第一作者劉志文男,博士,副教授,1975年7月生
郵箱:liuzhiwen757@126.com
串列雙幅典型斷面三分力系數(shù)氣動干擾效應
劉志文,陳政清
(湖南大學土木工程學院,長沙410082)
摘要:采用風洞試驗與數(shù)值模擬相結(jié)合的方法對串列雙幅典型斷面(矩形斷面、Π型斷面及流線型斷面)三分力系數(shù)和斯脫羅哈數(shù)的氣動干擾效應進行了研究。首先針對寬高比為5的單幅矩形斷面分別進行了三分力系數(shù)的數(shù)值模擬和風洞試驗測試,數(shù)值模擬結(jié)果與風洞試驗結(jié)果吻合良好;然后對串列雙幅典型斷面不同間距比D/B(D為雙幅斷面之間凈間距,B為單幅斷面寬度)對應的三分力系數(shù)及斯脫羅哈數(shù)進行了數(shù)值模擬。研究顯示:上游斷面阻力系數(shù)與單幅斷面比較接近,下游斷面阻力系數(shù)則隨間距比D/B的增加而增加;上游斷面升力系數(shù)、升力矩系數(shù)脈動根方差氣動干擾因子明顯小于下游斷面升力系數(shù)脈動根方差氣動干擾因子,兩者均隨間距比D/B先增加后減小。
關(guān)鍵詞:串列雙幅斷面;三分力系數(shù);氣動干擾效應;數(shù)值模擬;風洞試驗
基金項目:國家自然科學基金資助項目(50608030, 51178181);湖南省高校創(chuàng)新平臺開放
收稿日期:2012-07-05修改稿收到日期:2013-12-19
中圖分類號:U441.3文獻標志碼:A
Aerodynamic interference effects on aerostatic coefficients of typical sections in tandem arrangement
LIUZhi-wen,CHENZheng-qing(College of Civil Engineering, Hunan University, Changsha 410082, China)
Abstract:Aerodynamic interference effects on aerostatic coefficients and Strouhal numbers of two sections in tandem, namely, two rectangular sections in tandem, two Π-type sections in tandem and two streamlined sections in tandem, were investigated using numerical methods and wind tunnel tests. To validate the accuracy of the numerical methods, the numerical simulation of flow passing a fixed rectangular section with a width-to-depth ratio of 5 was carried out, and the numerical results agreed well with the experimental results. The aerostatic coefficients and Strouhal numbers of different types of two sections in tandom and with a varying separation ratio of D/B(D is the net distance between two sections in tandem, B is the width of the single section) were simulated separately with numerical methods. The results show that the drag coefficients of windward section are close to those of single section, and the drag coefficients of leeward section increase with the increase in D/B; the RMSs of lift and pitching moment coefficients of windward section are significantly less than those of leeward section, and they first increase and then decrease with the increase in D/B.
