国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

踝關(guān)節(jié)炎的病因機(jī)制及相關(guān)研究進(jìn)展

2015-12-14 08:38張樹張建中包貝西魏芳遠(yuǎn)
關(guān)鍵詞:下骨距骨踝關(guān)節(jié)

張樹 張建中包貝西 魏芳遠(yuǎn)

(首都醫(yī)科大學(xué)附屬北京同仁醫(yī)院骨科,北京100730)

·綜述·

踝關(guān)節(jié)炎的病因機(jī)制及相關(guān)研究進(jìn)展

張樹 張建中*包貝西 魏芳遠(yuǎn)

(首都醫(yī)科大學(xué)附屬北京同仁醫(yī)院骨科,北京100730)

近年來,隨人們對疾病的認(rèn)知及診療水平的提升,踝關(guān)節(jié)炎已成為重要的經(jīng)濟(jì)衛(wèi)生負(fù)擔(dān),并逐漸引起我們的關(guān)注[1-3]。據(jù)統(tǒng)計(jì),全球近1%的成年人,因踝關(guān)節(jié)疼痛、活動(dòng)受限等問題,長期受到困擾,并嚴(yán)重影響日常生活。有研究表明,晚期踝關(guān)節(jié)炎為患者帶來的肢體功能障礙及精神困擾與晚期髖關(guān)節(jié)炎同樣嚴(yán)重[4],但髖膝關(guān)節(jié)炎已引起足夠重視,目前對其病因及相關(guān)機(jī)制問題已有大量研究,而對于踝關(guān)節(jié)炎的研究仍較少[5]。充分了解其病因及相關(guān)機(jī)制,對于正確選擇治療方案、確保遠(yuǎn)期療效及減少術(shù)后并發(fā)癥有重要意義。

盡管該病在病理變化、臨床表現(xiàn)方面與其他關(guān)節(jié)的原發(fā)性關(guān)節(jié)炎有不少相似之處,但踝關(guān)節(jié)炎的發(fā)生發(fā)展機(jī)制仍有其特殊性,70%~78%的踝關(guān)節(jié)炎繼發(fā)于創(chuàng)傷。其軟骨細(xì)胞對于異常機(jī)械應(yīng)力及一些炎癥因子的反應(yīng),亦不同于其他關(guān)節(jié)?;谀壳把芯?,踝關(guān)節(jié)的發(fā)生發(fā)展涉及機(jī)體內(nèi)細(xì)胞和分子水平,復(fù)雜的生物力學(xué)和生物化學(xué)變化。充分了解其病因及相關(guān)機(jī)制,對于選擇正確的治療方案及發(fā)現(xiàn)新的診療手段有重要意義。本文就踝關(guān)節(jié)炎可能的發(fā)生發(fā)展機(jī)制作一綜述。

1 解剖

踝關(guān)節(jié)由脛、腓骨下端與距骨滑車構(gòu)成,脛骨遠(yuǎn)端膨大部分是內(nèi)踝,被一條縱行的溝分為前、后兩個(gè)小丘。內(nèi)踝的內(nèi)表面由透明軟骨覆蓋,并于距骨內(nèi)側(cè)形成關(guān)節(jié)。在腓骨遠(yuǎn)端也有同樣的結(jié)構(gòu),并于距骨外側(cè)形成外踝。關(guān)節(jié)囊附著于各關(guān)節(jié)面周圍,其前后壁薄而松弛,兩側(cè)有韌帶加強(qiáng)。

內(nèi)側(cè)三角韌分為深淺兩層,淺層為擴(kuò)大、扇形、連續(xù)走行的結(jié)構(gòu),起自內(nèi)踝的前丘部,其沒有明顯的束樣結(jié)構(gòu),可根據(jù)止點(diǎn)分為三部分。前部連接于舟骨內(nèi)側(cè),與彈簧韌帶上內(nèi)側(cè)部分纖維相混合;中部垂直走行向下,止于跟骨的載距突;后部向后外止于距骨結(jié)節(jié)的內(nèi)側(cè)。三角韌帶深層在解剖上與淺層分離,厚且短,可分為兩個(gè)明顯的結(jié)構(gòu):脛距前、后深層韌帶。兩者均位于關(guān)節(jié)內(nèi),滑膜外。前部起自前外側(cè)丘部,止于距骨內(nèi)側(cè)。后部是整個(gè)三角韌帶最強(qiáng)的部分,起自后丘,向后方走行,同樣止于距骨內(nèi)側(cè)。三角韌帶的淺深兩層都具有對抗踝關(guān)節(jié)過度外翻外旋的作用,深層有最強(qiáng)的限制外翻的作用。

踝關(guān)節(jié)外側(cè)韌帶由距腓前韌帶、跟腓韌帶、距腓后韌帶3部分組成。其中距腓前韌帶起自外踝的前面,向前內(nèi)側(cè)走行,止于距骨頸部的外側(cè)面,止點(diǎn)恰位于關(guān)節(jié)面的遠(yuǎn)端。此韌帶長15~20mm,寬6~8mm,厚2mm,與踝關(guān)節(jié)前方關(guān)節(jié)囊相融合。距腓前韌帶是踝外側(cè)韌帶中最弱的韌帶,最常受損傷。跟腓韌帶是一條圓形,長20~25mm,厚6~8mm的結(jié)構(gòu)。起自外踝尖前方,其遠(yuǎn)端向下、向后延伸到腓骨肌腱深面,止于跟骨外側(cè)的上部。此韌帶位于關(guān)節(jié)外,跨過脛距及距下兩個(gè)關(guān)節(jié)。跟腓韌帶在踝關(guān)節(jié)極度背伸時(shí)緊張,并起著限制踝關(guān)節(jié)過度內(nèi)翻的作用。距腓后韌帶位置較深,自外踝后內(nèi)側(cè)至距骨結(jié)節(jié)外側(cè),長約3 cm,寬5mm,厚8mm。它是外側(cè)韌帶中最強(qiáng)的一條,在踝關(guān)節(jié)背伸時(shí)受到較大張力[6]。

