楊慶良,夏永華,何巖,張廣云,宋歌
(1.河南省安陽(yáng)市人民醫(yī)院泌尿外科,安陽(yáng) 455000;2.新鄉(xiāng)醫(yī)學(xué)院第一附屬醫(yī)院皮膚科,新鄉(xiāng) 453100;3.新鄉(xiāng)醫(yī)學(xué)院第一附屬醫(yī)院泌尿外科,新鄉(xiāng) 453100)
LHRHa與八聚精氨酸共修飾載氟尿嘧啶靶向脂質(zhì)體的構(gòu)建及其抗前列腺癌作用
楊慶良1,夏永華2,何巖3,張廣云1,宋歌1
(1.河南省安陽(yáng)市人民醫(yī)院泌尿外科,安陽(yáng) 455000;2.新鄉(xiāng)醫(yī)學(xué)院第一附屬醫(yī)院皮膚科,新鄉(xiāng) 453100;3.新鄉(xiāng)醫(yī)學(xué)院第一附屬醫(yī)院泌尿外科,新鄉(xiāng) 453100)
目的 構(gòu)建促黃體激素釋放激素類似物(LHRHa)與八聚精氨酸(R8)共修飾載氟尿嘧啶(5-FU)脂質(zhì)體(LHRHa/R8-LP-5-FU),對(duì)其前列腺癌靶向性以及治療效果進(jìn)行初步研究。方法 采用薄膜分散法制備LHRHa/R8-LP-5-FU,考察其形態(tài)、粒徑、電位,并通過(guò)PC-3前列腺癌細(xì)胞定性和定量攝取實(shí)驗(yàn)考察其前列腺癌細(xì)胞靶向性。采用噻唑藍(lán)(MTT)實(shí)驗(yàn)以及腫瘤球?qū)嶒?yàn)考察LHRHa/R8-LP-5-FU對(duì)PC-3細(xì)胞增殖抑制率。結(jié)果 所制備LHRHa/R8-LP-5-FU粒徑為(115.0±15.2) nm,電位為(11.00±2.15) mV,5-FU的包封率(84.5±5.1)%。體外細(xì)胞攝取實(shí)驗(yàn)表明,PC-3細(xì)胞對(duì)LHRHa/R8-LP攝取效率分別是R8修飾脂質(zhì)體(R8-LP)和LHRHa修飾脂質(zhì)體(LHRHa-LP)2.8和3.2倍(P<0.01)。細(xì)胞毒性實(shí)驗(yàn)結(jié)果顯示,以0.9%氯化鈉溶液為對(duì)照,LP-5-FU、R8-LP-5-FU、LHRHa-LP-5-FU和LHRHa/R8-LP-5-FU對(duì)PC-3細(xì)胞的增殖抑制率分別為(26.4±4.5)%,(39.5±4.2)%,(48.6±3.5)%和(82.5±4.3)%(P<0.01)。LHRHa/R8-LP-5-FU對(duì)腫瘤球的生長(zhǎng)抑制作用明顯高于其他脂質(zhì)體。細(xì)胞毒性實(shí)驗(yàn)結(jié)果與細(xì)胞攝取實(shí)驗(yàn)結(jié)果一致。結(jié)論 LHRHa與細(xì)胞穿膜肽共修飾載5-FU脂質(zhì)體具有良好的前列腺腫瘤細(xì)胞靶向性和抗腫瘤作用,是一種潛在的治療前列腺癌的高效給藥系統(tǒng)。
促黃體激素釋放激素類似物;八聚精氨酸;脂質(zhì)體;癌,前列腺
前列腺癌是發(fā)生于男性前列腺組織中的惡性腫瘤,在西方國(guó)家,前列腺癌是最常見(jiàn)的惡性腫瘤,居西方國(guó)家男性所有惡性腫瘤死亡率的首位,發(fā)病率的第2位[1]。促黃體激素釋放激素受體在前列腺癌和卵巢癌表面高度表達(dá)[2-3]。脂質(zhì)體是一種被廣泛研究的靶向給藥系統(tǒng),脂質(zhì)體可以進(jìn)行表面修飾,可以引入聚乙二醇延長(zhǎng)循環(huán)時(shí)間,達(dá)到長(zhǎng)循環(huán)的效果,也可以連接配體成為主動(dòng)靶向脂質(zhì)體[4]。筆者將促黃體激素釋放激素類似物(luteinizing hormone-releasing hormone analogues,LHRHa)和細(xì)胞穿膜肽八聚精氨酸(R8)共同連接到脂質(zhì)體的表面,以氟尿嘧啶(5-FU)為模型藥物,進(jìn)行前列腺癌的腫瘤靶向治療研究。