Key words:two sections in tandem arrangement; aerostatic coefficient; aerodynamic interference effect; numerical simulation; wind tunnel experiment
隨著交通量的增加,如何提高橋梁的通行能力越來越受到重視,建設雙層橋面橋梁或雙幅橋面橋梁是解決這一問題的主要措施之一。在工程實踐中,雙幅橋面橋梁主要有以下兩大類:①橋梁新建時將主梁設計成平行且相互獨立分離的兩幅橋;②在已建橋梁附近再修建一座與其平行的橋梁。這兩類橋由于主梁距離較近,在氣流作用下,上游橋面與下游橋面之間存在一定的相互影響,如上、下游橋面氣動干擾所引起的雙幅橋面主梁渦激共振、顫振穩(wěn)定性、抖振響應及上下游橋面風荷載等都與單幅主梁斷面存在一定的差異,這些影響稱為雙幅橋面的“氣動干擾效應”。隨著橋梁跨度的增加,雙幅橋面橋梁主梁之間的氣動干擾將不容忽視。
氣動干擾問題很早就受到關(guān)注,而圓柱的氣動干擾問題由于其具有廣泛的工程應用背景,其研究成果也最多[1-5]。近些年來,隨著雙幅橋面橋梁建設逐漸增多,大跨度雙幅橋面橋梁的氣動干擾問題逐漸受到關(guān)注。Rowan等[6]針對新塔科馬橋,進行了雙幅橋面橋梁氣動干擾效應研究,通過節(jié)段模型和全橋模型試驗檢驗了兩座橋的氣動干擾效應。Akihiro等[7]對日本大板關(guān)西國際機場聯(lián)絡大橋(兩公路梁橋之間夾有一與其平行的鐵路梁橋)進行了節(jié)段模型風洞試驗研究;Kimura等[8]研究了串列雙幅橋面橋梁之間凈間距對雙橋面氣動干擾效應的影響,研究顯示雙幅橋面橋梁氣動干擾問題十分復雜,當凈間距與梁寬之比達到8以上仍存在一定的干擾效應。劉志文等[9-12]對以廣州平勝大橋、青島灣大橋工程紅島航道橋為依托,對大跨度雙幅橋面橋梁氣動干擾效應進行了試驗研究,并對串列雙幅典型斷面的渦激振動氣動干擾效應進行了試驗研究。郭震山等[13]以天津海河大橋附近規(guī)劃建造的一座獨塔分離雙箱鋼箱梁斜拉橋為工程背景,對既有橋梁與新建橋梁主梁之間三分力系數(shù)氣動干擾效應進行了試驗研究。綜合以上研究文獻可知,大跨度雙幅橋面橋梁的氣動干擾效應不容忽視,并已引起許多學者的關(guān)注,但目前研究重點集中在具體工程,尚缺乏系統(tǒng)研究。對實際橋梁主梁斷面進行適當簡化,從而對串列雙幅典型斷面的氣動干擾效應進行研究對于研究大跨度雙幅橋面橋梁的氣動干擾效應具有重要意義。
1典型斷面幾何參數(shù)確定
考慮到實際橋梁斷面形式多樣,且有欄桿、檢修車軌道等附屬設施的影響,若直接采用實際橋梁斷面進行氣動干擾效應的研究,其研究難度較大,且不能抓住氣動干擾的主要矛盾,鑒于此,本項目重點針對形狀相對比較簡單的斷面進行氣動干擾效應的研究,以盡量獲得斷面形狀、間距等主要設計參數(shù)對雙幅橋梁斷面的氣動干擾效應規(guī)律。
研究過程中,對實際橋梁主梁斷面進行適當簡化,設計了三類典型斷面(矩形斷面、Π型斷面和流線型斷面)。矩形斷面作為典型的鈍體斷面,在土木工程中有著廣泛的應用背景,許多土木工程的典型結(jié)構(gòu)構(gòu)件是以矩形斷面為原形發(fā)展起來的,如大跨度橋梁的主梁斷面、橋塔斷面和橋墩斷面等,其氣動性能的研究具有重要的意義。Larsen[14]采用離散渦方法對寬高比為5的矩形斷面氣動性能進行了數(shù)值模擬。Matsumoto[15]針對寬高比為5的矩形斷面進行了表面壓力風洞試驗測試,研究顯示矩形斷面表面壓力相關(guān)性要比來流紊流相關(guān)性大。近幾年以來,由國際風工程協(xié)會和歐洲流動、湍流及燃燒研究團隊共同發(fā)起了針對寬高比為5的矩形斷面的氣動性能研究(A Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder,BARC)[16]。Π型斷面作為另一類鈍體斷面,由于其在結(jié)構(gòu)受力性能、材料等方面的因素,從經(jīng)濟的角度考慮,在大跨度斜拉橋、懸索橋中應用較多,如荊沙長江公路大橋、楊浦大橋主梁斷面等均采用了這種類型的主梁斷面。流線型斷面由于其良好的氣動性能在大跨度橋梁主梁斷面中應用十分廣泛。