由于距骨滑車前部較寬后部較窄,當(dāng)關(guān)節(jié)背伸時(shí),較寬的滑車前部嵌入關(guān)節(jié)窩內(nèi),關(guān)節(jié)較穩(wěn)定;但跖屈時(shí),踝關(guān)節(jié)可稍有外展、內(nèi)收運(yùn)動(dòng),故踝關(guān)節(jié)扭傷多見于跖屈情況下。

關(guān)節(jié)軟骨通過其彈性對抗壓力,保護(hù)軟骨下骨。其中由軟骨細(xì)胞產(chǎn)生的膠原和蛋白聚糖是軟骨細(xì)胞外基質(zhì)的重要組成。正常成人的軟骨細(xì)胞數(shù)量基本保持在一個(gè)恒定水平,且其增殖能力隨年齡增大而逐步減低。此外,生理性負(fù)重有助于維持軟骨健康,隨肢體的正?;顒?dòng),關(guān)節(jié)腔內(nèi)壓力產(chǎn)生周期性變化,可抑制軟骨的退變、血管化或骨化,并促進(jìn)細(xì)胞外基質(zhì)等更新[7]。

2 病因

不同于髖膝關(guān)節(jié),踝關(guān)節(jié)很少發(fā)生原發(fā)性骨關(guān)節(jié)炎。經(jīng)大量臨床流行病學(xué)研究證實(shí),外傷為踝關(guān)

節(jié)炎的常見誘因,且創(chuàng)傷性骨關(guān)節(jié)炎患者年齡明顯小于原發(fā)性骨關(guān)節(jié)炎[5,8-11]。一項(xiàng)對OA患者的流行病學(xué)研究顯示,其中1.6%的髖關(guān)節(jié)炎,9.8%的膝關(guān)節(jié)炎和79.5%的踝關(guān)節(jié)炎患者,既往至少有1次受累關(guān)節(jié)的外傷[12]。據(jù)Saltzman等對639名晚期踝關(guān)節(jié)炎患者(Kellgren分級3或4級)的分析,其中46例(7%)為原發(fā)性踝關(guān)節(jié)炎,76例(12%)為類風(fēng)濕性關(guān)節(jié)炎,445例(70%)為創(chuàng)傷性踝關(guān)節(jié)炎,而踝關(guān)節(jié)的螺旋形骨折(164例)及韌帶損傷(126例)為創(chuàng)傷性踝關(guān)節(jié)炎的常見原因[9]。反復(fù)的踝扭傷是造成創(chuàng)傷性踝關(guān)節(jié)炎并后足畸形的主要原因[13]。

Valderrabano等對390例晚期踝關(guān)節(jié)炎患者的研究也支持上述結(jié)論,大部分患者(78%)為創(chuàng)傷性踝關(guān)節(jié)炎。踝關(guān)節(jié)骨折157例,是主要病因,踝關(guān)節(jié)韌帶損傷占60例。僅30例為原發(fā)性踝關(guān)節(jié)炎,其他病因所致的繼發(fā)踝關(guān)節(jié)炎46例[5]。類風(fēng)濕、血色病、血友病、痛風(fēng)、神經(jīng)性疾病、距骨缺血壞死、骨軟骨損傷及感染后關(guān)節(jié)炎均可導(dǎo)致繼發(fā)性踝關(guān)節(jié)炎(表1)[1,14]。此外,一項(xiàng)流行病學(xué)研究表明,肥胖為骨關(guān)節(jié)炎發(fā)生發(fā)展的獨(dú)立危險(xiǎn)因素[15]。

3 發(fā)展機(jī)制

導(dǎo)致踝關(guān)節(jié)炎發(fā)生發(fā)展的機(jī)制可分為以下兩種:異常負(fù)重作用于正常軟骨或正常應(yīng)力作用于異常軟骨[16]。創(chuàng)傷性踝關(guān)節(jié)炎正符合上述第一種情況:創(chuàng)傷引起關(guān)節(jié)囊、韌帶及關(guān)節(jié)面的損傷,使載荷傳遞增大或改變關(guān)節(jié)內(nèi)負(fù)重的分布,進(jìn)而導(dǎo)致關(guān)節(jié)炎的發(fā)生發(fā)展。

關(guān)節(jié)軟骨對于病理情況下的負(fù)重異常十分敏感[17],體外負(fù)重實(shí)驗(yàn)表明,異常負(fù)重可明顯影響軟骨的結(jié)構(gòu)組成及其代謝活動(dòng)[18]。異常負(fù)重產(chǎn)生的應(yīng)力作用于軟骨細(xì)胞,使其產(chǎn)生氧化應(yīng)激,而氧化應(yīng)激是導(dǎo)致軟骨退變的原因之一。因此,異常負(fù)重及氧化應(yīng)激的持續(xù)存在,對促進(jìn)軟骨退變的有著重要作用[19]。異常機(jī)械負(fù)重同時(shí)可影響軟骨細(xì)胞的功能,造成其對軟骨細(xì)胞外基質(zhì)的合成分解代謝失衡。軟骨細(xì)胞的受體經(jīng)機(jī)械刺激,可產(chǎn)生基質(zhì)降解酶、炎癥細(xì)胞因子及趨化因子,并引起滑膜組織的炎癥。已有大量研究證實(shí),纖維黏連蛋白碎片(Fn-f)可通過上調(diào)基質(zhì)金屬蛋白酶活性并抑制蛋白聚糖合成,進(jìn)一步擴(kuò)大軟骨的破壞[20]。此外,關(guān)節(jié)炎中周期性靜水壓的降低也會(huì)影響軟骨的營養(yǎng)及代謝[7]。早期表現(xiàn)為聚糖蛋白丟失及Ⅱ型膠原斷裂,并逐漸出現(xiàn)軟骨水腫、彈性喪失。同時(shí),伴隨關(guān)節(jié)內(nèi)軟骨的一系列變化,軟骨下骨出現(xiàn)局部增厚,硬化甚至囊變[16]。

