Ancillary equipment- Conducted disturbances[S]. 2006.
[7] Liu Q,Wang S,Wang F,et al. EMI suppression in voltage source converters by utilizing DC-link decoupling capacitors[J]. IEEE Transactions on Power Electronics,2007,22(4): 1417-1428.
[8] Zhang D,Chen D Y,Nave M J,et al. Measurement of noise source impedance of off-line converters[J]. IEEE Transactions on Power Electronics,2000,15(5): 820-825.
[9] Meng J,Ma W,Pan Q,et al. Identification of essential coupling path models for conducted EMI prediction in switching power converters[J]. IEEE Transactions on Power Electronic,2006,21(6): 1795- 1803.
[10] Hu B,See K Y,Richard W C. Evaluation of ferrite core EMI suppression under realistic working conditions[C]. The 19th International Symposium on EMC,Zurich,Switzerland,2008: 774-777.
[11] Qiu X,Zhao Y,See K Y,et al. An efficient noise source impedance estimation approach applied in electromagnetic compatibility[J]. Chinese Journal of Electronics,2009,18(4): 744-748.
[12] Zhao Yang,Lu Xiaoquan,Dong Yinghua,et al. Study on impedance extraction methods applied in conductive EMI source modeling[C]. Asia Pacific International Symposium on Electromagnetic Compatibitity,Beijing,China,2010: 998-1001.
[13] Vuttipon Tarateeraseth. EMI filter design Part II:measurement of noise source impedances[J]. IEEE Electromagnetic Compatibility Magzine,2012,1(1):42-49.
[14] See K Y,Deng J. Measurement of noise source impedance of SMPS using a two probes approach[J].IEEE Transactions on Power Electronics,2004,19(3):862-868.
[15] Zhao B,Zhao M,Feng Z,et al. Standard resistor calibration method in measurement of noise source impedance using dual-probe approach[C]. CEEM,Xi’an,China,2009: 408-411.
[16] CISPR 25-2002: Radio disturbance characteristics for the protection of receivers used on board vehicles boats and on devices-limits and methods of measurements[S]. 2002.