綜合以上研究文獻,擬定矩形斷面、Π型斷面及流線型斷面結(jié)構(gòu)幾何參數(shù)如下:模型寬為B=600 mm(流線型斷面不計入風嘴的寬度),高為H=120 mm,具體幾何參數(shù)見圖1。針對這三類典型斷面進行三分力系數(shù)的氣動干擾效應研究,雙幅橋面之間間距為:D/B=0.02,0.1,0.2,0.5,1.0,2.0,3.0,5.0,10.0,20.0(D為雙幅斷面之間凈間距;B為單幅斷面寬度。),共30種工況。
圖1 串列雙幅典型斷面幾何參數(shù)(單位:mm) Fig.1 Geometrical parameters of typical sections in tandem arrangement (unit: mm)
2單幅斷面三分力系數(shù)數(shù)值模擬
2.1計算區(qū)域及網(wǎng)格劃分
針對單幅矩形斷面,建立如圖2(a)所示的計算區(qū)域,上游邊界距矩形斷面上游邊為5 B,下游邊界距矩形斷面下游邊為10 B,上、下兩側(cè)邊界距矩形斷面中心均為5 B。計算域邊界條件為:矩形斷面表面為無滑移壁面邊界條件,即VX=0 m/s,VY=0 m/s;上游、上、下側(cè)邊界條件為:VX=V0cosa,VX=V0sina,其中α為風攻角,來流風速為V0=10.0 m/s;下游邊界條件為壓力出口邊界,即?p/?n=0??諝饷芏葹棣?1.225 kg/m3,以矩形斷面寬度為參考尺寸的雷諾數(shù)約為Re=V0B/ν=4.0×105。計算網(wǎng)格采用分塊結(jié)構(gòu)化網(wǎng)格,在靠近斷面處加密,然后逐步放大,離斷面最近的網(wǎng)格間距為0.006B,單元總數(shù)為48 400,矩形斷面網(wǎng)格如圖2(b)所示。單幅Π型斷面和單幅流線型斷面的計算域和邊界條件設置與單幅矩形斷面的一致,圖2(c)、(d)分別給出了單幅Π型斷面和單幅流線型斷面網(wǎng)格圖。采用基于雷諾平均的k-ωSST湍流模型對流場進行模擬,采用SIMPLE算法求解動量方程中速度分量和壓力的耦合問題;采用二階迎風格式求解速度分量與對流項,時間步長均t=0.005 s。
圖2 單幅斷面計算域與網(wǎng)格 Fig.2 Computational domain and meshes of the single sections
2.2單幅斷面三分力系數(shù)計算結(jié)果
單幅斷面的阻力系數(shù)、升力系數(shù)、升力矩系數(shù)及斯托羅哈數(shù)定義如下:
(1)
式中:ρ為空氣密度;V為來流風速(m/s);B為單幅斷面寬度。
表1給出了單幅斷面三分力系數(shù)數(shù)值模擬結(jié)果與試驗及已有文獻結(jié)果。從表1可以看出,單幅矩形斷面阻力系數(shù)、斯脫羅哈數(shù)(St)的數(shù)值模擬結(jié)果與風洞試驗測試結(jié)果吻合較好;而且由于矩形斷面在0°風攻角風作用下,其升力系數(shù)與升力矩系數(shù)應為0,本文數(shù)值模擬結(jié)果均比試驗值小,更接近真實值。表明本文數(shù)值模擬結(jié)果具有足夠的精度。
考慮到影響幾何斷面三分力系數(shù)計算結(jié)果的主要因素是計算區(qū)域、計算網(wǎng)格、湍流模型以及邊界條件等,對于單幅斷面和雙幅斷面而言,從斷面流場計算的角度考慮,兩者之間本質(zhì)上是沒有差別的,故在驗證了單幅斷面計算精度的前提下,是可以采用本文的數(shù)值模擬方法進行不同間距條件下的串列雙幅斷面三分力系數(shù)氣動干擾效應研究是可行的。
3串列雙幅斷面三分力系數(shù)氣動干擾效應
3.1計算區(qū)域及網(wǎng)格劃分
采用計算流體力學軟件FLUENT分別對串列矩形斷面、串列Π型斷面和串列流線型斷面進行了不同間距比D/B條件下的三分力系數(shù)數(shù)值模擬。建立如圖3(a)所示的計算區(qū)域及計算邊界條件,即計算區(qū)域上游邊界距上游矩形斷面迎風側(cè)為5 B,計算區(qū)域下游側(cè)距上游矩形斷面背風側(cè)為20 B,計算區(qū)域的上、 下側(cè)邊界距斷
表1 單幅斷面三分力系數(shù)及St數(shù)數(shù)值模擬與試驗結(jié)果
圖3 串列雙幅矩形斷面計算區(qū)域及邊界條件 Fig.3 Computational domain and boundary conditions of two rectangular sections in tandem arrangement