近來,軟骨下骨的作用已逐漸引起相關(guān)研究重視。在OA中,軟骨下骨增厚與軟骨退變幾乎同時(shí)出現(xiàn),并隨炎癥程度而進(jìn)展。軟骨下骨與深層軟骨間通過復(fù)雜的管道結(jié)構(gòu)相互聯(lián)通,構(gòu)成一個(gè)功能單元。在炎癥環(huán)境下,骨重塑異常導(dǎo)致的軟骨下骨硬化,極大的減弱了軟骨下骨吸收應(yīng)力震蕩的作用,使其喪失保護(hù)關(guān)節(jié)軟骨的功能。而自潮線(關(guān)節(jié)透明軟骨與軟骨下骨交界區(qū))出現(xiàn)的新生血管和軟骨鈣化,也會(huì)逐步削減關(guān)節(jié)軟骨的厚度。關(guān)節(jié)軟骨和關(guān)

節(jié)周圍骨質(zhì)結(jié)構(gòu)的改變,導(dǎo)致關(guān)節(jié)變形,并進(jìn)一步引起關(guān)節(jié)軟骨退變,加速骨關(guān)節(jié)炎進(jìn)程。近期一項(xiàng)研究亦證實(shí)了,軟骨下骨產(chǎn)生的生長因子和細(xì)胞因子在關(guān)節(jié)炎發(fā)生發(fā)展中的作用[21]。而其與關(guān)節(jié)炎的關(guān)系仍有待進(jìn)一步研究證實(shí)。

表1 繼發(fā)性踝關(guān)節(jié)炎的病因

4 相關(guān)因子

雖然目前對OA的發(fā)展機(jī)制尚不明確,但基于大量相關(guān)分子的研究,已知白介素-1β(IL-1β)和腫瘤壞死因子(TNF),通過促進(jìn)軟骨基質(zhì)降解,在病程中發(fā)揮重要作用。此外,一項(xiàng)對創(chuàng)傷性踝關(guān)節(jié)炎的研究顯示,20位患者的滑液中IL-1Ra,IL-6,IL-8,IL-10,IL-15及MCP-1明顯高于對照組[22]。進(jìn)一步探究促炎細(xì)胞因子的作用機(jī)制,對靶向治療延緩疾病進(jìn)展有深遠(yuǎn)的意義

411 IL-IL-11β和TNF TNF

IL-1β和TNF是OA中最重要的兩個(gè):IL-1β介導(dǎo)軟骨的損傷,TNF誘發(fā)炎癥級聯(lián)反應(yīng)。這兩種細(xì)胞因子可由軟骨細(xì)胞、單核細(xì)胞、成骨細(xì)胞及滑膜組織產(chǎn)生,并誘導(dǎo)一系列促進(jìn)分解代謝的細(xì)胞因子產(chǎn)生。在OA患者的滑液、滑膜、軟骨及軟骨下骨均可見IL-1β和TNF表達(dá)升高[23]。這兩種因子可獨(dú)立或協(xié)同其他因子介導(dǎo)炎癥反應(yīng)。動(dòng)物實(shí)驗(yàn)顯示,IL-1β和TNF同時(shí)注入關(guān)節(jié)腔內(nèi)對軟骨造成的破壞,較單一因子更顯著[24,25]。雖然IL-1β是廣義上的促炎細(xì)胞因子,但敲除Il1b基因的可促進(jìn)小鼠OA進(jìn)展的研究結(jié)果提示,該因子在維持軟骨細(xì)胞代謝穩(wěn)態(tài)中的作用仍有待我們進(jìn)一步探究[26]。

細(xì)胞表面存在兩種IL-1β受體,IL-1RⅠ可接受信號刺激,并向胞內(nèi)傳導(dǎo)信號[27]。在OA病程中,人關(guān)節(jié)軟骨細(xì)胞和滑膜纖維母細(xì)胞表達(dá)IL-1RⅠ較正常細(xì)胞明顯升高[28,29]。IL-1RⅡ?yàn)檎T騙受體,通過高親和力特異性識別IL-1β,但在結(jié)構(gòu)上不能進(jìn)行信號轉(zhuǎn)導(dǎo)[30]。軟骨細(xì)胞和滑膜纖維母細(xì)胞產(chǎn)生的IL-1Ra,可競爭性結(jié)合兩種受體,抑制IL-1活性,發(fā)揮抗炎作用[31,32]。

TNF同樣通過結(jié)合細(xì)胞表面兩種受體TNFRI(或p55)和TNFRII(或p75)呈遞信號。關(guān)節(jié)軟骨細(xì)胞和滑膜纖維母細(xì)胞在炎癥狀態(tài)下,可檢測到TNFRI表達(dá)升高[36]。TNFRI在關(guān)節(jié)內(nèi)組織表達(dá)占優(yōu)勢,但兩種受體激活后,均可向胞內(nèi)不同的蛋白呈遞信號,并介導(dǎo)相應(yīng)的級聯(lián)反應(yīng)[33-36]。

已有研究證實(shí),IL-1β和TNF可抑制軟骨細(xì)胞合成細(xì)胞外基質(zhì)[37,38]。在體外實(shí)驗(yàn)中,IL-1β下調(diào)軟骨細(xì)胞中2型膠原蛋白的表達(dá),減少外基質(zhì)中2型膠原蛋白的同源三聚體含量[39,40]。同時(shí),IL-1β通過抑制β-1,3-葡糖醛酸基轉(zhuǎn)移酶Ⅰ,限制糖胺聚糖與核心蛋白連接,降低聚蛋白聚糖的生成[41]。相似的,TNF可抑制蛋白聚糖合成,以及軟骨細(xì)胞內(nèi)蛋白與2型膠原的交聯(lián)[37,42]。