1.1 試劑 生物素修飾LHRHa(上海強(qiáng)耀生物公司,含量98.5%,批號(hào):130602P);R8(上海強(qiáng)耀生物公司,含量99.9%,批號(hào):131121R);大豆磷脂(上海太偉藥業(yè)有限公司);生物素修飾DSPE-PEG2000(美國(guó)Avanti polar lipids公司);鏈霉親和素(北京博奧森生物公司);膽固醇(Cho,美國(guó)Sigma公司);達(dá)爾伯克必需基本培養(yǎng)液(Dulbecco's minimum essential medium,DMEM,美國(guó)GIBCO公司);異硫氰酸熒光素(fluorescein isothiocyanate,F(xiàn)ITC)標(biāo)記磷脂(美國(guó)Avanti polar lipids公司);DSPE-PEG2000-MAL(美國(guó)Sigma公司);其余試劑為分析純。前列腺腫瘤細(xì)胞(PC-3,ATCC)。
1.2 儀器 Sizer Nano ZS90型激光粒度儀及Zeta電位分析儀(英國(guó)Malvern instruments Ltd.);H-600IV型透射電子顯微鏡(日本Hitachi)。
1.3 方法
1.3.1 脂質(zhì)體的制備及表征 參照文獻(xiàn)[3]方法制備LHRHa-LP-5-FU。取大豆磷脂9.96 mg、膽固醇2.0 mg、生物素修飾DSPE-PEG2000(摩爾比為90:5:5)和5-FU 1.05 mg溶于三氯甲烷溶液。抽干成膜,用磷酸鹽緩沖液(phosphate buffer solution,PBS)水化得到生物素修飾脂質(zhì)體。取生物素修飾脂質(zhì)體與過(guò)量的LHRHa混合,4 ℃震蕩反應(yīng)30 min,過(guò)CL4B柱,得到LHRHa-LP-5-FU。參照文獻(xiàn)[5-6]方法合成DSPE-PEG2000-R8。取處方量的大豆磷脂、膽固醇、DSPE-PEG2000-R8(摩爾比為94.5:5:0.5)和5-FU溶于三氯甲烷溶液。抽干成膜,用PBS 2 mL水化得到R8-LP-5-FU。
取相同量的大豆磷脂、膽固醇、DSPE-PEG2000-R8、生物素修飾DSPE-PEG2000(摩爾比為89.5:5:0.5:5)和5-FU溶于三氯甲烷溶液,采用同于制備LHRHa-LP-5-FU的方法制備得到LHRHa/R8-LP-5-FU。
取適量樣品用磷鎢酸染色,置于透射電鏡下觀察脂質(zhì)體的表觀構(gòu)象。取適量脂質(zhì)體用粒度儀測(cè)定其粒徑及電位,采用葡萄糖凝膠柱色譜法分離脂質(zhì)體與未包載的5-FU,用高效液相色譜(HPLC)法在波長(zhǎng)273 nm處檢測(cè)5-FU含量。按照包封率(%)=W包/W投×100%計(jì)算5-FU的包封率。
1.3.2 PC-3細(xì)胞對(duì)不同脂質(zhì)體的攝取考察 按照“1.3.1”項(xiàng)下方法,用FITC-PE取代適量大豆磷脂,制備FITC標(biāo)記的脂質(zhì)體。取對(duì)數(shù)生長(zhǎng)期的細(xì)胞,以每孔5×105個(gè)的密度接種于6孔板中,37 ℃培養(yǎng)24 h后,每孔加入適量LHRHa-LP、R8-LP和LHRHa/R8-LP使孔中脂質(zhì)體濃度為0.15 mg·mL-1,37 ℃分別孵育2 和4 h后除去含脂質(zhì)體培養(yǎng)液,冷PBS清洗3次,0.25%胰酶消化后離心,PBS清洗3次,流式細(xì)胞儀測(cè)定細(xì)胞熒光值。
為了定性觀察PC-3細(xì)胞對(duì)脂質(zhì)體的攝取情況,將脂質(zhì)體與PC-3細(xì)胞共同孵育4 h后,將細(xì)胞用PBS漂洗3次,加入2 μg·mL-14',6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole,DAPI)溶液,室溫孵育20 min,加冰PBS漂洗3次,加4%多聚甲醛溶液固定15 min,棄去多聚甲醛,用冰PBS保存。置激光共聚焦熒光倒置顯微鏡觀察細(xì)胞攝取。