圖4 間距比D/B=0.5、1時串列雙幅矩形斷面網(wǎng)格 Fig.4 Meshes of two rectangular sections in tandem arrangement with D/B=0.5 and 1
圖5 間距比D/B=0.5、1時串列雙Π型斷面網(wǎng)格 Fig.5 Meshes of two Π-typed sections in tandem arrangement with D/B=0.5 and 1
圖6 間距比D/B=0.5、1時串列雙流線型斷面網(wǎng)格 Fig.6 Meshes of two streamlined sections in tandem arrangement with D/B=0.5 and 1
面中心為5 B。計算域邊界條件設置與單幅斷面相同,此不贅述。限于篇幅,圖4~6僅給出串列雙幅矩形斷面、雙幅Π型斷面及雙幅流線型斷面間距比為D/B=0.5、1.0對應的網(wǎng)格。
3.2串列雙幅斷面三分力系數(shù)計算結(jié)果
圖7~圖9所示為間距比為D/B=1.0和2.0時串列雙幅矩形斷面、Π型斷面及流線型斷面上、下游斷面系數(shù)三分力系數(shù)時程曲線,其中CD1,CL1,Cm1分別為上游斷面的阻力系數(shù)、升力系數(shù)和升力矩系數(shù),CD2,CL2,Cm2分別為下游斷面的阻力系數(shù)、升力系數(shù)和升力矩系數(shù)。從圖7、8中可以看出,當間距比D/B=1.0及2.0時,上游鈍體斷面(矩形斷面、π型斷面)的阻力系數(shù)大于下游斷面的阻力系數(shù),下游鈍體斷面升力系數(shù)根方差及升力矩系數(shù)根方差大于上游斷面的升力系數(shù)及升力矩系數(shù)根方差。從圖9中可以看出,當間距比D/B=1.0時,上游流線型斷面阻力系數(shù)小于下游流線型斷面阻力系數(shù),下游流線型斷面升力系數(shù)及升力矩系數(shù)根方差大于上游流線型斷面升力系數(shù)及升力矩系數(shù)根方差;當間距比D/B=2.0時,上游流線型斷面阻力系數(shù)與下游流線型斷面阻力系數(shù)接近,下游流線型斷面升力系數(shù)及升力矩系數(shù)根方差大于上游流線型斷面升力系數(shù)及升力矩系數(shù)根方差。
圖7 串列雙幅矩形斷面三分力系數(shù)時程 Fig.7 Time histories of aerostatic coefficients of two rectangular sections in tandem arrangement
圖8 串列雙幅Π型斷面三分力系數(shù)時程 Fig.8 Time histories of aerostatic coefficients of two Π-typed sections in tandem arrangement
圖9 串列雙幅流線型斷面三分力系數(shù)時程 Fig.9 Time histories of aerostatic coefficients of two streamlined sections in tandem arrangement
圖10 串列雙幅矩形斷面三分力系數(shù)隨間距比D/B變化 Fig.10 Aerostatic coefficients of two rectangular sections in tandem arrangement with D/B
圖10~12所示為串列雙幅矩形斷面、雙幅Π型斷面及雙幅流線型斷面三分力系數(shù)隨間距比D/B的變化曲線。從圖10、11中可以看出,上游矩形斷面阻力系數(shù)平均值與單幅斷面比較接近,而下游矩形斷面阻力系數(shù)平均值隨間距比D/B的增加而增加,當間距比D/B=20時,下游矩形斷面的阻力系數(shù)平均值仍小于上游矩形斷面的阻力系數(shù);下游矩形斷面升力系數(shù)、升力矩系數(shù)根方差隨間距比D/B的增大而先增加后減小,且大于上游矩形斷面的升力系數(shù)、升力矩系數(shù)根方差。從圖11中看出,串列雙幅Π型斷面三分力系數(shù)隨間距比D/B的變化規(guī)律與串列雙幅矩形斷面三分力系數(shù)隨間距比D/B的變化規(guī)律相似。從圖12中可以看出,上、下游流線型斷面阻力系數(shù)隨間距比D/B的增加而先增加后減??;當間距比D/B≤3.0時,上游流線型斷面阻力系數(shù)小于下游流線型斷面阻力系數(shù);當間距比D/B>3.0時,上游流線型斷面阻力系數(shù)大于下游流線型斷面阻力系數(shù),且均小于單幅流線型斷面阻力系數(shù)。下游流線型斷面升力系數(shù)、升力矩系數(shù)根方差隨間距比D/B的增大而先增加后減小,且大于上游流線型斷面的升力系數(shù)、升力矩系數(shù)根方差。