此外,IL-1β和TNF還可刺激軟骨細(xì)胞釋放蛋白水解酶,其中最主要的一類為基質(zhì)金屬蛋白酶(MMPs):間質(zhì)膠原酶(MMP-1)、基質(zhì)溶解素1(MMP-3),膠原酶3(MMP-13)[43-45]。上述三種酶在軟骨的退變過程中發(fā)揮著重要作用。而帶有血小板凝血酶敏感蛋白樣模體的解整鏈蛋白金屬蛋白酶(a disintegrin and metalloproteinase w ith thrombospondin motifs,ADAMTS)家族成員在OA的發(fā)病過程中有更重要的作用。目前公認(rèn)的聚蛋白多糖酶只有2個(gè):ADAMTS-4[46]和ADAMTS-5[47]。牛和豬軟骨經(jīng)IL-1β和TNF刺激,可增加對ADAMTS-4的表達(dá),但ADAMTS-5表達(dá)未見明顯變化,該結(jié)論在一項(xiàng)對OA患者滑液的研究中得到進(jìn)一步證實(shí)[48,49]。而Glasson等發(fā)現(xiàn),小鼠ADAMTS-5基因敲除,可以抑制OA的發(fā)生和發(fā)展[47]。

4.2 IL-IL-66

人白細(xì)胞介素-6(IL-6)是一種多功能的細(xì)胞因子,它通過與靶細(xì)胞表面受體結(jié)合發(fā)揮多種生物活性:首先由活性區(qū)域與80 kDa的IL-6Rα結(jié)合,產(chǎn)生IL-6/IL-6Rα復(fù)合物,復(fù)合物再與gp130結(jié)合。此外,IL-6R的一種特殊形式,可溶性IL-6R(sIL-6R),分子量為50 kDa,其結(jié)合IL-6形成sIL-6R/IL-6復(fù)合體后,也可與細(xì)胞膜表面gp130結(jié)合,將信號傳到胞內(nèi),通過信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活子-3(STAT3)和STAT1上的Src同源結(jié)構(gòu)域-2(SH2)與磷酸化的酪氨酸相互作用形成同源或異源二聚體,二聚體與其結(jié)合位點(diǎn)分離,并在酪氨酸磷酸化后轉(zhuǎn)移到核內(nèi),調(diào)節(jié)靶基因表達(dá)[50,51]。正常情況下,軟骨細(xì)胞生成IL-6維持在一個(gè)較低水平,但在OA中,由于多種細(xì)胞因子及生長因子存在,如:IL-1β和TNF-β等,刺激IL-6的大量產(chǎn)生[52,53]。當(dāng)剪切力作用于人軟骨細(xì)胞時(shí),前列腺素E(PGE2)通過上調(diào)環(huán)磷酸腺苷(cAMP),激活蛋白激酶A(PKA)、磷脂酰肌醇3-激酶(PI3K)及核因子-κB(NF-κB)信號通路,促進(jìn)IL-6表達(dá)[54,55]。在對健康人及體外外周血單核細(xì)胞的研究均提示,高濃度IL-6可刺激C反應(yīng)蛋白(CRP)升高[56,57]。此外,一項(xiàng)對OA

患者的臨床研究證實(shí),高濃度IL-6和CRP與軟骨丟失有顯著相關(guān)性[58]。IL-6、IL-1β及抑瘤素共同作用可上調(diào)牛或人培養(yǎng)基中MMP-1和MMP-13的含量[59,60]。同時(shí),機(jī)械損傷可通過sIL-6R/IL-6復(fù)合體減少軟骨細(xì)胞對2型膠原的表達(dá),促進(jìn)軟骨細(xì)胞外基質(zhì)退變[61,62]。

目前基于動(dòng)物實(shí)驗(yàn)對IL-6功能的研究仍不能得出一致結(jié)論。雖然小鼠中IL-6缺陷與較低的關(guān)節(jié)內(nèi)炎細(xì)胞數(shù)量及膠原誘導(dǎo)性關(guān)節(jié)炎發(fā)病率相關(guān)[63],但一些研究顯示,關(guān)節(jié)內(nèi)注入IL-6可抑制關(guān)節(jié)軟骨破壞[64]。IL-6缺陷型較野生型小鼠,蛋白聚糖合成減低,軟骨下骨硬化增加[65]。有證據(jù)表明,IL-6在急性期反應(yīng)中起抗炎、免疫抑制的作用。因此,IL-6作為一種炎癥因子,在體內(nèi)具有促炎和抗炎的雙重作用[66]。

軟骨下骨的代謝變化,同樣可影響OA的發(fā)展。由成骨細(xì)胞產(chǎn)生的IL-6可促進(jìn)破骨細(xì)胞分化,繼而吸收骨質(zhì)[67]。類似于其在炎癥中發(fā)揮的雙重作用,當(dāng)成骨細(xì)胞產(chǎn)生低表達(dá)IL-6及PGE2時(shí),骨吸收增加;相反,高表達(dá)IL-6及PGE2,與骨吸收減少相關(guān)[68,69]。IL-6在OA軟骨下骨的骨吸收、骨硬化及骨贅形成中均發(fā)揮重要作用。

5 踝軟骨的特殊性

踝關(guān)節(jié)相對較低的關(guān)節(jié)炎發(fā)生率,及其軟骨對損傷較強(qiáng)的耐受性,與結(jié)構(gòu)功能上特殊性相關(guān)[70,71]。踝關(guān)節(jié)軟骨細(xì)胞密度明顯高于膝關(guān)節(jié),因此踝軟骨有較強(qiáng)的代謝能力,而不易出現(xiàn)合成分解代謝失衡[70]。近期的一些研究顯示,踝關(guān)節(jié)軟骨對于促進(jìn)基質(zhì)降解的刺激因素存在低反應(yīng)[71]。在IL-1的抑制下,體外培養(yǎng)的踝關(guān)節(jié)軟骨細(xì)胞對蛋白聚糖的合成是膝軟骨的8倍[71,72]。這種低反應(yīng)不僅對于于細(xì)胞因子,踝軟骨細(xì)胞對于Fn-f介導(dǎo)基質(zhì)降解的耐受性,亦明顯強(qiáng)于膝軟骨[72]。踝關(guān)節(jié)軟骨對基質(zhì)及細(xì)胞因子的反應(yīng),提示其在治療上的特殊性。例如:膝關(guān)節(jié)炎中基于相關(guān)細(xì)胞因子或基質(zhì)分子的治療藥物,在踝關(guān)節(jié)中很可能出現(xiàn)“低反應(yīng)”。