1.3.3 噻唑藍(lán)(methyl thiazolyl tetrazolium,MTT)法分析檢測(cè)不同脂質(zhì)體對(duì)腫瘤細(xì)胞的增殖抑制率 培養(yǎng)PC-3細(xì)胞并接種于96孔板中,當(dāng)孔板中細(xì)胞完全貼壁且處于對(duì)數(shù)生長(zhǎng)期時(shí)加入無(wú)菌過(guò)濾后的LP-5-FU、R8-LP-5-FU、LHRHa-LP-5-FU和LHRHa/R8-LP-5-FU。將孔板移入37 ℃、二氧化碳(CO2)孵箱中培養(yǎng)24和48 h后取出,每孔加入5 mg·mL-1MTT溶液20 μL,再放回孵箱中繼續(xù)孵育4 h,將孔板中液體倒出,每孔加入二甲亞砜溶液200 μL,37 ℃避光振搖15 min,用熒光分光光度計(jì)在波長(zhǎng)490 nm處測(cè)定各孔的吸光度(A)。
1.3.4 腫瘤球生長(zhǎng)抑制實(shí)驗(yàn) 取對(duì)數(shù)生長(zhǎng)期的PC-3細(xì)胞用0.125%胰酶消化后,用含血清的培養(yǎng)液中和胰酶,并將細(xì)胞吹打下來(lái)后離心,棄去上清液,用培養(yǎng)液重懸細(xì)胞后接種于用低熔點(diǎn)瓊脂糖預(yù)處理的96孔板中,將96孔板移入37 ℃ 、CO2孵箱中培養(yǎng)。7 d后成長(zhǎng)為腫瘤球。加入無(wú)菌過(guò)濾后的LP-5-FU、R8-LP-5-FU、LHRHa-LP-5-FU和LHRHa/R8-LP-5-FU。以0.9%氯化鈉溶液為陰性對(duì)照組,統(tǒng)計(jì)腫瘤球體積大小變化情況。
2.1 LHRHa/R8-LP-5-FU的粒徑、電位以及包封率 LHRHa/R8-LP-5-FU磷鎢酸染色后在電鏡下觀察(圖1),呈現(xiàn)大小比較均一的球狀。激光粒度儀測(cè)得LHRHa/R8-LP-5-FU的粒徑為(115.0±15.2) nm,電位為(11.00±2.15) mV,多分散系數(shù)<0.3。3種不同脂質(zhì)體粒徑范圍接近,說(shuō)明靶頭的引入對(duì)脂質(zhì)體的粒徑?jīng)]有影響。見(jiàn)表1。
圖1 LHRHa/R8-LP-5-FU的透射電鏡圖(×5 000)
Fig.1 Transmission electron microscopy image of the LHRHa/R8-LP-5-FU(×5 000)
表1 不同脂質(zhì)體的粒徑與電位
2.2 LHRHa/R8-LP的體外細(xì)胞攝取 在PC-3細(xì)胞表面有促黃體激素釋放激素受體高度表達(dá)。細(xì)胞攝取的定量實(shí)驗(yàn)結(jié)果見(jiàn)圖2。PC-3細(xì)胞對(duì)LHRHa/R8-LP的攝取效率分別是R8修飾脂質(zhì)體(R8-LP)和LHRHa修飾脂質(zhì)體(LHRHa-LP)的2.8和3.2倍,差異有統(tǒng)計(jì)學(xué)意義(χ2=17.5,20.3,均P<0.01)。定性的激光共聚焦熒光倒置顯微鏡觀察結(jié)果見(jiàn)圖3。綠色是脂質(zhì)體的FITC熒光,藍(lán)色是DAPI染色細(xì)胞核。LHRHa/R8-LP組熒光強(qiáng)度顯著強(qiáng)于R8-LP和LHRHa-LP,且3組脂質(zhì)體的熒光強(qiáng)度都強(qiáng)于普通脂質(zhì)體組。這與定量的實(shí)驗(yàn)結(jié)果一致。
圖2 PC-3細(xì)胞在不同時(shí)間對(duì)不同脂質(zhì)體的攝取
與LP比較,*1P<0.01;與R8-LP 和LHRHa-LP 比較,*2P<0.01
Fig.2 Uptake of different liposomes by PC-3 cells at different time points