圖11 串列雙幅Π型斷面三分力系數(shù)隨間距比D/B變化 Fig.11 Aerostatic coefficients of two Π-typed sections in tandem arrangement with D/B
3.3串列雙幅斷面三分力系數(shù)氣動干擾因子
為了研究串列雙幅典型斷面三分力系數(shù)及斯脫羅哈數(shù)的氣動干擾效應,定義如下氣動干擾因子:
(2)
式中:IFwindward為上游斷面三分力系數(shù)或斯脫羅哈數(shù)的干擾因子;Cwindward上游斷面三分力系數(shù)或斯脫羅哈數(shù);IFwindward為下游斷面三分力系數(shù)或斯脫羅哈數(shù)的干擾因子;Cleeward下游斷面三分力系數(shù)或斯脫羅哈數(shù);Csingle為單幅斷面三分力系數(shù)或斯脫羅哈數(shù)。
圖13分別給出了不同斷面三分力系數(shù)及斯脫羅哈數(shù)St氣動干擾因子隨間距比D/B的變化曲線。從圖13中可知:①上游鈍體斷面(矩形斷面、П型斷面),當0.02≤D/B≤1.0時,阻力系數(shù)氣動干擾因子IFCD=0.9左右;當D/B≥2.0時,氣動干擾因子IFCD接近1.0;上游流線型斷面,當0.02≤D/B≤3.0時,阻力系數(shù)氣動干擾因子IFCD=0.51~0.90;當D/B>3.0時,氣動干擾因子IFCD=0.82。下游鈍體斷面阻力系數(shù)則隨間距比D/B的增加而增加;下游流線型斷面,當0.02≤D/B≤3.0時,阻力系數(shù)氣動干擾因子IFCD=0.70~1.1;當D/B>3.0時,氣動干擾因子IFCD=0.75。②上游斷面(矩形斷面、П型斷面、流線型斷面)升力系數(shù)根方差、升力矩系數(shù)根方差氣動干擾因子明顯小于下游斷面升力系數(shù)根方差氣動干擾因子,兩者均隨間距比D/B先增加后減小。
圖12 串列雙幅流線型斷面三分力系數(shù)隨間距比D/B變化 Fig.12 Aerostatic coefficients of two streamlined sections in tandem arrangement with D/B
圖13 三類典型串列雙幅斷面三分力系數(shù)及斯托羅哈數(shù)St氣動干擾因子隨間距比D/B變化 Fig.13 Aerodynamic interference factors of aerostatic coefficients and Strouhal number of the typical sections in tandem arrangement with D/B
4結(jié)論
通過對串列雙幅典型斷面三分力系數(shù)及斯脫羅哈數(shù)氣動干擾效應研究,得到如下主要結(jié)論:
(1)單幅矩形斷面三分力系數(shù)數(shù)值模擬結(jié)果與風洞試驗測試值吻合較好,表明采用數(shù)值模擬方法進行不同間距條件下的串列雙幅斷面三分力系數(shù)氣動干擾效應研究是可行的;
(2)上游鈍體斷面(矩形斷面、П型斷面),當0.02≤D/B≤1.0時,阻力系數(shù)氣動干擾因子IFCD=0.9左右;當D/B≥2.0時,氣動干擾因子IFCD接近1.0;下游鈍體斷面阻力系數(shù)則隨間距比D/B的增加而增加;
(3)上游流線型斷面,當0.02≤D/B≤3.0時,阻力系數(shù)氣動干擾因子IFCD=0.51~0.90;當D/B>3.0時,氣動干擾因子IFCD=0.82。下游流線型斷面,當0.02≤D/B≤3.0時,阻力系數(shù)氣動干擾因子IFCD=0.70~1.1;當D/B>3.0時,氣動干擾因子IFCD=0.75。
(4)上游斷面(矩形、П型及流線型斷面)升力系數(shù)根方差、升力矩系數(shù)根方差氣動干擾因子明顯小于下游斷面升力系數(shù)脈動根方差氣動干擾因子,兩者均隨間距比D/B的增加而先增加后減小。
參考文獻
[1]Zdravkovich M M. Review of flow interference between two cylinders in various arrangement[J]. Journal of Fluids Engineering, 1977, 99: 618-633.