在細(xì)胞外基質(zhì)中,踝軟骨較膝軟骨含有更多的蛋白聚糖,及較少的水。生化組成上的不同,必將影響其生物力學(xué)性質(zhì)。踝軟骨具有較高的平衡模量及剛度,較低的透水性,因而對機(jī)械損傷有較強(qiáng)的抵抗能力[73,74]。

對下肢關(guān)節(jié)早期關(guān)節(jié)炎的研究中,膠原和蛋白聚糖合成的標(biāo)記物在退變的踝關(guān)節(jié)內(nèi)明顯升高,而在膝關(guān)節(jié)中卻表現(xiàn)為相反的趨勢。這一結(jié)果提示,損傷早期踝軟骨通過上調(diào)合成代謝以修復(fù)組織,而為何膝軟骨沒能成功實(shí)現(xiàn)相似功能尚不清楚??赡茌^為合理的解釋是,早期大量基質(zhì)降解產(chǎn)物抑制膝軟骨合成代謝,而踝軟骨因良好剛度,未出現(xiàn)明顯基質(zhì)碎裂[71,74]。

此外,踝軟骨與膝軟骨的比較形態(tài)學(xué)研究發(fā)現(xiàn),兩者淺表層軟骨細(xì)胞的空間排列存在差異。經(jīng)過對單軸關(guān)節(jié)與雙軸關(guān)節(jié)的軟骨組成及關(guān)節(jié)力學(xué)的比較,單軸關(guān)節(jié),如踝關(guān)節(jié),軟骨細(xì)胞成對排列,而膝關(guān)節(jié)中軟骨細(xì)胞成串排列。目前尚不清楚這種成對排列的形態(tài)是長期應(yīng)力的結(jié)果,還是其在維持軟骨穩(wěn)態(tài)中有特殊的功能。進(jìn)一步探究其意義將有助于骨軟骨移植治療中對移植物的選擇[75]。

6 骨軟骨移植

骨軟骨移植通過取自股骨遠(yuǎn)端非負(fù)重區(qū)或同種異體骨軟骨組織,修復(fù)踝關(guān)節(jié)炎中局灶性軟骨損傷[76-78]。中期隨訪研究顯示,術(shù)后5年患者可獲得明顯的疼痛緩解及踝部功能改善[79],但該技術(shù)在理論上存在局限,仍需長期證據(jù)支持。

移植物與周圍組織交界處產(chǎn)生的異常壓力變化,將影響軟骨基質(zhì)代謝平衡。因組織間細(xì)胞及基質(zhì)組成不同而產(chǎn)生的代謝壓力上升,在一定程度上限制移植物與周圍正常軟骨的整合與重塑,影響軟骨的減震功能。距骨軟骨厚約1.5mm[80],而股骨遠(yuǎn)端軟骨厚度2~6mm[81],髁間軟骨厚度最大。因此,膝軟骨用于踝關(guān)節(jié)炎治療時(shí),由于厚度及軟骨結(jié)構(gòu)層次的不匹配而出現(xiàn)上述問題。在這種異常應(yīng)力及代謝壓力的作用下,遠(yuǎn)期移植物交界處出現(xiàn)纖維軟骨瘢痕,并逐漸影響軟骨的正常功能。

軟骨移植術(shù)后,軟骨下骨同樣受到異常應(yīng)力累及。在山羊的自體骨軟骨移植模型中證實(shí)[82],愈合中軟骨下骨出現(xiàn)硬化伴局部負(fù)重增高。盡管目前尚無移植術(shù)后出現(xiàn)關(guān)節(jié)軟骨退變的大規(guī)模研究證據(jù),仍不能除外異常應(yīng)力對遠(yuǎn)期軟骨代謝及功能的影響。根據(jù)既往軟骨下骨小梁方向影響骨愈合的研究結(jié)果[83],移植物的軟骨下骨在遠(yuǎn)期的軟骨健康中有重要作用。

盡管骨軟骨移植術(shù)后,可能存在諸多問題。目前相關(guān)臨床及組織學(xué)研究結(jié)論仍是樂觀的[79]。通過對比自體及異體骨軟骨移植的療效,我們將進(jìn)一步了解移植術(shù)后踝關(guān)節(jié)內(nèi)力學(xué)及分子水平變化。

綜上所述,目前踝關(guān)節(jié)炎的發(fā)病率雖不及髖關(guān)

節(jié)或膝關(guān)節(jié),但其臨床意義仍不容忽視。踝關(guān)節(jié)炎患者多存在生活質(zhì)量低,嚴(yán)重的下肢活動(dòng)受限等問題[4,84]。不同于其他OA,踝關(guān)節(jié)炎多繼發(fā)于骨折、韌帶損傷等外傷[4,8]。其發(fā)生發(fā)展機(jī)制不同于其他關(guān)節(jié)炎,軟骨及其下骨、相關(guān)炎癥因子和趨化因子在病程中的作用,仍有待進(jìn)一步探究。

[1]Buckwalter JA,Martin JA.Osteoarthritis.Adv D rug Deliv Rev,2006,58(2):150-167.

[2]Buckwalter JA,Saltzman C,Brown T.The impactof osteoarthritis:imp lications for research.Clin Orthop Relat Res, 2004,(427 Suppl):S6-S15.

[3]Reginster JY.The prevalence and burden of arthritis.Rheumatology(Oxford),2002,41(4):3-6.

[4]Glazebrook M,Daniels T,Younger A,et al.Comparison of health-related quality of life between patients w ith endstage ankle and hip arthrosis.JBone Joint Surg Am,2008, 90(3):499-505.

[5]Valderrabano V,Horisberger M,Russell I,etal.Etiology of ankle osteoarthritis.Clin Orthop Relat Res,2009,467(7): 1800-1806.

[6]張建中.足踝外科學(xué)精要.北京:北京大學(xué)醫(yī)學(xué)出版社, 2013:7-8.

[7]Carter DR,Beaupre GS,Wong M,et al.Themechanobiology of articular cartilage development and degeneration. Clin Orthop RelatRes,2004,(427Suppl):S69-S77.