Compared with LP,*1P<0.05;compared with R8-LP and LHRHa-LP,*2P<0.01
2.3 LHRHa/R8-LP-5-FU對(duì)腫瘤細(xì)胞的增殖抑制作用 PC-3細(xì)胞給藥48 h后,以0.9%氯化鈉溶液組為對(duì)照,LP-5-FU、R8-LP-5-FU、LHRHa-LP-5-FU和LP-5-FU對(duì)PC-3細(xì)胞的增殖抑制率分別為(26.4±4.5)%,(39.5±4.2)%,(48.6±3.5)%和(82.5±4.3)%。與0.9%氯化鈉溶液組比較,各脂質(zhì)體給藥組均能有效抑制腫瘤細(xì)胞增殖,差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。
2.4 LHRHa/R8-LP-5-FU對(duì)腫瘤球的生長(zhǎng)抑制作用 腫瘤球生長(zhǎng)抑制實(shí)驗(yàn)結(jié)果顯示,與0.9%氯化鈉溶液組比較,各組脂質(zhì)體均能抑制腫瘤球的生長(zhǎng)。給藥8 d后,0.9%氯化鈉溶液組腫瘤球持續(xù)生長(zhǎng),體積增大到原體積的1.43倍,而LP-5-FU、R8-LP-5-FU、LHRHa-LP-5-FU和LHRHa/R8-LP-5-FU分別使腫瘤體積減小到原體積的83%,65%,71%和44%。與0.9%氯化鈉溶液組比較,各脂質(zhì)體給藥組均能有效抑制腫瘤球的生長(zhǎng),差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。見(jiàn)圖4。
理想的腫瘤靶向藥物傳遞系統(tǒng)不僅需要在全身給藥后將藥物濃集在腫瘤組織,而且還需要能夠特異識(shí)別腫瘤細(xì)胞,將藥物高效地傳遞到腫瘤細(xì)胞內(nèi),從而將治療作用最大化,并減少抗腫瘤藥物的不良反應(yīng)[7]。研究表明,促黃體激素釋放激素受體在前列腺癌表面大量表達(dá)[2],從而成為靶向治療前列腺癌的潛在靶點(diǎn)。將LHRH修飾到載體微粒表面,制成腫瘤靶向遞藥微粒,通過(guò)實(shí)體瘤的高通透性和滯留效應(yīng)(enhanced permeability and retention,EPR)使微粒能夠在腫瘤部位靶向性聚集,提高靶向目標(biāo)的藥物濃度、生物利用度以及療效,同時(shí)降低藥物在非腫瘤部位的不良反應(yīng)[8-9]。然而,單純依靠LHRH修飾載體,通過(guò)被動(dòng)靶向到達(dá)腫瘤部位后,可能出現(xiàn)受體飽和等問(wèn)題。R8是由8個(gè)精氨酸組成的直鏈肽,能夠穿過(guò)與之相接觸的任何細(xì)胞的細(xì)胞膜[10],這一特點(diǎn)限制了R8在全身系統(tǒng)給藥中的應(yīng)用。筆者將細(xì)胞穿膜肽R8與LHRH共同修飾到脂質(zhì)體表面,首先通過(guò)腫瘤組織的EPR效應(yīng)到達(dá)腫瘤組織,然后依靠LHRH識(shí)別腫瘤組織表面高度表達(dá)的LHRH受體,再利用LHRH受體介導(dǎo)以及R8的穿膜作用使脂質(zhì)體進(jìn)入腫瘤細(xì)胞,實(shí)現(xiàn)了腫瘤組織和腫瘤細(xì)胞的二級(jí)靶向。
Fig.3 Uptake of FITC-labeled different liposomes by PC-3 cells by confocal laser scanning microscopy(CLSM)(×200)
Fig.4 Inhibitory effect of different liposomes on PC-3 tumor ball