[2]Matsumoto M, Shiraishi N, Shirato H. Aerodynamic instabilities of twin circular cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33: 91-100.
[3]Alam M. M., Zhou Y. Strouhal numbers, forces and flow structures around two tandem cylinders of different diameters[J]. Journal of Fluids and Structures, 2008, 24: 505-526.
[4]LIU Xian-zhi, Marc L. Nikitopoulos dimitris. wind tunnel tests for mean drag and lift coefficients on multiple circular cylinders arranged in-line[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 831-839.
[5]Sumner D, Richards M D, Akosile O O. Strouhal number data for two staggered circular cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 859-871.
[6]Rowan A I, Stoyan S, Xie J M, et al. Tacoma narrows 50 years later wind engineering investigations for parallel bridges[J]. Bridge Structures: Assessment, Design and construction, 2005, 1(1): 3-17.
[7]Akihiro H, Naruhito S, Masaru M, et al., Aerodynamic stability of kansai international airport access bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49(1-3): 533-542.
[8]Kimura K, Shima K, Sano K, et al. Effects of separation distance on wind-induced response of parallel box girders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 954-962.
[9]劉志文,陳政清,劉高,等. 雙幅橋面橋梁三分力系數(shù)氣動干擾效應試驗研究[J]. 湖南大學學報(自然科學版), 2008, 35(1): 16-20.
LIU Zhi-wen, CHEN Zheng-qing, LIU Gao, et al.Experimental study of aerodynamic interference effects on aerostatic coefficients of twin decks bridges[J]. Journal of Hunan University (Natural science edition), 2008, 35(1): 16-20.
[10]劉志文, 陳政清. 胡建華,等. 大跨度雙幅橋面橋梁氣動干擾效應[J]. 長安大學學報(自然科學版), 2008, 28(6): 55-59.
LIU Zhi-wen, CHEN Zheng-qing, HU Jian-hua, et al. Aerodynamic interference effects of large span bridge with twin decks[J]. Journal of Chang’an University (Natural science edition), 2008, 28(6): 55-59.
[11]劉志文, 栗小祜, 陳政清. 均勻流場串列雙矩形斷面渦激振動氣動干擾試驗研究[J]. 中國公路學報,2010,23(5): 44-50.
LIU Zhi-wen, LI Xiao-hu, CHEN Zheng-qing. Experiment of Aerodynamic interference on vortex-induced vibration of two rectangular cylinders in tandem in smooth flow field[J].China Journal of Highway and Transport, 2010, 23(5): 44-50.
[12]劉志文,陳政清,栗小祜,等. 串列雙流線型斷面渦激振動氣動干擾試驗[J]. 中國公路學報,2010,24(3):51-57.
LIU Zhi-wen, CHEN Zheng-qing, LI Xiao-hu, et al. Aerodynamic interference test on vortex-induced vibration of two streamline cylinders in tandem[J].China Journal of Highway and Transport, 2010, 24(3): 51-57.
[13]郭震山,孟曉亮,周奇,等. 既有橋梁對臨近新建橋梁三分力系數(shù)氣動干擾效應[J]. 工程力學,2010, 27(9): 181-186.
GUO Zhen-shan, MENG Xiao-liang, ZHOU qi, et al. Aerodynamic interference effects of an existed bridge on aerodynamic coefficients of an adjacent new bridge[J]. Engineering Mechanics, 2010, 27(9): 181-186.
[14]Larsen A. Advances in aeroelastic analyses of suspension and cable-stayed bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 73-90.
[15]Matsumoto M, Shirato H, Araki K, et al. Spanwise coherence characteristics of surface pressure field on 2-D bluff bodies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 155-163.
[16]Schewe G. Reynolds-number-effects in flow around a rectangular cylinder with aspect ratio 1:5[C]//Borri C., Augusti G., Bartoli G. Proceedings of Fifth European and African Conference on Wind Engineering, Florence: Firenze University Press, 2009.