[8]Saltzman CL,Salamon M L,B lanchard GM,et al.Epidem iology of ankle arthritis:report of a consecutive series of 639 patients from a tertiary orthopaedic center.Iowa Orthop J,2005,25:44-46.

[9]Thomas RH,Daniels TR.Ankle arthritis.JBone Joint Surg Am,2003,5A(5):923-936.

[10]Daniels T,Thomas R.Etiology and biomechanics of ankle arthritis.FootAnk le Clin,2008,13(3):341-352.

[11]Hintermann B.Totalanklearthroplasty:historical overview, current concepts and future perspectives.Wien(Austria), New York:Springer,2005:5-9.

[12]Brown TD,Johnston RC,Saltzman CL,etal.Posttraumatic osteoarthritis:a first estimate of incidence,prevalence,and burden of disease.JOrthop Trauma,2006,20(10):739-744.

[13]Valderrabano V,Hintermann B,Horisberger M,etal.Ligamentous posttraumatic ankle osteoarthritis.Am J Sports Med,2006,34(4):612-620.

[14]Buckwalter JA,Mankin HJ.Articular cartilage:degeneration and osteoarthritis,repair,regeneration,and transplantation.Instr Course Lect,1998,47:489.

[15]Frey C,Zamora J.The effects of obesity on orthopaedic footand ankle pathology.FootAnkle Int,2007,28(9):996-999.

[16]Goldring MB,Goldring SR.Osteoarthritis.JCell Physiol, 2007,213(3):626-634.

[17]Roos EM.Joint injury causes knee osteoarthritis in young adults.Curr Opin Rheumatol,2005,17(2):195-200.

[18]Furman BD,Olson SA,Guilak F.The developmentof posttraumatic arthritis after articular fracture.JOrthop Trauma, 2006,20(10):719-725.

[19]Martin JA,Brown TD,Heiner AD,et al.Chondrocyte senescence,joint loading and osteoarthritis.Clin Orthop RelatRes,2004,(427 Suppl):S96-S103.

[20]Dang Y,Cole AA,Homandberg GA.Comparison of the catabolic effects of fibronectin fragments in human knee and ankle cartilages.Osteoarthritis Cartilage,2003,11(7):538-547.

[21]Lajeunesse D,Reboul P.Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling.Curr Opin Rheumatol,2003,15(5):628-633.

[22]Adams SB Jr,NettlesDL,Jones LC,etal.Inflammatory cytokines and cellularmetabolites as synovial fluid biomarkersof posttraumatic ankle arthritis.FootAnk le Int,2014,35 (12):1241-1249.

[23]Martel-Pelletier J,Lajeunesse D,Pelletier JP.Arthritis and A llied Conditions:A Textbook of Rheumatology.15th ed. Baltimore(USA):Lippincott Williams&Wilkins,2005:2199-2226.

[24]Page Thomas DP,King B,Stephens T,et al.In vivo studies of cartilage regeneration after damage induced by catabolin/ interleukin-1.Ann Rheum Dis,1991,50(2):75-80.

[25]Henderson B,Pettipher ER.Arthritogenic actions of recombinant IL-1 and tumour necrosis factor alpha in the rabbit: evidence for synergistic interactions between cytokines in vivo.Clin Exp Immunol,1989,75(2):306-310.

[26]Clements KM,Price JS,Chambers MG,et al.Gene deletion of either interleukin-1beta,interleukin-1beta-converting enzyme,inducible nitric oxide synthase,or stromelysin 1 accelerates the developmentof knee osteoarthritis inm ice after surgical transection of themedial collateral ligament and partial medial meniscectomy.Arthritis Rheum,2003, 48:3452-3463.

[27]Arend WP.Interleukin-1 receptor antagonist.Adv Immunol, 1993,54:167-227.

[28]M artel-Pelletier J,M cCollum R,DiBattista J,et al.The interleukin-1 receptor in normal and osteoarthritic human articular chondrocytes.Identification as the type I receptor and analysis of binding kinetics and biologic function.ArthritisRheum,1992,35(5):530-540.

[29]Sadouk MB,Pelletier JP,Tardif G,etal.Human synovial fibroblasts coexpress IL-1 receptor type Iand type IImRNA. The increased level of the IL-1 receptor in osteoarthritic cells is related to an increased level of the type I receptor. Lab Invest,1995,73(3):347-355.

[30]Colotta F,Dower SK,Sims JE,etal.The type II'decoy'receptor:a novel regulatory pathway for interleukin 1.Immunol Today,1994,15(12):562-566.

[31]Palmer G,Guerne PA,M ezin F,etal.Production of interleukin-1 receptor antagonistby human articular chondrocytes. ArthritisRes,2002,4(3):226-231.

[32]Seitz M,Loetscher P,Dewald B,et al.Production of interleukin-1 receptorantagonist,inflammatory chemotactic proteins,and prostaglandin E by rheumatoid and osteoarthritic synoviocytes--regulation by IFN-gamma and IL-4.JImmunol,1994,152(4):2060-2065.

[33]Alaaeddine N,DiBattista JA,Pelletier JP,etal.Osteoarthritic synovial fibroblasts possess an increased level of tumor necrosis factor-receptor 55(TNF-R55)thatmediatesbiological activation by TNF-alpha.JRheumatol,1997,24(10): 1985-1994.

[34]Naume B,Shalaby R,Lesslauer W,et al.Involvement of the 55-and 75-kDa tumor necrosis factor receptors in the generation of lymphokine-activated killer cell activity and proliferation of natural killer cells.J Immunol,1991,146 (9):3045-3048.

[35]Hohmann HP,BrockhausM,Baeuerle PA,etal.Expression of the types A and B tumor necrosis factor(TNF)receptors is independently regulated,and both receptorsmediate activation of the transcription factor NF-kappa B.TNF alpha is not needed for induction of a biological effect via TNF receptors.JBiol Chem,1990,265(36):22409-22417.

[36]Westacott CI,Atkins RM,Dieppe PA,etal.Tumor necrosis factorαreceptor expression on chondrocytes isolated from human articular cartilage.JRheumatol,1994,21(9):1710-1715.