采用生物素-親和素橋接系統(tǒng)將LHRH連接到脂質(zhì)體表面,能夠有效保持LHRH的生物活性。制備得到的共修飾脂質(zhì)體的粒徑約120 nm。納米載體的粒徑范圍在10~150 nm,能夠有效避開(kāi)網(wǎng)狀內(nèi)皮系統(tǒng)的吞噬,通過(guò)EPR效應(yīng)到達(dá)腫瘤組織[11]。在細(xì)胞攝取實(shí)驗(yàn)中,與普通脂質(zhì)體相比,經(jīng)過(guò)LHRHa或者R8修飾都能夠顯著增強(qiáng)PC-3前列腺癌細(xì)胞對(duì)脂質(zhì)體的攝取,其中對(duì)共修飾脂質(zhì)體的攝取效率顯著高于LHRHa或者R8單獨(dú)修飾的脂質(zhì)體,這說(shuō)明二者具有協(xié)同作用。MTT實(shí)驗(yàn)結(jié)果證實(shí),LHRHa/R8-LP-5-FU對(duì)腫瘤細(xì)胞的增殖抑制作用最強(qiáng),這是由于LHRH和R8共同修飾脂質(zhì)體后,脂質(zhì)體對(duì)腫瘤細(xì)胞的識(shí)別能力和入胞能力顯著增強(qiáng),進(jìn)而增強(qiáng)了入胞的藥物量,增強(qiáng)細(xì)胞毒性,抑制細(xì)胞增殖。研究表明在某些實(shí)體腫瘤組織中,由于腫瘤組織致密生長(zhǎng),腫瘤內(nèi)部壓力高且血管少,因此給藥系統(tǒng)很難進(jìn)入腫瘤組織深部[12]。本研究構(gòu)建了體外腫瘤球模型模擬脂質(zhì)體進(jìn)入腫瘤組織后對(duì)腫瘤的生長(zhǎng)抑制能力,結(jié)果與細(xì)胞增殖抑制實(shí)驗(yàn)結(jié)果相一致,相比于其他脂質(zhì)體,共修飾脂質(zhì)體能夠顯著抑制腫瘤球的生長(zhǎng)。
綜上所述,LHRHa/R8-LP-5-FU是一種很有前景的前列腺腫瘤靶向給藥系統(tǒng)。LHRHa/R8-LP能夠更加有效地將抗腫瘤藥物遞送至LHRH高度表達(dá)的腫瘤組織,并通過(guò)LHRHa和R8的共同作用,促進(jìn)入胞,抑制腫瘤的生長(zhǎng)。該給藥系統(tǒng)的體內(nèi)靶向性和體內(nèi)療效研究正在進(jìn)行中。
[1] YAMAMICHI F,MATSUOKA T, SHIGEMURA K,et al.Potential establishment of lung metastatic xenograft model of androgen receptor-positive and androgen-independent prostate cancer(C4-2B)[J].Urology,2012,80(4):9511-9517.
[2] 劉韶暉,徐效義,田玉新,等.鍵合多西紫杉醇的聚乳酸-聚乙二醇嵌段共聚物對(duì)前列腺癌PC-3細(xì)胞增殖抑制作用[J].第二軍醫(yī)大學(xué)學(xué)報(bào),2011,32(3):337-338.
[3] 陳佳,孫江川,常淑芳,等.LHRHa靶向紫杉醇脂質(zhì)體的制備及體外抗腫瘤作用[J].重慶醫(yī)科大學(xué)學(xué)報(bào),2012,37(4):298-301.
[4] QIN Y,CHEN H,ZHANG Q,et al.Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals[J].Int J Pharm,2011,420(2):304-312.
[5]KUAI R,YUAN W,QIN Y,et al.Efficient delivery of payload into tumor cells in a controlled manner by TAT and thiolytic cleavable PEG co-modified liposomes [J].Mol Pharm,2010,7(5):1816-1826.
[6] QIN Y,CHEN H, YUAN W,et al.Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery[J].Int J Pharm,2011,419(12):85-95.