[37]Saklatvala J.Tumournecrosis factorαstimulates resorption and inhibits synthesis of proteoglycan in cartilage.Nature, 1986,322(6079):547-549.

[38]Goldring MB,Fukuo K,Birkhead JR,etal.Transcriptional suppression by interleukin-1 and interferon-gamma of type II collagen gene expression in human chondrocytes.JCell Biochem,1994,54(1):85-99.

[39]Chadjichristos C,Ghayor C,Kypriotou M,et al.Sp1 and Sp3 transcription factorsmediate interleukin-1 beta downregulation of human type IIcollagen gene expression in articular chondrocytes.JBiol Chem,2003,278(41):39762-39772.

[40]Shakibaei M,Schulze-Tanzil G,John T,et al.Curcum in protects human chondrocytes from IL-l1beta-induced inhibition of collagen type IIand beta1-integrin expression and activation of caspase-3:an immunomorphological study. Ann Anat,2005,187(5-6):487-497.

[41]Gouze JN,Bordji K,Gulberti S,et al.Interleukin-1beta down-regulates the expression of glucuronosyltransferase I, a key enzyme priming glycosaminoglycan biosynthesis:influence of glucosam ine on interleukin-1beta-mediated effects in rat chondrocytes.Arthritis Rheum,2001,44(2): 351-360.

[42]Séguin CA,Bernier SM.TNFalpha suppresses link protein and type II collagen expression in chondrocytes:Role of MEK1/2 and NF-kappaB signaling pathways.JCell Physiol,2003,197(3):356-369.

[43]Mengshol JA,VincentiMP,Coon CI,etal.Interleukin-1 induction of collagenase 3(matrix metalloproteinase 13) gene expression in chondrocytes requires p38,c-Jun N-term inalkinase,and nuclear factor kappaB:differential regulation of collagenase 1 and collagenase 3.Arthritis Rheum, 2000,43(4):801-811.

[44]Lefebvre V,Peeters-Joris C,Vaes G.Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase,tissue inhibitor ofmetalloproteinasesand collagen types in differentiated and dedifferentiated articular chondrocytes.Biochim Biophys Acta,1990,1052(3):366-378.

[45]Reboul P,Pelletier JP,Tardif G,etal.The new collagenase, collagenase-3,isexpressed and synthesized by human chondrocytes but not by synoviocytes.A role in osteoarthritis.J Clin Invest,1996,97(9):2011-2019.

[46]Glasson SS,Askew R,Sheppard B,et al.Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout m ice.ArthritisRheum,2004,50(8):2547-2558.

[47]Glasson SS,Askew R,Sheppard B,etal.Deletion of active ADAMTS5 prevents cartilage degradation in amurinemodelof osteoarthritis.Nature,2005,434(7033):644-648.

[48]Tortorella MD1,MalfaitAM,Deccico C,et al.The role of ADAM-TS4(aggrecanase-1)and ADAM-TS5(aggrecanase-2)in amodelof cartilage degradation.Osteoarthritis Cartilage,2001,9(6):539-552.

[49]Bondeson J,Wainw rightSD,Lauder S,etal.The roleof synovial macrophages and macrophage-produced cytokines in driving aggrecanases,matrixmetalloproteinases,and other destructive and inflammatory responses in osteoarthritis. A rthritisRes Ther,2006,8(6):R187.

[50]Wegenka UM,Buschmann J,Lütticken C,et al.Acutephase response factor,a nuclear factor binding to acutephase response elements,is rapidly activated by interleukin-6 at the posttranslational level.Mol Cell Biol,1993,13(1): 276-288.

[51]Zhong Z,Wen Z,Darnell JE Jr.Stat3:a STAT fam ilymemberactivated by tyrosine phosphorylation in response to epidermal grow th factor and interleukin-6.Science,1994,264 (5155):95-98.

[52]Guerne PA,Carson DA,Lotz M.IL-6 production by human articular chondrocytes.Modulation of its synthesis by cytokines,grow th factors,and hormones in vitro.J Immunol, 1990,144(2):499-505.

[53]Bender S,Haubeck HD,Van de Leur E,etal.Interleukin-1 beta induces synthesis and secretion of interleukin-6 in human chondrocytes.FEBSLett,1990,263(2):321-324.

[54]Wang P,Zhu F,Konstantopoulos K.Prostaglandin E2 induces interleukin-6 expression in human chondrocytes via cAMP/protein kinase A-and phosphatidy linositol 3-kinasedependent NF-kappaB activation.Am JPhysiol Cell Physiol,2010,298(6):C1445-C1456.

[55]Wang P,Zhu F,Lee NH,et al.Shear-induced interleukin-6 synthesis in chondrocytes:roles of E prostanoid(EP)2 and EP3 in cAMP/protein kinase A-and PI3-K/Akt-dependent NF-kappaB activation.JBiol Chem,2010,285(32):24793-24804.

[56]Steensberg A,Fischer CP,Keller C,et al.IL-6 enhances plasma IL-1ra,IL-10,and cortisol in humans.Am JPhysiol EndocrinolMetab,2003,285(2):E433-E437.

[57]Haider DG,Leuchten N,Schaller G,et al.C-reactive protein is expressed and secreted by peripheral bloodmononuclear cells.Clin Exp Immunol,2006,146(3):533-539.

[58]Pelletier JP,Raynauld JP,Caron J,et al.Decrease in serum level of matrix metalloproteinases is predictive of the disease-modifying effect of osteoarthritis drugs assessed by quantitative MRI in patients w ith knee osteoarthritis.Ann Rheum Dis,2010,69(12):2095-2101.

[59]Cawston TE,Curry VA,Summers CA,etal.The roleof oncostatin M in animal and human connective tissue collagen turnover and its localization w ithin the rheumatoid joint.A rthritisRheum,1998,41(10):1760-1771.

[60]Rowan AD,Koshy PJ,ShingletonWD,etal.Synergistic effects of glycoprotein 130 binding cytokines in combination with interleukin-1 on cartilage collagen breakdown.ArthritisRheum,2001,44(7):1620-1632.