[7] KUAI R,YUAN W,LI W,et al.Targeted delivery of cargoes into a murine solid tumor by a cell-penetrating peptide and cleavable poly(ethylene glycol) comodified liposomal delivery system via systemic administration[J].Mol Pharm,2011,8(6):2151-2161.
[8] MINKO T,PATIL M L,ZHANG M,et al.LHRH-targeted nanoparticles for cancer therapeutics[J].Methods Mol Bio,2010,624(281):281-294.
[9] CHANG S,GUO J,SUN J,et al.Targeted microbubbles for ultrasound mediated gene transfection and apoptosis induction in ovarian cancer cells[J].Ultrason Sonochem,2013,20(1):171-179.
[10] SORAJ M A,HE L,PEYNSHAERT K,et al.siRNA and pharmacological inhibition of endocytic pathways to characterize the differential role of macropinocytosis and the actin cytoskeleton on cellular uptake of dextran and cationic cell penetrating peptides octaarginine(R8) and HIV-Tat[J].J Cont Rel,2012,161(1):132-141.
[11]ZHANG L,ZHANG L F.Lipid-polymer hybrid nanopar-ticles:synthesis,characterization and applications[J].Nano Life,2010(1):163-173.
[12] JIANG X Y,XIN H, GU J,et al.Solid tumor penetration by integrin-mediated pegylated poly(trimethylenecarbonate) nanoparticles loaded with paclitaxel[J].Biomaterials,2013,34(6):1739-1746.
DOI 10.3870/yydb.2015.01.007
Preparation of LHRHa and R8 Co-modified 5-FU Loaded Liposome and Its Anti-prostate Cancer Effect
YANG Qingliang1, XIA Yonghua2, HE Yan3, ZHANG Guangyun1, SONG Ge1
(1.DepartmentofUrinarySurgery,People'sHospitalofAnyang,HenanProvince,Anyang455000,China; 2.DepartmentofDermatology,theFirstAffiliatedHospital,XinxiangMedicalUniversity,Xinxiang453100,China; 3.DepartmentofUrinarySurgery,theFirstAffiliatedHospital,XinxiangMedicalUniversity,Xinxiang453100,China)
Objective To prepare luteinizing hormone-releasing hormone analogues (LHRHa) and R8 co-modified 5-FU loaded liposome (LHRHa/R8-LP-5-FU) and investigate therapeutic effect towards prostate cancer. Methods The co-modified liposome was prepared by film-ultrasonic method.The appearance, particle size and Zeta potential were evaluated.The cellular uptake by PC-3 cellsinvitrowas used to evaluate the targeting efficiency.The anti-proliferation activity of LHRHa/R8-LP-5-FU was evaluated by MTT assay.Tumor spheroids were used to evaluate anti-tumor ability of LHRHa/R8-LP-5-FUinvitro. Results The particle diameter of the co-modified liposome was (115.0±15.2) nm with the Zeta potential of (11.00±2.15) mV.The embedding ratio of LHRHa/R8-LP-5-FU was (84.5±5.1)%.The result demonstrated that the ratio of co-modified liposome uptaken by PC-3 were 2.8 and 3.2 times higher than that of R8-LP and LHRHa-LP(P<0.01), respectively, and the cell inhibition of LP-5-FU, R8-LP-5-FU, LHRHa-LP-5-FU and LHRHa/R8-LP-5-FU were (26.4±4.5)%, (39.5±4.2)%, (48.6±3.5)% and (82.5±4.3)% (P<0.01), respectively.The inhibition of the growth of tumor sphere by LHRHa/R-LP-5-FU was obviously higher than that of the other liposome groups. The experimental results of cell toxicity were consistent with the experimental results of cell uptake. Conclusion The co-modified liposome may serve as a promising prostate cancer delivery system for antitumor agents.
Luteinizing hormone-releasing hormone analogues; R8; Liposome; Cancer, prostate
2013-11-11
2014-05-15
楊慶良(1977-),男,山東陽(yáng)谷人,主治醫(yī)師,在讀碩士,研究方向:泌尿道腫瘤。電話:0372-3335638,E-mail:751195651@qq.com 。
R979.1;R965
A
1004-0781(2015)01-0030-05