[61]SuiY,Lee JH,DiM icco MA,etal.Mechanical injury potentiates proteoglycan catabolism induced by interleukin-6 with soluble interleukin-6 receptor and tumor necrosis factor alpha in immature bovineand adulthuman articular cartilage.Arthritis Rheum,2009,60(10):2985-2996.

[62]Porée B,Kypriotou M,ChadjichristosC,etal.Interleukin-6 (IL-6)and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1.Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter.JBiol Chem,2008,283(8):4850-4865.

[63]A lonzi T,Fattori E,Lazzaro D,et al.Interleukin 6 is required for the development of collagen-induced arthritis.J Exp Med,1998,187(4):461-468.

[64]van de Loo FA,Kuiper S,van Enckevort FH,etal.Interleukin-6 reduces cartilage destruction during experimental arthritis.A study in interleukin-6-deficientm ice.Am JPathol, 1997,151(1):177-191.

[65]de Hooge AS,van de Loo FA,Bennink MB,etal.Male IL-6 gene knock outmice developed more advanced osteoarthritis upon aging.Osteoarthritis Cartilage,2005,13(1):66-73.

[66]Tilg H,Dinarello CA,M ier JW.IL-6 and APPs:anti-inflammatory and immunosuppressive mediators.Immunol Today,1997,18(9):428-432.

[67]Kwan TatS,PadrinesM,Théoleyre S,etal.IL-6,RANKL, TNF-alpha/IL-1:interrelations in bone resorption pathophysiology.Cytokine Grow th Factor Rev,2004,15(1):49-60.

[68]Massicotte F,Lajeunesse D,Benderdour M,et al.Can altered production of interleukin-1beta,interleukin-6,transform ing grow th factor-beta and prostaglandin E(2)by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients.Osteoarthritis Cartilage, 2002,10(6):491-500.

[69]Kwan Tat S,Pelletier JP,Lajeunesse D,et al.The differential expression of osteoprotegerin(OPG)and receptor activator of nuclear factor kappaB ligand(RANKL)in human osteoarthritic subchondral bone osteoblasts is an indicator of themetabolic state of these disease cells.Clin Exp Rheumatol,2008,26(2):295-304.

[70]Huch K.Knee and ankle:human jointsw ith different susceptibility to osteoarthritis reveal different cartilage cellularity andmatrix synthesis in vitro.Arch Orthop Trauma Surg, 2001,121(6):301-306.

[71]Cole AA,Kuettner KE.Molecular basis for differences between human joints.CellMol Life Sci,2002,59(1):19-26.

[72]Dang Y,Cole AA,Homandberg GA.Comparison of the catabolic effects of fibronectin fragments in human knee and ankle cartilages.Osteoarthritis Cartilage,2003,11(7):538-547.

[73]Treppo S,Koepp H,Quan EC,et al.Com parison of biomechanical and biochem ical properties of cartilage from human knee and ankle pairs.JOrthop Res,2000,18(5):739-748.

[74]Cole AA,Kuettner KE.Molecular basis for differences between human joints.CellMol Life Sci,2002,59(1):19-26.

[75]Rolauffs B,Williams JM,Grodzinsky AJ,etal.Distincthorizontal patterns in the spatial organization of superficial zone chondrocytesof human joints.JStructBiol,2008,162 (2):335-344.

[76]Hangody L,K ish G,Kárpáti Z,et al.Mosaicplasty for the treatment of articular cartilage defects:application in clinicalpractice.Orthopedics,1998,21(7):751-756.

[77]Hangody L,RáthonyiGK,Duska Z,etal.Autologousosteochondral mosaicplasty.Surgical technique.J Bone Joint Surg Am,2004,86-A Suppl1:65-72.

[78]Hangody L,Vásárhelyi G,Hangody LR,et al.Autologous osteochondral grafting--technique and long-term results.Injury,2008,39Suppl1:S32-S39.

[79]Fraser EJ,Harris MC,Prado MP,et al.Autologous osteochondral transplantation for osteochondral lesions of the talus in an athletic population.Knee Surg Sports Traumatol Arthrosc,2015.[Epub ahead of print]

[80]Shepherd DE,Seedhom BB.Thickness of human articular cartilage in joints of the lower limb.Ann Rheum Dis,1999, 58(1):27-34.

[81]Kuettner KE,Cole AA.Cartilage degeneration in different human joints.Osteoarthr Cartil,2005,13(2):93-103.

[82]Lane JG,TontzWL Jr,Ball ST,et al.A morphologic,biochem ical,and biomechanical assessment of short-term effects of osteochondral autograft plug transfer in an animal model.Arthroscopy,2001,17(8):856-863.

[83]Schiff A,Li J,Inoue N,et al.Trabecular angle of the human talus is associatedw ith the level of cartilage degeneration.J MusculoskeletNeuronal Interact,2007,7(3):224-230.

[84]Segal AD,Shofer J,Hahn ME,etal.Functional lim itations associated w ith end-stage ankle arthritis.JBone Joint Surg Am,2012,94(9):777-783.

2095-9958(2015)08-0 352-07

10.3969/j.issn.2095-9958.2015.04-019

*通信作者:張建中,E-mail:trfoot@126.com

猜你喜歡
下骨距骨踝關(guān)節(jié)
X線與CT引導(dǎo)下骨病變穿刺活檢的臨床應(yīng)用
軟骨下骨重塑與骨關(guān)節(jié)炎綜述
“胖人”健身要注意保護(hù)膝踝關(guān)節(jié)
Cross-cultural adaptation and validation of an ankle instability questionnaire for use in Chinese-speaking population
中老年大骨節(jié)病踝關(guān)節(jié)影像特征分析
骨關(guān)節(jié)炎與軟骨下骨研究進(jìn)展
距骨全脫位的臨床研究進(jìn)展
軟骨下骨在骨關(guān)節(jié)炎中的病理改變及其機(jī)制
距骨全脫位治療的研究進(jìn)展
踝關(guān)節(jié)損傷的正確處置